999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

南亞熱帶森林2種菌根類型樹木水分傳導和養分利用策略的對比研究

2021-12-14 03:28:04趙敏練琚愉劉小容劉慧葉清
熱帶亞熱帶植物學報 2021年6期
關鍵詞:植物

趙敏, 練琚愉, 劉小容, 劉慧, 葉清*

南亞熱帶森林2種菌根類型樹木水分傳導和養分利用策略的對比研究

趙敏1,2,3, 練琚愉1,2, 劉小容1, 劉慧1, 葉清1,2*

(1. 中國科學院華南植物園退化生態系統植被恢復與管理重點實驗室,廣州 510650; 2. 南方海洋科學與工程廣東省實驗室(廣州),廣州 511458; 3. 中國科學院大學,北京 100049)

為揭示南亞熱帶季風常綠闊葉林在季節性干旱加劇和氮沉降增加等環境影響下,菌根樹木優勢度變化趨勢機理,對3種優勢EM樹木黃杞()、錐()、黧蒴錐()和3種優勢AM樹木云南銀柴()、山蒲桃()、廣東金葉子(var.)的水力性狀和養分性狀進行了研究。結果表明,EM樹木葉片導水率下降50%和88%時的水勢(50、88)和膨壓喪失點(tlp)均低于AM樹木,邊材比導水率(S)、葉片比導水率(L)、光合氮利用效率(PNUE)和光合磷利用效率(PPUE)均高于AM樹木。可見,EM樹木比AM樹木具有更強的抗旱能力以及更高的導水效率和養分利用效率,這可能是在干旱加劇和氮沉降增加背景下EM樹木優勢度增加而AM樹木優勢度減少的生理機制。

外生菌根樹木;內生菌根樹木;水力性狀;養分性狀;南亞熱帶森林

近幾十年來, 人類活動加劇導致我國南亞熱帶季風常綠闊葉林面臨多種環境變化,其中最突出的是季節性干旱加劇和氮沉降增加[1–3]。干旱時植物水勢下降會造成導管栓塞和葉片氣孔關閉,進而影響植物水分傳導和光合作用,導致植物生長受限甚至死亡[4–5]。此外,亞熱帶地區氮沉降降低了土壤磷含量,加劇植物生長的磷限制,使得植物生長的養分條件更加惡化[6]。與真菌共生形成菌根是植物最常見的水分養分吸收策略,以協助自身生存和生長[7]。菌根真菌吸收土壤中的水分和氮磷等礦質營養并提供給宿主植物,宿主植物則為菌根真菌提供光合產物[8]。80%的植物根系與真菌以不同形式共生形成菌根,其中外生菌根(ectomycorrhiza, EM)和內生菌根(arbuscular mycorrhiza, AM)是2種最常見的菌根類型[9–11]。EM真菌侵染宿主植物根系后, 在根內形成包裹皮層細胞的哈氏網并向外形成包裹根尖的菌鞘和延伸到根外的菌絲[12]。AM真菌侵染的菌絲能夠穿透植物根系細胞壁,在根系皮層細胞內形成叢枝體和囊泡[13–14]。2種菌根類型的真菌侵染方式具有很大差異,這可能導致它們的水分養分吸收能力不同。Allen指出EM真菌比AM真菌具有更大的菌絲生物量,能夠更有效地轉運土壤中的水分[15],因此與EM真菌共生的植物可能具有更強的水分傳導能力。此外在營養吸收方面,EM真菌能夠通過菌絲網包羅有機體并分泌酶降解有機體獲得植物可利用氮磷, AM真菌則主要直接吸收土壤中無機態氮磷[11]。因此,在土壤氮磷以有機態形式為主的溫帶和北方森林,與EM真菌共生有利于植物生存與生長;熱帶地區的土壤營養元素主要是無機態形式,更有利于AM植物生長[11]。南亞熱帶處于熱帶和溫帶的過渡地區,大量EM植物和AM植物在季風常綠闊葉林中共存,但是有關2種菌根類型植物的氮磷獲取和利用能力的差異還鮮有研究。

