徐 振,劉燕德,胡 軍,李茂鵬,崔惠楨,占朝輝
基于太赫茲時域光譜技術的摻假川貝母檢測
徐 振,劉燕德※,胡 軍,李茂鵬,崔惠楨,占朝輝
(華東交通大學機電與車輛工程學院,南昌 330013)
目前川貝母粉摻假現象層出不窮,嚴重影響了中藥材市場的健康發展,因此對川貝母真偽進行檢測意義重大。該研究以純品川貝母粉以及5種含不同摻假物的川貝母粉樣品為研究對象,探究太赫茲時域光譜技術在檢測川貝母品質方面應用的可行性。利用偏最小二乘判別(Partial Least Squares Discriminant Analysis,PLS-DA)對純品川貝母粉以及摻假川貝母粉建立原始光譜的二分類模型。為了同時對多種含不同摻假物的川貝母樣品進行鑒別,先對原始光譜采用多種單一預處理方法以及多種復合預處理方法進行處理,再利用主成分分析(Principal Component Analysis,PCA)對數據進行降維,最后建立支持向量機(Support Vector Machine,SVM)多分類模型。建立SVM多分類模型時,采用網格搜索(Grid Search)與粒子群(Particle Swarm Optimization,PSO)算法兩種參數優化方式,對SVM的懲罰參數()與核參數()進行優化。結果顯示:6個二分類模型的鑒別正確率均為100%,表明純品川貝母粉與摻假樣品的太赫茲時域光譜存在差異,歸一化-多元散射校正-PSO-SVM多分類模型效果較為理想,預測正確為95.67%,均方根誤差為0.432。該研究可為檢測分析川貝母品質提供理論經驗借鑒。
光譜;模型;支持向量機;網格搜索;粒子群優化;太赫茲時域光譜
川貝母是百合科貝母屬植物的鱗莖,既是食物也是藥物,在中醫藥領域因其具有清熱潤肺、化痰止咳等藥用功效,被關注與應用。但資源稀缺、供不應求、摻假偽冒等問題嚴重影響其市場價值[1-2]。川貝母常被磨粉使用,川貝母粉摻假現象屢禁不止,非專業人員難以對其進行準確的鑒別,傳統的“一看二聞三嘗”經驗鑒別法識別川貝母粉末是否摻假難度較高,也需要豐富的實踐經驗。目前理化分析方法鑒別川貝母雖被廣泛使用,但此類方法樣品處理流程繁雜、設備昂貴,需要專業的技術人員[3-5]。近紅外光譜[6]、拉曼光譜[7-8]、紫外光譜[9]、熒光光譜[10]等多種光譜技術也被用于中藥產地與品類的鑒別,但是也存在吸收峰重疊嚴重、檢測限高、響應值不穩定、對于含復雜成分的檢測目標的整體分布狀況較難區分等問題[11-12]。針對當前的中藥材摻假的市場現狀,急需探索出一種新的檢測摻偽中藥材的新手段[13-14]。
太赫茲波頻率處于0.1~10 THz之間,波長介于毫米波與紅外線之間,許多生物大分子及中草藥活性分子的振動及轉動能級均位于此頻段范圍內,樣品內部成分的微小差異均可引起太赫茲圖譜的變化[15-17]。故可由太赫茲圖譜對物質成分含量進行表征,因此在食品、醫藥、生物化學等檢測領域的應用較為廣泛。劉曉慶等[18]對比4種青霉素類藥物在0.2~1.4 THz波段的太赫茲的吸收峰,通過其質量和強度的對應關系達到檢測青霉素類藥品質量的目的。劉陵玉等[19]用太赫茲時域光譜技術獲取含有黃芩苷的混合物在0.3~1.5 THz范圍內的光譜,利用二維相關光譜分析結合支持向量機(Support Vector Machine,SVM)和偏最小二乘(Partial Least Squares,PLS)法建立兩種定量檢測模型,可以快速、準確地測定混合物中黃芩苷的含量。歐陽愛國等[20]根據玉米粉中苯甲酸在0.5~3.0 THz的太赫茲光譜數據,建立PLS、最小二乘支持向量機(Least Squares-Support Vector Machine,LS-SVM)和多元線性回歸(Multiple Linear Regression,MLR)定量分析模型,結果發現太赫茲時域光譜技術結合LS-SVM建立的模型在定量檢測樣品中苯甲酸含量時表現出優良性能。管愛紅等[21]根據紅薯淀粉和明礬以及混合物的太赫茲吸收系數譜和折射率譜,發現樣品中隨著明礬含量增加其吸收峰的幅度和折射率均呈下降趨勢,可由此利用太赫茲時域光譜技術對淀粉中明礬進行檢測。
