999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Neutrosophic N-Structures Applied to Sheffer Stroke BL-Algebras

2021-11-05 11:08:56TugceKaticanTahsinOnerAkbarRezaeiandFlorentinSmarandache

Tugce Katican,Tahsin Oner,Akbar Rezaeiand Florentin Smarandache

1Department of Mathematics,Ege University,Izmir,35100,Turkey

2Department of Mathematics,Payame Noor University,Tehran,19395-4697,Iran

3Department of Mathematics and Science,University of New Mexico,Gallup,87301,NM,USA

ABSTRACT In this paper,we introduce a neutrosophic N-subalgebra,a(ultra)neutrosophic N-filter,level sets of these neutrosophic N-structures and their properties on a Sheffer stroke BL-algebra.By defining a quasi-subalgebra of a Sheffer stroke BL-algebra,it is proved that the level set of neutrosophic N-subalgebras on the algebraic structure is its quasi-subalgebra and vice versa.Then we show that the family of all neutrosophic N-subalgebras of a Sheffer stroke BL-algebra forms a complete distributive lattice.After that a(ultra)neutrosophic N-filter of a Sheffer stroke BL-algebra is described,we demonstrate that every neutrosophic N-filter of a Sheffer stroke BL-algebra is its neutrosophic N-subalgebra but the inverse is generally not true.Finally,it is presented that a level set of a(ultra)neutrosophic N-filter of a Sheffer stroke BL-algebra is also its(ultra)filter and the inverse is always true.Moreover,some features of neutrosophic N-structures on a Sheffer stroke BL-algebra are investigated.

KEYWORDS Sheffer stroke BL-algebra;(ultra)filter;neutrosophic N-subalgebra;(ultra)neutrosophic N-filter

1 Introduction

Fuzzy set theory,which has the truth(t)(membership)function and state positive meaning of information,is introduced by Zadeh[1]as a generalization the classical set theory.This led scientists to find negative meaning of information.Hence,intuitionistic fuzzy sets[2]which are fuzzy sets with the falsehood(f)(nonmembership)function were introduced by Atanassov.However,there exist uncertainty and vagueness in the language,as well as positive ana negative meaning of information.Thus,Smarandache defined neutrosophic sets which are intuitionistic fuzzy sets with the indeterminacy/neutrality(i)function[3,4].Thereby,neutrosophic sets are determined on three components:(t,i,f):(truth,indeterminacy,falsehood)[5].Since neutrosophy enables that information in language can be comprehensively examined at all points,many researchers applied neutrosophy to different theoretical areas such as BCK/BCI-algebras,BE-algebras,semigroups,metric spaces,Sheffer stroke Hilbert algebras and strong Sheffer stroke non-associative MValgebras[6–15]so as to improve devices imitating human behaviours and thoughts,artificial intelligence and technological tools.

Sheffer stroke(or Sheffer operation)was originally introduced by Sheffer[16].Since Sheffer stroke can be used by itself without any other logical operators to build a logical system which is easy to control,Sheffer stroke can be applied to many logical algebras such as Boolean algebras[17],ortholattices[18],Sheffer stroke Hilbert algebras[19].On the other side,BL-algebras were introduced by Hájek as an axiom system of his Basic Logic(BL)for fuzzy propositional logic,and he widely studied many types of filters[20].Moreover,Oner et al.[21]introduced BL-algebras with Sheffer operation and investigated some types of(fuzzy)filters.

We give fundamental definitions and notions about Sheffer stroke BL-algebras,N-functions and neutrosophicN-structures defined by these functions on a crispy setX.Then a neutrosophicN-subalgebra and a(τ,γ,ρ)-level set of a neutrosophicN-structure are presented on Sheffer stroke BL-algebras.By defining a quasi-subalgebra of a Sheffer stroke BL-algebra,it is proved that every(τ,γ,ρ)-level set of a neutrosophicN-subalgebra of the algebra is the quasi-subalgebra and the inverse is true.Also,we show that the family of all neutrosophicN-subalgebras of this algebraic structure forms a complete distributive lattice.Some properties of neutrosophicNsubalgebras of Sheffer stroke BL-algebras are examined.Indeed,we investigate the case whichN-functions defining a neutrosophicN-subalgebra of a Sheffer stroke BL-algebra are constant.Moreover,we define a(ultra)neutrosophicN-filter of a Sheffer stroke BL-algebra byN-functions and analyze many features.It is demonstrated that(τ,γ,ρ)-level set of a neutrosophicN-filter of a Sheffer stroke BL-algebra is its filter but the inverse does not hold in general.In fact,we propound that(τ,γ,ρ)-level set of a(ultra)neutrosophicN-filter of a Sheffer stroke BL-algebra is its(ultra)filter and the inverse is true.Finally,new subsets of a Sheffer stroke BL-algebra are defined by theN-functions and special elements of the algebra.It is illustrated that these subsets are(ultra)filters of a Sheffer stroke BL-algebra for the(ultra)neutrosophicN-filter but the special conditions are necessary to prove the inverse.