植物功能性狀能夠反映植物對環境的響應和適應,其中水力性狀反映植物對水分的吸收、傳導和利用情況[16]。邊材比導水率(S)和葉片比導水率(L)分別表征植物枝條和葉片的水分運輸效率,水分運輸效率高的植物能夠具有更高的養分運輸效率和光合速率[17–18]。葉片水勢下降50%時的導水率(50)、葉片水勢下降88%時的導水率(88)和膨壓喪失點(tlp)均是衡量植物水力傳導安全的重要水力性狀, 能夠表征植物的抗旱能力[19–21]。而植物養分性狀反映植物的養分吸收與利用策略[16],包括葉片單位質量氮含量(mass)、單位質量磷含量(mass)、葉片光合氮利用效率(PNUE)和光合磷利用效率(PPUE)等[22–23]。

鼎湖山大樣地是典型的南亞熱帶季風常綠闊葉林,季節性干旱加劇和氮沉降增加導致該森林EM樹木優勢度升高而AM樹木優勢度降低。菌根類型可能影響植物水分和養分獲取能力,從而影響植物對水分和養分條件變化的響應,導致2類樹木優勢度呈現相反的變化趨勢。水力性狀和養分性狀直接反映植物對水分和養分的吸收和利用情況,因此能夠指示不同菌根類型樹木的適應能力。本研究以6種南亞熱帶季風常綠闊葉林優勢物種(3種EM樹木和3種AM樹木)為研究對象, 測定其水力性狀和養分性狀,以探究季節性干旱加劇和氮沉降增加背景下EM樹木優勢度增加而AM樹木優勢度減少的原因,為此地區森林如何響應環境變化提供重要的生理解釋。

1 材料和方法

1.1 研究地概況

鼎湖山大樣地位于廣東省肇慶市鼎湖區,處于鼎湖山自然保護區(23.16°~23.19° N, 112.51°~112.56°E)中心地帶,年均溫度20.9℃,年均降雨量1 956 mm, 森林類型是典型的南亞熱帶季風常綠闊葉林[24]。受季風影響,降水量全年分布不均,其中濕季降水量占全年降水量的80%[25]。大樣地建立于2005年, 海拔230~470 m,東西長400 m,南北長500 m,面積為20 hm2[26],從2005年開始,每5 a對樣地內胸徑≥1 cm的木本植物進行每木調查,記錄種名、編號、胸徑等[27]。

1.2 材料

通過文獻確定鼎湖山季風常綠闊葉林中優勢度(基于胸高斷面積)高樹木的菌根類型,本研究選取3種EM樹木黃杞(, 縮寫ER, 下同)[28–29]、錐(, CC)[2,30]、黧蒴錐(, CF)[28–29]和3種AM樹木云南銀柴(, AY)[29]、山蒲桃(, SL)[29,31]、廣東金葉子(var., CSK)[28],測定其水力性狀和養分性狀。

1.3 方法

清晨5:00-7:00采集同一物種3~5株健康成熟個體的5~10根向陽的冠層枝條(直徑約為1 cm), 置于黑色塑料袋中并噴撒少量水霧,密封并迅速帶回實驗室,用于后序試驗。

邊材比導水率和葉片比導水率 用Sperry等[32]的方法測定。枝條基部沒在已除氣的超純水中剪下至少5 cm, 噴灑少量水霧并放入濕毛巾后罩上黑袋防止失水。將枝條逐根沒在已除氣的超純水中剪下6段直徑5~10 mm、長度20~25 cm的莖段并剝去兩端一小段樹皮, 在壓力噴壺0.1 MPa加壓下用已過濾并除氣的KCl溶液(0.02 mol/L)沖洗20 min,以去除莖段內的栓塞。控制室溫25℃,利用水力傳導裝置,在0.005 MPa的壓力下讓KCl溶液(0.02 mol/L)流經莖段并記錄流速(, mmol/s)。將莖段取下后測量長度(, m)、邊材面積(S, m2)和總葉面積(L, m2)。邊材比導水率[s, kg/(m·s·MPa)]=(×)/(S×0.005), 葉片比導水率[L, mg/(m·s·MPa)]=(×)/(L×0.005)。