近些年太赫茲光譜技術在藥食同源的物質檢測鑒別領域的應用效果也取得一定的突破,包括姜黃[22]、金銀花[17]、冬蟲夏草[23]、陳皮[24]、人參[25]等傳統中藥材,表明太赫茲光譜檢測技術在未來具有廣闊的應用前景[26]。但缺乏模型參數優化方法,存在鑒別準確率低等缺陷。本研究將太赫茲時域光譜技術與支持向量機相結合,并對SVM的參數優化方式進行探索,對含有多種摻雜物的川貝母粉進行鑒別,試圖提出一種高效無損的川貝母粉摻假的定性分析方法,以期為快速檢測川貝母品質提供參考。
本試驗采用日本 Advantest公司的TAS7500SU 系統進行光譜采集,選擇透射模式。試驗所用設備的原理如圖1所示,飛秒激光經過分束鏡分為較強的泵浦光和較弱的探測光,泵浦光通過光導天線激發太赫茲脈沖,經過待測樣品后攜帶相關信息與經過延遲系統的探測光會和,共同觸發探測器,進而獲得樣品的時域信號。系統使用2個超短脈沖激光器產生太赫茲波以及探測太赫茲波。飛秒激光脈沖輸出功率最大為50 mW,中心波長1 550 nm,重復頻率50 MHz。試驗系統的掃描速度設置為8 ms/次,掃描次數設置為8 096次/點,試驗的環境溫度維持在 20℃左右,相對濕度25%以下。開機后利用空壓機和空氣干燥裝置通入干燥空氣,預熱30 min后,使樣品倉的空氣濕度維持在5%以下,開始采集樣品的太赫茲時域光譜。采集到時域參考信號的幅值0()以及樣品時域信號的幅值trans()后,利用傅里葉變換轉換為頻域譜的幅值0()、trans(),根據Dorney等[27]提出的光學參數模型,得到吸收系數()、吸光度、折射率()等主要光學參數,其計算公式如式(1)~式(3):


式中為樣品厚度,mm;為太赫茲波的頻率,Hz;()為樣品信號與參考信號的振幅比;()為兩者的相位差,rad;表示光速,m/s。
試驗所用川貝母購買于康隆大藥房,經檢驗為正品川貝母。試驗過程中為保證樣品的均勻性以及測量過程中的穩定性,樣品制備采用粉碎壓片的方法。為保證與光譜采集環境的一致性,制樣環境溫度設置為在20 ℃,相對濕度維持在25%左右。將純品川貝母與5種摻假物(大米粉、葛粉、紅薯粉、平貝母粉、小麥粉)分別烘干粉碎后,用200目藥篩進行篩取,并按照摻假物含量30%的比例配置試驗樣品,為使樣品更易壓片成型且不影響太赫茲波透過樣品的強度,向混合樣品中加入等量聚乙烯并震蕩混勻。壓片之前在將樣品置于恒溫干燥箱中保存,以減少樣品吸收的水分對太赫茲波的影響。稱取每種樣品(0.150±0.003) g,置于壓片機模具中,壓制成片,直徑為13 mm,厚度為(1.0±0.1) mm。6種摻假的純品各壓制10個片,每個片采集4個點,共采集240條光譜;純品川貝母及摻假川貝母各壓制50個片,每個片采集4個點,共采集到1 200條純品的光譜;本研究所有樣品共采集到光譜1 440條。
采集樣品的光譜數據后,為初步判定純品川貝母粉與摻雜樣品的區別,對原始光譜建立PLS-DA(Discriminate Analysis)二分類判別模型。分別采用S.G平滑(Savitzky-Golay Smoothing)、歸一化(Normalize)多元散射校正(Multiple Scatter Correction,MSC)以及上述方法的兩兩結合對原始光譜進行預處理,采用主成分分析提取數據的主要變量,降低數據維度,簡化計算量。采用Kennard-Stone(K-S)方法按1:3的比例將光譜數據分為預測集和建模集,其中預測集360個光譜樣本,建模集1 080個光譜樣本[28]。對采用多種方法預處理后的數據建立SVM分類模型,其中支持向量機優化方式采取網格搜索優化(Grid Search)以及粒子群優化(Particle Swarm Optimization,PSO)兩種方式,并計算兩種參數優化方式下的含各類摻假物的分類正確率,進行對比得出較佳的參數優化方式以及多分類方法。具體流程如圖2。