2 Preliminaries

In this section,basic definitions and notions on Sheffer stroke BL-algebras and neutrosophicN-structures.

Definition 2.1.[18]LetH=〈H,|〉be a groupoid.The operation |is said to be aSheffer stroke(or Sheffer operation)if it satisfies the following conditions:

(S1)x|y=y|x,

(S2)(x|x)|(x|y)=x,

(S3)x|((y|z)|(y|z))=((x|y)|(x|y))|z,

(S4)(x|((x|x)|(y|y)))|(x|((x|x)|(y|y)))=x.

Definition 2.2.[21]A Sheffer stroke BL-algebra is an algebra(C,∨,∧,|,0,1)of type(2,2,2,0,0)satisfying the following conditions:

(sBL?1)(C,∨,∧,0,1)is a bounded lattice,

(sBL?2)(C,|)is a groupoid with the Sheffer stroke,

(sBL?3)c1∧c2=(c1|(c1|(c2|c2)))|(c1|(c1|(c2|c2))),

(sBL?4)(c1|(c2|c2))∨(c2|(c1|c1))=1,

for allc1,c2∈C.

1=0|0 is the greatest element and 0=1|1 is the least element ofC.

Proposition 2.1.[21]In any Sheffer stroke BL-algebraC,the following features hold,for allc1,c2,c3∈C:

(1)c1|((c2|(c3|c3))|(c2|(c3|c3)))=c2|((c1|(c3|c3))|(c1|(c3|c3))),

(2)c1|(c1|c1)=1,

(3)1|(c1|c1)=c1,

(4)c1|(1|1)=1,

(5)(c1|1)|(c1|1)=c1,

(6)(c1|c2)|(c1|c2)≤c3?c1≤c2|(c3|c3)

(7)c1≤c2iffc1|(c2|c2)=1,

(8)c1≤c2|(c1|c1),

(9)c1≤(c1|c2)|c2,

(10)(a)(c1|(c1|(c2|c2)))|(c1|(c1|(c2|c2)))≤c1,

(b)(c1|(c1|(c2|c2)))|(c1|(c1|(c2|c2)))≤c2.

(11)Ifc1≤c2,then

(i)c3|(c1|c1)≤c3|(c2|c2),

(ii)(c1|c3)|(c1|c3)≤(c2|c3)|(c2|c3),

(iii)c2|(c3|c3)≤c1|(c3|c3).

(12)c1|(c2|c2)≤(c3|(c1|c1))|((c3|(c2|c2))|(c3|(c2|c2))),

(13)c1|(c2|c2)≤(c2|(c3|c3))|((c1|(c3|c3))|(c1|(c3|c3))),

(14)((c1∨c2)|c3)|((c1∨c2)|c3)=((c1|c3)|(c1|c3))∨((c2|c3)|(c2|c3)),

(15)c1∨c2=((c1|(c2|c2))|(c2|c2))∧((c2|(c1|c1))|(c1|c1)).

Lemma 2.1.[21]LetCbe a Sheffer stroke BL-algebra.Then

(c1|(c2|c2))|(c2|c2)=(c2|(c1|c1))|(c1|c1),

for allc1,c2∈C.

Corollary 2.1.[21]LetCbe a Sheffer stroke BL-algebra.Then

c1∨c2=(c1|(c2|c2))|(c2|c2),

for allc1,c2∈C.

Lemma 2.2.[21]LetCbe a Sheffer stroke BL-algebra.Then

c1|((c2|(c3|c3))|(c2|(c3|c3)))=(c1|(c2|c2))|((c1|(c3|c3))|(c1|(c3|c3))),

for allc1,c2,c3∈C.

Definition 2.3.[21]A filter ofCis a nonempty subsetP?Csatisfying

(SF?1)ifc1,c2∈P,then(c1|c2)|(c1|c2)∈P,

(SF?2)ifc1∈Pandc1≤c2,thenc2∈P.

Proposition 2.2.[21]LetPbe a nonempty subset ofC.ThenPis a filter ofCif and only if the following hold:

(SF?3)1 ∈P,

(SF?4)c1∈Pandc1|(c2|c2)∈Pimplyc2∈P.

Definition 2.4.[21]LetPbe a filter ofC.ThenPis called an ultra filter ofCif it satisfiesc∈Porc|c∈P,for allc∈C.

Lemma 2.3.[21]A filterPofCis an ultra filter ofCif and only ifc1∨c2∈Pimpliesc1∈Porc2∈P,for allc1,c2∈C.