葉片的50和88將枝條基部沒在已除氣的超純水中剪下至少5 cm,噴灑少量水霧并罩上黑袋復水過夜。第2天用蒸騰法測量葉片各水勢(leaf, MPa)下的標準溫度導水率[leaf(25℃),mmol/(MPa·m2·s)][33]。以leaf為橫坐標,leaf(25℃)為縱坐標繪制擬合曲線[34],得到葉片導水率下降50%時的水勢(50, MPa)和葉片導水率下降88%時的水勢(88, MPa)。

葉片膨壓喪失點 將枝條基部沒在已除氣的超純水中剪下至少5 cm,噴灑少量水霧并罩上黑袋復水過夜。第2天選取健康成熟葉片,迅速測量飽和鮮重(SW, g)。用壓力室(PMS, Corvallis, Oregon, USA)測定葉片水勢后稱取對應的鮮質量(FW, g),然后靜置葉片,待水勢約下降0.3 MPa,再次測量葉片水勢和鮮質量,重復此步驟直至葉片水勢無明顯下降。測定后將葉片于70℃烘72 h,稱量干質量(DW, g)。葉片相對含水量RWC=100×(FW-DW)/(SW-DW), 采用Schulte等[35–36]的方法擬合葉片水勢和相對含水量曲線,得到膨壓喪失點(tlp, MPa)。

葉片氮磷含量 將葉片烘干磨碎后測定葉片氮磷含量。用凱氏定氮法測量葉片的總氮含量, 計算單位質量葉片氮含量(mass, mg/g),用原子吸收光譜法測量葉片的總磷含量,計算單位質量葉片磷含量(mass, mg/g)。

葉片光合氮磷利用效率 每物種選取3~5株,每株至少采集20片健康、展開且向陽的葉片。用葉面積儀(Li-3000A; Li-Cor, Lincoln, NE, USA)測定去掉葉柄的葉片面積(LA, m2),然后放入70℃烘箱烘72 h,測量葉片干質量(DW),比葉重(LMA, g/m2)為單位面積葉片質量,即LMA=DW/LA。每物種選取3~5株,每株選取5片健康成熟且陽生的葉片,用光合儀(Li-6400, Li-Cor, Lincoln, NE, USA)測定葉片最大凈光合速率[area,mol/(m2·s)]。選擇晴天9:00-11:00測定,測前預熱15 min,光量子密度設為1 500mol/(m2·s),葉片溫度設為28℃,腔室CO2濃度設為400mol/mol。光合氮利用效率[photo- synthetic nitrogen use efficiency, PNUE,mol/(mol·s)]= (area×14000)/(mass×LMA), 光合磷利用效率[photo- synthetic phosphorous use efficiency, PPUE]=(area× 31)/(mass×LMA), 單位為mmol/(mol·s)。

1.4 數據分析

用R語言包擬合葉片水力脆弱度曲線獲得葉片50和88[34],用Excel 365對EM和AM樹木性狀指標進行檢驗并作圖。

2 結果和分析

結果表明(圖1, 表1),EM樹木葉片導水率下降50%時的水勢(50)顯著低于AM樹木(<0.05), 分別是-1.69和-1.06 MPa。EM樹木葉片導水率下降88%時的葉片水勢(88)顯著低于AM樹木(< 0.05),分別是-2.95和-1.72 MPa。同時EM樹木葉片的膨壓喪失點(tlp)為-2.12 MPa,顯著低于AM樹木的-1.49 MPa (<0.05)。

從圖2可見,EM樹木的邊材比導水率(S)顯著高于AM樹木,分別為5.17和1.32 kg/(m·s·MPa) (< 0.05)。EM樹木的葉片比導水率(L)顯著高于AM樹木,分別是0.62和0.22 mg/(m·s·MPa) (<0.05)。

EM樹木和AM樹木的單位質量葉片氮含量(mass)和磷含量(mass)沒有差異。但是EM樹木的光合氮利用效率(PNUE)顯著高于AM樹木(<0.05), 分別是112.78和49.25mol/(mol·s),并且EM樹木的光合磷利用效率(PPUE)為4.76 mmol/(mol·s),極顯著高于AM樹木[2.19 mmol/(mol·s)] (<0.01, 圖3)。