支持向量機(Support Vector Machine,SVM)可有效克服神經網絡(Back Propagation Neural Network,BPNN)分類收斂難、解不穩定、推廣性差等缺陷,擁有許多傳統模式識別算法不具備的優勢[29]。其最大的優點就是可以提高預測能力,降低分類錯誤率。但支持向量機的運算結果很大程度上受限于懲罰參數()和核參數()的選擇,對參數隨機指定難以達到最優的效果,本研究將對比網格搜索尋優以及粒子群尋優兩種參數優化方式。
網格搜索(Grid Search)作為一種參數尋優方法,需要將被搜索的參數區域劃分為網格,其所有的交叉點即為參數組合(,)[30]。利用k-fold去測試每一組(,)對應的分類準確率,以得到準確率最高的(,)組合作為建立模型的參數[29,31]。
粒子群尋優(Particle Swarm Optimization,PSO)起始于隨機解,反復迭代尋優,并由適應度評價解的品質[32-33]。操作比遺傳算法更簡單,跟隨當前搜索到的最優值來尋找全局最優,無需“交叉”與“變異”等的操作。粒子群優化算法有著實現容易、精度高、收斂快等優點,在解決實際問題中具有一定的優勢[34]。
圖3a為采集到的樣品的太赫茲時域光譜,可見不同的摻假樣品的時域光譜在相位與強度上均存在明顯不同,一定程度上表明含不同摻假物樣品內部的成分與分子構成均與純品川貝母有較大的區別。圖3b為采集到的純品川貝母以及5種含摻假物的樣品的太赫茲時域吸收系數譜線圖,吸收系數整體上呈現上升趨勢,但是譜線存在交叉情況,區分樣品摻假的種類難度較大。圖3c為試驗樣品的折射率光譜圖,6種樣品在0.5~2.5 THz無特別明顯變化,但總體呈現下降趨勢。圖3d為試驗樣品的透射比光譜圖,與吸收系數變化趨勢不同,透射比隨著頻率的增大逐漸減小,但是含不同摻假物的樣品光譜之間存在較為明顯的交叉現象。
由于川貝母成分較為復雜,通過樣品的太赫茲光譜對川貝母是否摻假以及摻假的物質進行直接鑒別,難度較大。為準確的鑒別川貝母粉是否摻假,需要進一步利用化學計量學方法對光譜進行預處理以及建模分析。由于噪聲及其他無關信息的影響,主要對0.5~2.5 THz波段范圍內的光譜進行分析。
為對摻假川貝母進行準確分析,在同時對多種摻假川貝母進行多分類之前,截取0.5~2.5 THz光譜的原始數據,首先對純品川貝母樣品與其他5種摻假川貝母利用PLS-DA進行初步的二分類。該過程分為兩步進行:1)鑒別區分摻假與未摻假川貝母;2)分別鑒別純品川貝母粉與大米粉-川貝母粉(純品川貝母粉中摻雜有大米粉,其他類似)、葛粉-川貝母粉、紅薯粉-川貝母粉、平貝母粉-川貝母粉、小麥粉-川貝母粉。具體鑒別結果如表1,分類正確率為樣本被正確分類的個數與該類樣本總數中的比值。

表1 二分類結果
川貝母粉摻假二分類模型如圖4。其中PLS-DA模型能夠完全區分純川貝母粉與純品的摻假樣品(純大米粉、純葛粉、純紅薯粉、純平貝母粉、純小麥粉),鑒別正確率能夠達到100%。同樣,建立的川貝母粉與含30%摻假物的樣品的二分類模型效果也很理想。
在進行二分類研究時,只能進行摻假貝母與未摻假貝母粉的鑒別,當多種摻假川貝母混雜在一起時,PLS-DA模型難以進行準確的區分。為對摻假川貝母樣品進行深入研究,建立SVM多分類模型。對原始光譜利用多種方法進行預處理,利用主成分分析降低數據維度。建立SVM分類模型時,選擇徑向基函數作為核函數,以主成分分析后的太赫茲光譜作為輸入特征,利用網格搜索(Grid Search)與粒子群優化(PSO)對SVM參數進行優化。
表2對比不同預處理情況下的支持向量機多分類模型。

