999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Determinantal Expressions and Recursive Relations for the Bessel Zeta Function and for a Sequence Originating from a Series Expansion of the Power of Modified Bessel Function of the First Kind

2021-11-05 11:09:06YanHongBaiNiGuoandFengQi

Yan Hong,Bai-Ni Guoand Feng Qi

1College of Mathematics and Physics,Inner Mongolia University for Nationalities,Tongliao,028043,China

2School of Mathematics and Informatics,Henan Polytechnic University,Jiaozuo,454003,China

3School of Mathematical Sciences,Tiangong University,Tianjin,300387,China

ABSTRACT In the paper,by virtue of a general formula for any derivative of the ratio of two differentiable functions,with the aid of a recursive property of the Hessenberg determinants,the authors establish determinantal expressions and recursive relations for the Bessel zeta function and for a sequence originating from a series expansion of the power of modified Bessel function of the first kind.

KEYWORDS Determinantal representation;recursive relation;series expansion;first kind modified Bessel function;Bessel zeta function;Pochhammer symbol;gamma function;Hessenberg determinant

1 Introduction and Motivations

2 Determinantal Representations via Ratios of Gamma Functions

3 Determinantal Representations via the Pochhammer Symbols

4 Recursive Relations

5 More Numerical Computation of the First Few Values

Figure 1:Graphs of ζν(2k)for 1 ≤k ≤4 on the interval(?1,9)

6 Conclusions

In this paper,by virtue of a general formula(13)for derivatives of the ratio of two differentiable functions and with the aid of a recursive property(23)of the Hessenberg determinants(22),we establish six determinantal expressions(9),(14),(15),(17)–(19),find two recursive relations(20)and(21)for the sequencebk+1(ν)defined by(4)and for the Bessel zeta functionζν(2k)defined by(5).

Acknowledgement:The authors thank 1.Jiaying Chen and Geng Li(Undergraduates Enrolled in 2018 at School of Mathematical Sciences,Tianjin Polytechnic University,China),for their valuable help downloading the papers[5,8,17]on 27 January 2021.2.Christophe Vignat(Universite d’Orsay,France;Tulane University,USA;cvignat@tulane.edu)for his sending electronic version of the paper[8]on 28 January 2021.3.Anonymous referees for their careful reading of,helpful suggestions to,and valuable comments on the original version of this paper.

Funding Statement:The first author,Mrs.Yan Hong,was partially supported by the Natural Science Foundation of Inner Mongolia(Grant No.2019MS01007),by the Science Research Fund of Inner Mongolia University for Nationalities(Grant No.NMDBY15019),and by the Foundation of the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region(Grant Nos.NJZY19157 and NJZY20119)in China.

Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

主站蜘蛛池模板: 中文字幕人成人乱码亚洲电影| 国产99欧美精品久久精品久久| 国产v精品成人免费视频71pao | 亚洲成在人线av品善网好看| 中文字幕永久视频| 99人妻碰碰碰久久久久禁片| 人妻丰满熟妇AV无码区| 欧美成人看片一区二区三区| 久久精品国产精品一区二区| 久久综合色天堂av| 999福利激情视频| www.精品视频| 国产精品不卡片视频免费观看| 国产男女免费完整版视频| 欧美午夜一区| 免费一级成人毛片| 国产成年无码AⅤ片在线| 青青青伊人色综合久久| 538国产在线| 欧美在线中文字幕| 亚洲国产精品美女| 亚洲一欧洲中文字幕在线| 久久久91人妻无码精品蜜桃HD| 91无码视频在线观看| 日韩免费成人| 精品欧美日韩国产日漫一区不卡| 国产凹凸视频在线观看| 波多野结衣一区二区三视频| 免费亚洲成人| 青草娱乐极品免费视频| 97视频免费看| 国产aaaaa一级毛片| 黑色丝袜高跟国产在线91| 亚洲视频免费播放| 99久久国产综合精品2023| 毛片久久久| 九九九国产| 992Tv视频国产精品| 麻豆国产原创视频在线播放 | 久久精品国产国语对白| 精品久久久久久中文字幕女| 亚洲精品波多野结衣| 亚洲成aⅴ人片在线影院八| 国产成人福利在线| 另类欧美日韩| 欧美精品一区在线看| 依依成人精品无v国产| 久久这里只精品热免费99| 亚洲码一区二区三区| 亚洲Aⅴ无码专区在线观看q| A级毛片无码久久精品免费| 国产精品女主播| 精品伊人久久大香线蕉网站| 国产精品妖精视频| 亚洲中文在线看视频一区| 777国产精品永久免费观看| 亚洲人成网线在线播放va| 国产精品亚洲综合久久小说| 亚洲自拍另类| 在线a网站| 国产成人1024精品| 成人午夜福利视频| 狠狠色综合久久狠狠色综合| 久久精品亚洲中文字幕乱码| 91福利国产成人精品导航| 久久国产精品嫖妓| 日韩AV无码一区| 一级香蕉人体视频| 在线播放真实国产乱子伦| 国产成人精品男人的天堂| 国内视频精品| 国产www网站| 日本在线免费网站| 日韩在线成年视频人网站观看| 久久一色本道亚洲| 爆操波多野结衣| 久久精品亚洲热综合一区二区| 免费一级毛片在线观看| 538国产在线| 日韩精品久久久久久久电影蜜臀| 丁香婷婷激情综合激情| 国产精品无码AⅤ在线观看播放|