圖1 EM和AM樹木葉片導水率下降50%時的水勢(P50)、導水率下降88%時的水勢(P88)和膨壓喪失點(Ψtlp)。*: P<0.05。

圖2 EM和AM樹木的邊材比導水率(KS)和葉片比導水率(KL)。*: P<0.05。

3 結論和討論

近幾十年來南亞熱帶季風常綠闊葉林土壤水分養分和環境條件發生了很大變化,導致EM樹木優勢度增加而AM樹木優勢度減少。本研究利用植物地上部分水力性狀和養分性狀,對比3種EM樹木和3種AM樹木的水分傳導和養分利用策略,結果表明EM樹木具有比AM樹木更強的抗旱能力, 以及更高的導水效率和光合氮磷利用效率,從而揭示了季節性干旱加劇和氮沉降增加背景下EM樹木優勢度增加而AM樹木優勢度減少的原因。雖然后期需要增加物種和性狀測定來進一步驗證我們的結論,但本研究為地上地下生態學相結合研究提供了新思路并做出了初步嘗試。

3.1 EM樹木和AM樹木水力性狀的差異

葉片50和88常用于量化植物葉片的水力脆弱性和抗氣穴化能力,能夠表征植物的耐旱性[37–38]。tlp是葉片細胞發生質壁分離時的水勢,具有較低tlp的植物在干旱時能夠維持氣孔導度和水力導度等, 以此維持植物生長[39–40]。本研究結果表明,EM樹木具有更強的抗旱能力,這與前人報道EM真菌能提高宿主植物抗旱能力的結論一致,如花旗松()、異色桉()和胡楊()等[41–43]。雖然植物的水力脆弱性與木質部結構有關,不受EM真菌的影響, 但是木質部導管細胞的形成與植物的水分狀態密切相關[44]。EM真菌能夠產生大量菌絲增加與土壤的接觸面積并扎向深層的土壤,以充分吸收土壤中水分幫助植物在干旱情況下改善水分狀態[45–46]。因此EM真菌侵染可能通過改善植物水分狀態間接提高植物的抗旱能力。有研究指出,與AM植物相比,EM植物呈現出更保守的生存策略,因為EM首先出現在適宜保守策略的營養貧乏地區[47]。Reich等指出植物對于所有資源的利用,可能呈現出相同的策略[48]。抗旱是保守型植物在水分方面的重要表現,這可能是EM樹木具有更強抗旱能力的原因。

圖3 EM和AM樹木葉片的單位質量葉片氮含量(Nmass)、單位質量葉片磷含量(Pmass)、光合氮利用效率(PNUE)和光合磷利用效率(PPUE)。NS: P>0.05; *: P<0.05; **: P<0.01。

S和L分別表征植物邊材和葉片的水分傳導效率,體現植物水分傳導的有效性[17]。有研究表明,EM真菌能夠通過提高根系質外體運輸能力增加植物的根系導水率[49],植物從土壤到葉片水分運輸存在協同作用[50],這可能導致EM樹木具有較高邊材比導水率和葉片比導水率。

本研究結果表明,EM樹木的水力傳導效率和水力傳導安全均顯著高于AM樹木,這與傳統的理論“植物水力傳導效率和水力傳導安全之間存在權衡[51]”相違背。但最新的研究指出,植物能夠同時具備更高的導水效率和抗旱能力,使植物在干旱愈發嚴重的環境中存活和生長[52]。南亞熱帶地區存在明顯的干濕季,近幾十年來雖然年降水量不變,但是濕季暴雨日增加,干季無雨日增多且小雨日減少,導致此地區季節性干旱加劇[1]。EM樹木同時具備較高的導水率和抗旱能力,這也使得EM樹木更適應季節性干旱這一環境變化因子。