表2 川貝母粉摻假SVM多分類結果
采用網格搜索進行參數優化時,經過S-G Smoothing預處理后的多分類模型正確最低為88.00%,經過S-G平滑-歸一化預處理后的多分類模型正確率較高為94.33%,且得到最小的均方根誤差為0.562 7。建立的7個多分類模型中純川貝母與大米粉-川貝母粉的正確率均為100%,葛粉-川貝母粉鑒別正確率最大值為86%,效果不夠理想,紅薯粉-川貝母粉鑒別正確率最大值為98%,平貝母-川貝母粉鑒別正確率最大值為90%,小麥粉-川貝母粉鑒別正確率最高值為96%。采用PSO對參數進行優化時,無任何預處理時正確率最低為89.33%,其中純川貝母與大米粉-川貝母粉的正確率均為100%;S-G 平滑-歸一化后葛粉-川貝母粉鑒別正確率最大值為92%,紅薯粉-川貝母粉鑒別正確率最大值為98%,平貝母-川貝母粉鑒別正確率最大值為90%,小麥粉-川貝母粉鑒別正確率最大值為94%。其中經過S-G S-G平滑-歸一化預處理與歸一化-MSC預處理后的模型整體正確最高,為95.67%,但經過歸一化-MSC預處理后得到的均方根誤差最小,為0.432 0,故建立的歸一化-MSC-PSO-SVM多分類模型效果最優。通過表2可分析出,經過粒子群優化參數優化后的SVM模型分類正確率整體高于經網格搜索優化后的模型鑒別正確率。
圖5為經主成分分析后的建立的歸一化- MSC-PSO-SVM多分類模型結果,相比較建立的其他多分類模型,該模型的分類效果最好,可得到最高的分類正確率以及最低的均方根誤差。此時,懲罰參數()為2.550 8,核參數()為66.814 3。純川貝母粉與大米粉-川貝母粉無被錯誤分類情況;葛粉-川貝母粉共4個樣品被錯誤分類,1個被錯誤鑒別為紅薯粉-川貝母粉,1個被錯誤鑒別為平貝母-川貝母粉,2個被錯誤鑒別為小麥粉-川貝母粉;紅薯粉-川貝母粉1個樣品被錯誤鑒別為大米粉-川貝母粉;平貝母-川貝母粉被錯誤鑒別為大米粉-川貝母粉的樣品個數為3個;小麥粉-川貝母粉有2個樣品被錯誤鑒別為平貝母-川貝母粉。本研究所建立的模型雖然能夠以較高的準確率鑒別不同的摻假樣品,由于試驗樣品摻假物種均含有大量淀粉以及其他相似成分,雖各成分含量不同,但也會導致其太赫茲光譜信息存在微弱的相似之處,致使少數樣品被錯誤分類,平均分類正確率為95.67%。
本研究以純品川貝母以及川貝母粉中5種常見的摻假物(大米粉、葛粉、紅薯粉、平貝母粉、小麥粉)作為研究對象。使用建立的PLS-DA二分類模型鑒別純品川貝母與各種摻假樣品,分類正確率均為100%,表明純品川貝母與含摻假物的樣品存在明顯區別。為同時對含不同摻假物的川貝母樣品進行識別,對原始光譜采用單一預處理方法以及多種預處理方法相結合進行預處理,并采用主成分分析降低數據維度,建立支持向量機模型。采用網格搜索(Grid Search)與粒子群優化算法(Particle Swarm Optimization,PSO)優化支持向量機(Support Vector Machine,SVM)模型參數。結果表明建立的歸一化多元散射校正-PSO-SVM多分類模型效果較優,識別5種摻假川貝母樣品平均預測正確為95.67%,均方根誤差為0.432 0。本研究可為鑒別川貝母品質提供一種簡潔快速無損的檢測方法,也可為后續定量檢測川貝母中的摻假物含量提供基礎。
[1] 劉芳. 中藥粉末飲片質量評價示范性研究[D]. 成都:成都中醫藥大學,2017.
Liu Fang. Study on Quality Evaluation of Herbal Powder[D]. Chengdu: Chengdu University of TCM, 2017. (in Chinese with English abstract)
[2] 熊浩榮,馬朝旭,國慧,等. 川貝母野生基原植物資源分布和保育研究進展[J]. 中草藥,2020,51(9):2573-2579.
