張理江 石定琴



摘? 要:該文在給定的半模M上定義了上三角矩陣半環U2(R,M),并利用環論的方法研究了它的相關性質,得到半環U2(R,M)是加法冪等的充分必要條件是模R是加法冪等的,半環U2(R,M)是零和自由的充分必要條件是半環R和半模模M都是零和自由的,以及其子半環的特征。在同構意義下,得到任何半環R都可以自然嵌入到半環U2(R,M)中。
關鍵詞:半環? ?半模? ?子半環? ?同構
中圖分類號:O153.3? ? ? ? ? ? ? ? ? ? ? ? 文獻標識碼:A文章編號:1672-3791(2021)07(b)-0193-03
Upper Triangular Matrix Semiring U2(R,M)
ZHANG Lijiang? SHI Dingqin
(College of Science, Jiujiang University, Jiujiang, Jiangxi Province, 332005? China)
Abstract: In this paper, the author defines the semiring U2(R,M) on the basis of the semi-module M, and studies its related properties on the method of ring theory, gets the necessary and sufficient condition that semiring U2(R,M) is additive idempotent is that the semiring R is additive idempotent, and necessary and sufficient conditions for a semiring U2(R,M) to be additive idempotent, zero sum free, and the characteristics of its sub semirings are obtained. In the sense of isomorphism, it is obtained that any semiring R can be naturally embedded in semirings U2(R,M).
Key Words: Semiring; Semimodule; Subsemiring; Isomorphism
參考文獻
[1] 劉麗娟.交換半環上一些特殊矩陣的研究[D].成都:四川師范大學,2020.
[2] 黃艷.單投射半模和擬單內射半模的若干研究[D].南昌:江西師范大學,2018.
[3] 張源野,譚宜家.形式三角矩陣半環的導子和高階導子[J].曲阜師范大學學報,2021(40):7-12.
[4] Tan Y J. Free Sets and Free Subsemimodules in a Semimodule[J].Linear Algebra and its Applications,2016,496:527-548.
[5] Golan J S.? ? ? Theory of Semiring with Application in Mathematics and Theoretical Computer Science [M].England: Longman Scientific & Technical, 1999.
[6] 王麗麗.一類加法冪等半環族的自由對象的模型[J].重慶理工大學學報:然科學版,2019(33):209-213.
[7] 龍艷華,王學平.零和自由半環上的半可逆矩陣[J].四川師范大學學報:自然科學版,2017(40):450-456.