3.2 EM樹木和AM樹木養分性狀的差異

植物對營養元素的獲取能力反映植物競爭自然資源的能力,也影響植物在群落中的種群維持。EM樹木和AM樹木的葉片氮磷含量沒有差異,這可能是因為南亞熱帶森林氮飽和,EM樹木和AM樹木均能吸取足以供應自身生長的氮[53]。而Averill等對比全球EM樹木和AM樹木磷含量發現,在熱帶地區EM樹木和AM樹木磷含量沒有差異[54],與我們的結果一致。南亞熱帶與熱帶具有相似的土壤環境(磷限制),可能使得磷元素成為各物種首要競爭的營養資源[55],因此在EM樹木和AM樹木間沒有差異。

雖然EM樹木和AM樹木葉片氮磷含量沒有差異,但是EM樹木的光合氮磷利用效率均比AM樹木高。南亞熱帶季風常綠闊葉林是磷限制環境,且氮沉降使得土壤淋溶作用增強,進一步加劇了磷限制[6],在這種條件下具有較高光合磷利用效率的EM樹木可能在競爭中占有優勢。此外,EM樹木的PNUE和PPUE高于AM樹木, 主要是因為EM樹木的最大光合速率高于AM樹木[分別是11.23和5.12mol/(m2·s)]。Li等研究表明南亞熱帶季風常綠闊葉林中最大光合速率大的樹木在全球變化中多度增加,因為光合速率大的樹木能夠快速生長并形成種群優勢[17],佐證了我們的結果。

本研究表明,南亞熱帶季風常綠闊葉林中EM樹木具有比AM樹木更強的抗旱能力,以及更高的導水效率和光合氮磷利用效率,意味著EM樹木的水分養分策略可能更適應本地區季節性干旱加劇和氮沉降增加引起的磷限制加劇等環境變化,因而在近幾十年來優勢度增加,而AM樹木則優勢度減少。本文綜合植物地上部分功能性狀和地下部分菌根類型,對比分析3種EM樹木和3種AM樹木在季節性干旱加劇和氮沉降增加的南亞熱帶季風常綠闊葉林優勢度變化相反的原因,為不同菌根植物如何響應全球變化提供了一定的生理解釋。

[1] ZHOU G Y, WEI X H, WU Y P, et al. Quantifying the hydrological responses to climate change in an intact forested small watershed in southern China [J]. Glob Change Biol, 2011, 17(12): 3736–3746. doi: 10.1111/j.1365-2486.2011.02499.x.

[2] LU X K, VITOUSEK P M, MAO Q G, et al. Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest [J]. Proc Natl Acad Sci USA, 2018, 115(20): 5187–5192. doi: 10.1073/pnas. 1720777115.

[3] ZHOU G Y, YAN J H. The influences of regional atmospheric preci- pitation characteristics and its element inputs on the existence and development of Dinghushan forest ecosystems [J]. Acta Ecol Sin, 2001, 21(12): 2002–2012. doi: 10.3321/j.issn:1000-0933.2001.12.006.

周國逸, 閏俊華. 鼎湖山區域大氣降水特征和物質元素輸入對森林生態系統存在和發育的影響 [J]. 生態學報, 2001, 21(12): 2002– 2012. doi: 10.3321/j.issn:1000-0933.2001.12.006.

[4] BRODRIBB T J, HOLBROOK N M, GUTIéRREZ M V. Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees [J]. Plant Cell Environ, 2002, 25(11): 1435–1444. doi: 10.1046/j.1365- 3040.2002.00919.x.

[5] ZHANG S B, WEN G J, YANG D X. Drought-induced mortality is related to hydraulic vulnerability segmentation of tree species in a savanna ecosystem [J]. Forests, 2019, 10(8): 697–709. doi: 10.3390/ f10080697.

[6] HUANG W J, LIU J X, WANG Y P, et al. Increasing phosphorus limitation along three successional forests in southern China [J]. Plant Soil, 2012, 364(1/2): 181–191. doi: 10.1007/s11104-012-1355-8.

[7] ZEMUNIK G, TURNER B L, LAMBERS H, et al. Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development [J]. Nat Plants, 2015, 1(5): 15050. doi: 10.1038/nplants. 2015.50.

[8] VAN DER HEIJDEN M G A, BARDGETT R D, VAN STRAALEN N M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems [J]. Ecol Lett, 2008, 11(3): 296– 310. doi: 10.1111/j.1461-0248.2007.01139.x.