Xiong Haorong, Ma Zhaoxu, Guo Hui, et al. Research progress on wild source plant resources distribution and conservation of Fritillariae Cirrhosae Bulbus[J]. Chinese Traditional and Herbal Drugs, 2020, 51(9): 2573-2579. (in Chinese with English abstract)
[3] 耿昭,李小紅,茍琰,等. QuEChERS法結合氣相色譜-串聯質譜法測定貝母類中藥中53種農藥殘留[J]. 中草藥,2020,51(20):5337-5347.
Geng Zhao, Li Xiaohong, Gou Yan, et al. Determination of 53 pesticide residues in different category of Fritillaria by QuEChERS and GC-MS/MS[J]. Chinese Traditional and Herbal Drugs, 2020, 51(20): 5337-5347. (in Chinese with English abstract)
[4] 劉瑞新,郝小佳,張慧杰,等. 基于電子眼技術的中藥川貝母真偽及規格的快速辨識研究[J]. 中國中藥雜志,2020,45(14):3441-3451.
Liu Ruixin, Hao Xiaojia, Zhang Huijie, et al. A rapid identification of authenticity and specifications of Chinese medicine Fritillariae Cirrhosae Bulbus based on E-eye technology[J]. China Journal of Chinese Materia Medica, 2020, 45(14): 3441-3451. (in Chinese with English abstract)
[5] 車朋,劉久石,齊耀東,等. UPLC-ELSD同時測定貝母類藥材中6種生物堿的含量[J]. 中國中藥雜志,2020,45(6):1393-1398.
Che Peng, Liu Jiushi, Qi Yaodong, et al. Simultaneous determination of six major isosteroidal alkaloids in Beimu by UPLC-ELSD[J]. China Journal of Chinese Materia Medica, 2020, 45(6): 1393-1398. (in Chinese with English abstract)
[6] 陳述. 基于近紅外光譜技術的不同產地中藥有效成分含量檢測方法[J]. 激光雜志,2020,41(12):22-26.
Chen Shu. Detection method of effective components of traditional Chinese medicine from different producing areas based on near infrared spectroscopy[J]. Laser Journal, 2020, 41(12): 22-26. (in Chinese with English abstract)
[7] 王憲雙,郭帥,徐向君,等. 基于激光誘導擊穿光譜和拉曼光譜對四唑類化合物的快速識別和分類試驗研究[J]. 中國光學,2019,12(4):889-896.
Wang Xianshuang, Guo Shuai, Xu Xiangjun, et al.Fast recognition and classification of tetrazole compounds based on laser-induced breakdown spectroscopy and raman spectroscopy[J]. Chinese Journal of Optics, 2019, 12(4): 889-896. (in Chinese with English abstract)
[8] 王文娜,陳地靈,朱梅芳,等. 激光拉曼光譜法無損分析鑒別川貝母[J]. 光譜學與光譜分析,2013,33(8):2109-2111.
Wang Wenna, Chen Diling, Zhu Meifang, et al. The analysis and identification of fritillaria cirrhosa by raman spectra[J]. Spectroscopy and Spectral Analysis, 2013, 33(8): 2109-2111. (in Chinese with English abstract)
[9] 趙麗茹,李金花,路曉玉,等. 兩頭尖藥材的紫外光譜鑒別研究[J]. 中西醫結合心血管病電子雜志,2019,7(28):1-2,8.
Zhao Liru, Li Jinhua, Lu Xiaoyu, et al. Study on the UV spectrum identification of Anemones raddeanae Rhizoma[J]. Cardiovascular Disease Journal of Integrated Traditional Chinese and Western Medicine (Electronic), 2019, 7(28): 1-2, 8. (in Chinese with English abstract)
[10] 樊鳳杰,軒鳳來,白洋,等. 基于三維熒光光譜特征的中藥藥性模式識別研究[J]. 光譜學與光譜分析,2020,40(6):1763-1768.
Fan Fengjie, Xuan Fenglai, Bai Yang, et al. Pattern recognition of traditional Chinese medicine property based on three-dimensional fluorescence spectrum characteristics[J]. Spectroscopy and Spectral Analysis, 2020, 40(6): 1763-1768. (in Chinese with English abstract)
[11] 安思宇,張磊,岳洪水,等. 基于近紅外光譜的中藥質量一致性控制研究進展[J]. 中南藥學,2019,17(9):1439-1445.