Definition 2.5.[8]F(X,[?1,0])denotes the collection of functions from a setXto[?1,0]and an element ofF(X,[?1,0])is called a negative-valued function fromXto[?1,0](briefly,N-function onX).AnN-structure refers to an ordered pair(X,f)ofXandN-functionfonX.

Definition 2.6.[12]A neutrosophicN-structure over a nonempty universeXis defined by

whereTN,INandFNareN-functions onX,called the negative truth membership function,the negative indeterminacy membership function and the negative falsity membership function,respectively.

Every neutrosophicN-structureXNoverXsatisfies the condition(?x∈X)(?3 ≤TN(x)+IN(x)+FN(x)≤0).

Definition 2.7.[13]LetXNbe a neutrosophicN-structure on a setXandτ,γ,ρbe any elements of[?1,0]such that ?3 ≤τ+γ+ρ≤0.Consider the following sets:

3 Neutrosophic N-Structures

In this section,neutrosophicN-subalgebras and neutrosophicN-filters on Sheffer stroke BLalgebras.Unless otherwise specified,Cdenotes a Sheffer stroke BL-algebra.

Definition 3.1.A neutrosophicN-structureCNon a Sheffer stroke BL-algebraCis called a neutrosophicN-subalgebra ofCif the following condition is valid:

for allc1,c2∈C.

Example 3.1.Consider a Sheffer stroke BL-algebraCwhere the setC={0,a,b,c,d,e,f,1}and the Sheffer operation |,the join operation ∨and the meet operation ∧onChas the Cayley tables in Tab.1[21].Then a neutrosophicN-structure

onCis a neutrosophicN-subalgebra ofC.

Table 1:Tables of the Sheffer operation |,the join operation ∨and the meet operation ∧on C

4 Conclusion

Acknowledgement:The authors are thankful to the referees for a careful reading of the paper and for valuable comments and suggestions.

Funding Statement:The authors received no specific funding for this study.

Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

主站蜘蛛池模板: 熟妇丰满人妻| 91亚瑟视频| 成人免费午间影院在线观看| 国产亚洲欧美在线中文bt天堂| 国产精品一区二区无码免费看片| 欧美亚洲香蕉| 91免费在线看| 五月天香蕉视频国产亚| 中文字幕佐山爱一区二区免费| 亚洲精品亚洲人成在线| 成人免费视频一区| 欧美日韩国产综合视频在线观看| 免费一级无码在线网站| 午夜免费视频网站| 国产全黄a一级毛片| 国产视频a| 免费国产无遮挡又黄又爽| 亚洲无码不卡网| 国内a级毛片| 精品一区二区三区中文字幕| 久久国产毛片| 日本精品一在线观看视频| 久久99国产综合精品女同| 国产资源免费观看| 国产无码精品在线| 国产91视频观看| 欧美三级自拍| 制服丝袜国产精品| 久久久久亚洲av成人网人人软件| 91精品啪在线观看国产91| 99在线观看视频免费| 午夜精品福利影院| 香蕉精品在线| 伊人久久大线影院首页| 亚洲国产精品无码久久一线| 国国产a国产片免费麻豆| 免费在线一区| 91av成人日本不卡三区| 国产在线小视频| 国产精品嫩草影院视频| 久久人人爽人人爽人人片aV东京热| 热久久国产| 一区二区三区在线不卡免费| 亚洲精品无码av中文字幕| 午夜无码一区二区三区在线app| 九九香蕉视频| 午夜啪啪福利| 亚洲国产在一区二区三区| aa级毛片毛片免费观看久| 亚洲一区二区三区中文字幕5566| 四虎国产精品永久在线网址| 谁有在线观看日韩亚洲最新视频| 婷婷亚洲视频| jizz在线免费播放| 亚洲人成网站18禁动漫无码| 亚洲热线99精品视频| 精品自窥自偷在线看| 欧美精品亚洲二区| 午夜啪啪网| 亚洲视频一区| 一本大道在线一本久道| 国产中文在线亚洲精品官网| 久久99国产乱子伦精品免| 欧美精品v欧洲精品| 91青青视频| 中文字幕乱妇无码AV在线| 日韩精品无码免费一区二区三区| 亚洲天堂精品视频| 综合色天天| 免费国产在线精品一区| 欧美日本视频在线观看| 无码aⅴ精品一区二区三区| 国产区福利小视频在线观看尤物| 亚洲天堂在线免费| 国产精品福利社| 免费观看男人免费桶女人视频| 国产成人狂喷潮在线观看2345| 国产精品久久久免费视频| 毛片免费观看视频| 97超爽成人免费视频在线播放| 97超级碰碰碰碰精品| 98超碰在线观看|