[9] WANG B, QIU Y L. Phylogenetic distribution and evolution of mycorrhizas in land plants [J]. Mycorrhiza, 2006, 16(5): 299–363. doi: 10.1007/s00572-005-0033-6.

[10] STEIDINGER B S, CROWTHER T W, LIANG J, et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses [J]. Nature, 2019, 569(7756): 404–408. doi: 10.1038/s41586- 019-1128-0.

[11] BRUNDRETT M C, TEDERSOO L. Evolutionary history of mycorr- hizal symbioses and global host plant diversity [J]. New Phytol, 2018, 220(4): 1108–1115. doi: 10.1111/nph.14976.

[12] ZHENG L, WU X Q. Review on the structure of plant mycorrhiza [J]. J Nanjing For Univ (Nat Sci), 2008, 32(5): 135–139. doi: 10.3969/j.issn. 1000-2006.2008.05.030.

鄭玲, 吳小芹. 植物菌根共生體結構的研究進展 [J]. 南京林業大學學報(自然科學版), 2008, 32(5): 135–139. doi: 10.3969/j.issn.1000- 2006.2008.05.030.

[13] EOM A H, HARTNETT D C, WILSON G W T. Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie [J]. Oecologia, 2000, 122(3): 435–444. doi: 10.1007/s00442005 0050.

[14] GERATS T, STROMMER J. Petunia [M]. 2nd ed. New York, USA: Springer, 2009: 131–156.

[15] ALLEN M F. Mycorrhizal fungi: Highways for water and nutrients in arid soils [J]. Vadose Zone J, 2007, 6(2): 291–297. doi: 10.2136/vzj 2006.0068.

[16] LI R H, ZHU S D, CHEN H Y H, et al. Are functional traits a good predictor of global change impacts on tree species abundance dynamics in a subtropical forest? [J]. Ecol Lett, 2015, 18(11): 1181–1189. doi: 10.1111/ele.12497.

[17] ZHU S D, SONG J J, LI R H, et al. Plant hydraulics and photo- synthesis of 34 woody species from different successional stages of subtropical forests [J]. Plant Cell Environ, 2013, 36(4): 879–891. doi: 10.1111/pce.12024.

[18] SANTIAGO L S, GOLDSTEIN G, MEINZER F C, et al. Leaf photo- synthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees [J]. Oecologia, 2004, 140(4): 543–550. doi: 10.1007/s00442-004-1624-1.

[19] DOMEC J C, GARTNER B L. Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees [J]. Trees, 2001, 15(4): 204–214. doi: 10.1007/s004680100095.

[20] URLI M, PORTé A J, COCHARD H, et al. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees [J]. Tree Physiol, 2013, 33(7): 672–683. doi: 10.1093/treephys/tpt030.

[21] MARéCHAUX I, BARTLETT M K, SACK L, et al. Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest [J]. Funct Ecol, 2015, 29 (10): 1268–1277. doi: 10.1111/1365-2435.12452.

[22] WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum [J]. Nature, 2004, 428(6985): 821–827. doi: 10. 1038/nature02403.

[23] WRIGHT I J, REICH P B, CORNELISSEN J H C, et al. Assessing the generality of global leaf trait relationships [J]. New Phytol, 2005, 166 (2): 485–496. doi: 10.1111/j.1469-8137.2005.01349.x.

[24] HUANG Z L, KONG G H, WEI P. Plant species diversity dynamics in Dinghu Mountain forests [J]. Chin Biodiv, 1998, 6(2): 116–121. doi: 10.3321/j.issn:1005-0094.1998.02.006.

黃忠良, 孔國輝, 魏平. 鼎湖山植物物種多樣性動態 [J]. 生物多樣性, 1998, 6(2): 116–121. doi: 10.3321/j.issn:1005-0094.1998.02.006.

[25] ZOU S, ZHOU G Y, ZHANG Q M, et al. Long-term (1992–2015) dynamics of interspecific associations among tree species in a monsoon evergreen broad-leaved forest in Dinghushan Biosphere Reserve [J]. Acta Ecol Sin, 2019, 39(17): 6362–6371. doi: 10.5846/stxb2018 04030753.