An Siyu, Zhang Lei, Yue Hongshui, et al.Research progress in quality consistency control for traditional Chinese medicine injections based on near infrared spectroscopy[J]. Central South Pharmacy, 2019, 17(9): 1439-1445. (in Chinese with English abstract)
[12] 李冰. 紫外光譜在中藥鑒別和含量測定應用中的研究[J]. 生物化工,2018,4(6):131-133.
Li Bing. Ultraviolet spectrum in the application of traditional Chinese medicine identification and content determination[J]. Biological Chemical Engineering, 2018, 4(6): 131-133. (in Chinese with English abstract)
[13] 仰鐵錘,謝慧敏,謝慧淦,等. 聚合酶鏈式反應-限制性內切酶多態法檢查川貝母的摻偽情況[J]. 華西藥學雜志,2020,35(3):265-269.
Yang Tiechui, Xie Huimin, Xie Huigan, et al. Research on the adulterants identification in Fritillariae cirrhosae Bulbus with PCR-RPLF method[J]. West China Journal of Pharmaceutical Sciences, 2020, 35(3): 265-269. (in Chinese with English abstract)
[14] 楊健,李靖,薛維娜,等. 實時熒光定量PCR法鑒別川貝母摻偽[J]. 中成藥,2020,42(5):1262-1268.
Yang Jian, Li Jing, Xue Weina, et al. Identification adulteration in Fritillariae Cirrhosae by real-time fluorescence quantitative PCR method[J]. Chinese Traditional Patent Medicine, 2020, 42(5): 1262-1268. (in Chinese with English abstract)
[15] Zhang H, Li Z, Chen T, et al. Discrimination of traditional herbal medicines based on terahertz spectroscopy[J]. Optik, 2017, 138(12): 95-102.
[16] Zhang H, Li Z. Terahertz spectroscopy applied to quantitative determination of harmful additives in medicinal herbs[J]. Optik, 2018, 156(6): 834-840.
[17] Zhang H, Li Z, Chen T, et al. Detection of poisonous herbs by Terahertz Time-Domain spectroscopy[J]. Journal of Applied Spectroscopy, 2018, 85(1): 197-202.
[18] 劉曉慶,姚嘉麗,黃凡,等. 基于太赫茲時域光譜的青霉素類藥物檢測研究[J]. 光學學報,2020,40(6):198-204.
Liu Xiaoqing, Yao Jiali, Huang Fan, et al. Study on detection of penicillin drugs based on Terahertz Time-Domain spectroscopy[J]. Acta Optica Sinica, 2020, 40(6): 198-204. (in Chinese with English abstract)
[19] 劉陵玉,常天英,李珂,等. 基于太赫茲輻射的黃芩苷光譜分析及定量檢測[J]. 中國激光,2020,47(3):313-319.
Liu Lingyu, Chang Tianying, Li Ke, et al. Spectral analysis and quantitative detection of baicalin based on Terahertz radiation[J]. Chinese Journal of Lasers, 2020, 47(3): 313-319. (in Chinese with English abstract)
[20] 歐陽愛國,蔡會周,李斌,等. 玉米粉中苯甲酸的太赫茲光譜定量檢測研究[J]. 激光技術,2020,44(4):478-484.
Ouyang Aiguo, Cai Huizhou, Li Bin, et al. Quantitative detection of benzoic acid in corn flour by Terahertz spectroscopy[J]. Laser Technology, 2020, 44(4): 478-484. (in Chinese with English abstract)
[21] 管愛紅,李智,葛宏義. 紅薯淀粉中添加劑明礬的定性和定量太赫茲時域光譜技術檢測[J]. 光譜學與光譜分析,2018,38(1):267-270.
Guang Aihong, Li Zhi, Ge Hongyi. The Qualitative and quantitative detection of potassium alum in sweet potato starch based on Terahertz Time-Domain spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 267-270. (in Chinese with English abstract)
[22] Li H, Du S Q, Xie L, et al. Identifying radix curcumae by using terahertz spectroscopy[J]. Optik, 2012, 123(13): 1129-1132.
[23] 李辰,魏丞昊,王志琪,等. 太赫茲波譜在冬蟲夏草檢測中的應用[J]. 深圳大學學報:理工版,2019,36(2):213-220.
Li Chen, Wei Chenghao, Wang Zhiqi, et al. Authenticity assessment of Cordyceps sinensis using terahertz spectroscopy[J]. Journal of Shenzhen University: Science & Engineering, 2019, 36(2): 213-220. (in Chinese with English abstract)
[24] 楊少壯,李燦,李辰,等.不同貯存年限陳皮的太赫茲光譜和成像的差異分析[J]. 現代食品科技,2019,35(12):258-266.
Yang Shaozhuang, Li Can, Li Chen, et al. The differences in the dried tangerine peels stored for different years revealed by terahertz spectroscopy and imaging[J]. Modern Food Science & Technology, 2019, 35(12): 258-266. (in Chinese with English abstract)
[25] 寇天一. 基于太赫茲光譜的人參和西洋參鑒別[J]. 光學儀器,2020,42(5):27-32.
Kou Tianyi. Terahertz spectroscopy for accurate identification of ginseng and panax quinquefolium[J]. Optical Instruments, 2020, 42(5): 27-32. (in Chinese with English abstract)
[26] Zhang X, Lu S H, Liao Y, et al. Simultaneous determination of amino acid mixtures in cereal by using terahertz time domain spectroscopy and chemometrics[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 164(2): 8-15.
[27] Dorney T D, Baraniuk R G, Mittleman D M. Material parameter estimation with terahertz time-domain spectroscopy[J]. Journal of the Optical Society of America A Optics image science and vision, 2001, 18(7): 1562-1571.
[28] Morais Camilo L M, Santos Marfran C D, Lima Kássio M G, et al. Improving data splitting for classification applications in spectrochemical analyses employing a random-mutation Kennard-Stone algorithm approach[J]. Bioinformatics , 2019, 35(24): 5257-5263.
[29] 李鑫星,朱晨光,白雪冰,等. 基于可見光譜和支持向量機的黃瓜葉部病害識別方法研究[J]. 光譜學與光譜分析,2019,39(7):2250-2256.
Li Xingxing, Zhu Chenguang, Bai Xuebing, et al. Recognition method of cucumber leaves diseases based on visual spectrum and support vector machine[J]. Spectroscopy and Spectral Analysis, 2019,39(7): 2250-2256. (in Chinese with English abstract)
[30] 胡曉華,劉偉,劉長虹,等. 基于太赫茲光譜和支持向量機快速鑒別咖啡豆產地[J]. 農業工程學報,2017,33(9):302-307.
Hu Xiaohua, Liu Wei, Liu Changhong, et al. Rapid identification of producing area of coffee bean based on terahertz spectroscopy and support vector machine[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2017, 33(9): 302-307. (in Chinese with English abstract)
[31] 沙文,李江濤,魯翠萍. 基于激光誘導擊穿光譜技術尋優定量分析土壤中Mn元素[J]. 中國激光,2020,47(5):505-513.
Sha Wen, Li Jiangtao, Lu Cuiping. Quantitative analysis of mn in soil based on laser-induced breakdown spectroscopy optimization[J]. Chinese Journal of Lasers, 2020, 47(5): 505-513. (in Chinese with English abstract)
[32] 陳嘯,王紅英,孔丹丹,等. 基于粒子群參數優化和BP神經網絡的顆粒飼料質量預測模型[J]. 農業工程學報,2016,32(14):306-314.
Chen Xiao, Wang Hongying, Kong Dandan, et al. Quality prediction model of pellet feed basing on BP network using PSO parameters optimization method[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(14): 306-314. (in Chinese with English abstract)
[33] 彭威,林強. 基于PSO-SVM算法的雷達點跡真偽鑒別方法研究[J]. 雷達科學與技術,2020,18(4):429-432,437.
Peng Wei, Lin Qiang. An identification method of true and false plots based on PSO-SVM algorithm[J]. Radar Science and Technology, 2020, 18(4): 429-432, 437. (in Chinese with English abstract)
[34] 王書濤,張彩霞,王志芳,等. 最小二乘支持向量機在對羥基苯甲酸甲酯鈉熒光檢測中的應用[J]. 激光與光電子學進展,2017,54(7):326-332.