鄒順, 周國逸, 張倩媚, 等. 1992–2015年鼎湖山季風常綠闊葉林群落種間關聯動態 [J]. 生態學報, 2019, 39(17): 6362–6371. doi: 10. 5846/stxb201804030753.

[26] LIAN J Y, CHEN C, HUANG Z L, et al. Community composition and stand age in a subtropical forest, southern China [J]. Biodiv Sci, 2015, 23(2): 174–182. doi: 10.17520/biods.2014243.

練琚愉, 陳燦, 黃忠良, 等. 鼎湖山南亞熱帶常綠闊葉林不同成熟度群落特征的比較 [J]. 生物多樣性, 2015, 23(2): 174–182. doi: 10. 17520/biods.2014243.

[27] GUI X J, LIAN J Y, ZHANG R Y, et al. Vertical structure and its biodiversity in a subtropical evergreen broad-leaved forest at Dinghu- shan in Guangdong Province, China [J]. Biodiv Sci, 2019, 27(6): 619– 629. doi: 10.17520/biods.2019107.

桂旭君, 練琚愉, 張入勻, 等. 鼎湖山南亞熱帶常綠闊葉林群落垂直結構及其物種多樣性特征 [J]. 生物多樣性, 2019, 27(6): 619–629. doi: 10.17520/biods.2019107.

[28] NIU J Q. An investigation on mycorrhiza from Dinghu Shan [C]// Tropical and Subtropical Forest Ecosystem, Vol. 6. Beijing: Science Press, 1990: 37–40.

牛家琪. 鼎湖山一些樹種的菌根調查 [C]// 熱帶亞熱帶森林生態系統研究, 第6集. 北京: 科學出版社, 1990: 37–40.

[29] KONG D L, MA C E, ZHANG Q, et al. Leading dimensions in absorp- tive root trait variation across 96 subtropical forest species [J]. New Phytol, 2014, 203(3): 863–872. doi: 10.1111/nph.12842.

[30] GURMESA G A, LU X K, GUNDERSEN P, et al. Species differences in nitrogen acquisition in humid subtropical forest inferred from15N natural abundance and its response to tracer addition [J]. Forests, 2019, 10(11): 991. doi: 10.3390/f10110991.

[31] ZHUANG X Y, CHEN Y J. Investigation of plant mycorrhizae in secondary forests of Hong Kong [J]. Chin Biodiv, 1997, 5(4): 287–292. doi: 10.17520/biods.1997049.

莊雪影, 陳詠娟. 香港次生林下植物菌根的調查 [J]. 生物多樣性, 1997, 5(4): 287–292. doi: 10.17520/biods.1997049.

[32] SPERRY J S, DONNELLY J R, TYREE M T. A method for measuring hydraulic conductivity and embolism in xylem [J]. Plant Cell Environ, 1988, 11(1): 35–40. doi: 10.1111/j.1365-3040.1988.tb01774.x.

[33] SACK L, SCOFFONI C. Measurement of leaf hydraulic conductance and stomatal conductance and their responses to irradiance and dehydration using the Evaporative Flux Method (EFM) [J]. J Vis Exp, 2012(70): e4179. doi: 10.3791/4179.

[34] DUURSMA R, CHOAT B. Fitplc: An R package to fit hydraulic vulnerability curves [J]. J Plant Hydraul, 2017, 4: e002. doi: 10.20870/ jph.2017.e002.

[35] TYREE M T, RICHTER H. Alternative methods of analysing water potential isotherms: Some cautions and clarifications: I. The impact of non-ideality and of some experimental errors [J]. J Exp Bot, 1981, 32 (128): 643–653. doi: 10.1093/jxb/32.3.643.

[36] SCHULTE P J, HINCKLEY T M. A comparison of pressure-volume curve data analysis techniques [J]. J Exp Bot, 1985, 36(171): 1590– 1602. doi: 10.1093/jxb/36.10.1590.

[37] BRODRIBB T J, COCHARD H. Hydraulic failure defines the recovery and point of death in water-stressed conifers [J]. Plant Physiol, 2009, 149(1): 575–584. doi: 10.1104/pp.108.129783.