Wang Shutao, Zhang Caixia, Wang Zhifang, et al. Application of least squares support vector machine in fluorescence detection of sodium methylparaben[J]. Laser & Optoelectronics Progress, 2017, 54(7): 326-332. (in Chinese with English abstract)
Detection of adulterated fritillariae using terahertz time domain spectroscopy
Xu Zhen, Liu Yande※, Hu Jun, Li Maopeng, Cui Huizhen, Zhan Chaohui
(,,330013,)
Unibract fritillary bulb, a traditional precious Chinese medicinal material, has the effects of clearing away heat, moisturizing the lungs, reducing phlegm, and relieving cough. However, the adulteration of Unibract fritillary bulbs has posed a serious threat to the medicinal effect and the healthy development of the market in recent years. Therefore, it is of great significance to accurately and rapidly detect the adulterated Unibract fritillary bulb powder. In this study, a systematic detection was conducted to distinguish the adulterated fritillariae using terahertz time-domain spectroscopy. Five samples of Fritillaria powder were used as the research objects, containing different adulterants (rice flour, Kudzuvine root powder, sweet potato powder, wheat flour, and Fritillaria Ussuriensis Maxim powder), pure Unibract fritillary bulb powder as the control group. Chemometric methods were also selected to detect the quality of Unibract fritillary bulb. The specific procedure was as follows. Firstly, adulterated samples were prepared with different types of Unibract fritillary bulbs in the same content. Then, the terahertz time-domain spectra were collected. Partial Least Squares Discriminant Analysis (PLS-DA) was also used in the range of 0.5-3.0 THz, according to the original and five adulterated Fritillaria powders. The original spectrum was used to remove the irrelevant variables and noise using the Savitzky-Golay smoothing (S-G Smoothing), Normalize, and Multiple Scatter Correction (MSC). A two-class model was established using the obtained spectral data. Thirdly, Principal component analysis (PCA) was used to reduce the dimensionality of preprocessed data, while simplifying the calculation of the model. Kennard-Stone (KS) was selected to divide the sample data into a 1:3 ratio, while the spectral data into prediction and modeling set. Finally, a Support Vector Machine (SVM) multi-classification model was established using Grid Search and Particle Swarm Optimization (PSO), where two parameters were optimized, namely, the penalty parameters () and the number of cores () of SVM. Correspondingly, the recognition accuracy rates of various samples were compared under the optimal spectral preprocessing and parameter optimization. The results showed that six binary classification models for the original spectra presented a correct identification rate of 100%, indicating a high accuracy for the pure Unibract fritillary bulb and adulterated Fritillaria. There were also great differences in the time domain spectra in the terahertz of samples. A multi-classification model was then established using Normalize combined with MSC preprocessing, further optimizing parameters using Particle Swarm Optimization (PSO). The overall accuracy of PSO optimization was higher than that of grid search optimization, where the highest accuracy rate was 100%. The lowest accuracy rate was 90%, and the average prediction accuracy was 95.67%, while the root mean square error was 0.432 when Unibract fritillary bulb powder was mixed with Fritillaria Ussuriensis Maxim powder. Consequently, Terahertz spectroscopy combined with a support vector machine can simultaneously detect a variety of Unibract fritillary bulb powder containing different adulterants. This finding can provide a theoretical experience for the detection of Unibract fritillary bulb adulteration in the field of medicine, thereby ensuring the excellent quality of Chinese medicinal materials in the trading market.
spectroscopy; models; support vector machine; grid search; particle swarm optimization; terahertz time domain
徐振,劉燕德,胡軍,等. 基于太赫茲時域光譜技術的摻假川貝母檢測[J]. 農業工程學報,2021,37(15):308-314.doi:10.11975/j.issn.1002-6819.2021.15.036 http://www.tcsae.org
Xu Zhen, Liu Yande, Hu Jun, et al. Detection of adulterated fritillariae using terahertz time domain spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(15): 308-314. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.15.036 http://www.tcsae.org
2021-04-27
2021-07-16
“十二五”國家863計劃(SS2012AA101906);國家自然科學基金(31760344);南方山地果園智能化管理技術與裝備協同創新中心項目(贛教高字[2014]60號)
徐振,研究方向為太赫茲光譜無損檢測。Email:xz2910845707@163.com
劉燕德,博士,教授,研究方向為光電測控技術與儀器、現代無損檢測新技術及其應用。Email:jxliuyd@163.com
10.11975/j.issn.1002-6819.2021.15.036
O433.4; O657.39; R282.5
A
1002-6819(2021)-15-0308-07