[38] KURSAR T A, ENGELBRECHT B M J, BURKE A, et al. Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution [J]. Funct Ecol, 2009, 23(1): 93–102. doi: 10.1111/j.1365-2435.2008.01483.x.

[39] BARTLETT M K, SCOFFONI C, SACK L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis [J]. Ecol Lett, 2012, 15(5): 393–405. doi: 10.1111/j.1461-0248.2012.01751.x.

[40] XU L, HE P C, ZHANG T, et al. Comparative studies on leaf hydraulic traits of six palm (Arecaceae) species originally distributed in different habitats [J]. J Trop Subtrop Bot, 2020, 28(5): 472–478. doi: 10.11926/ jtsb.4199.

徐龍, 賀鵬程, 張統, 等. 不同原生境的6種棕櫚科植物葉片水力性狀的對比研究[J]. 熱帶亞熱帶植物學報, 2020, 28(5): 472–478. doi: 10.11926/jtsb.4199.

[41] PARKE J L, LINDERMAN R G, BLACK C H. The role of ectomy- corrhizas in drought tolerance of Douglas-fir seedlings [J]. New Phytol, 1983, 95(1): 83–95. doi: 10.1111/j.1469-8137.1983.tb03471.x.

[42] BOUGHER N L, MALAJCZUK N. Effects of high soil moisture on formation of ectomycorrhizas and growth of karri () seedlings inoculated with,and[J]. New Phytol, 1990, 114(1): 87–91. doi: 10.1111/j.1469-8137.1990.tb00377.x.

[43] LUO Z B, LI K, JIANG X N, et al. Ectomycorrhizal fungus () and hydrogels affect performance ofexposed to drought stress [J]. Ann For Sci, 2009, 66: 106. doi: 10. 1051/forest:2008073.

[44] CASTAGNERI D, BATTIPAGLIA G, Von Arx G, et al. Tree-ring anatomy and carbon isotope ratio show both direct and legacy effects of climate on bimodal xylem formation in[J]. Tree Physiol, 2018, 38(8): 1098–1109. doi: 10.1093/treephys/tpy036.

[45] KILPEL?INEN J, APHALO P J, LEHTO T. Temperature affected the formation of arbuscular mycorrhizas and ectomycorrhizas inseedlings more than a mild drought [J]. Soil Biol Biochem, 2020, 146: 107798. doi: 10.1016/j.soilbio.2020.107798.

[46] LUKAC M, GRENNI P, GAMBONI M. Soil Biological Communities and Ecosystem Resilience [M]. New York, USA: Springer, 2017: 123– 142. doi: 10.1007/978-3-319-63336-7.

[47] CORNELISSEN J, AERTS R, CERABOLINI B, et al. Carbon cycling traits of plant species are linked with mycorrhizal strategy [J]. Oecologia, 2001, 129(4): 611–619. doi: 10.1007/s004420100752.

[48] REICH P B. The world-wide 'fast-slow' plant economics spectrum: A traits manifesto [J]. J Ecol, 2014, 102(2): 275–301. doi: 10.1111/1365- 2745.12211.

[49] LIU H, GLEASON S M, HAO G Y, et al. Hydraulic traits are coordi- nated with maximum plant height at the global scale [J]. Sci Adv, 2019, 5(2): eaav1332. doi: 10.1126/sciadv.aav1332.

[50] YAO G Q, NIE Z F, TURNER N C, et al. Combined high leaf hydraulic safety and efficiency provides drought tolerance inspecies adapted to low mean annual precipitation [J]. New Phytol, 2021, 229 (1): 230–244. doi: 10.1111/nph.16845.

[51] MUHSIN T M, ZWIAZEK J J. Ectomycorrhizas increase apoplastic water transport and root hydraulic conductivity inseedlings [J]. New Phytol, 2002, 153(1): 153–158. doi: 10.1046/j. 0028-646X.2001.00297.x.

[52] BUCCI S J, SCHOLZ F G, CAMPANELLO P I, et al. Hydraulic differences along the water transport system of South Americanspecies: Do leaves protect the stem functionality [J]. Tree Physiol, 2012, 32(7): 880–893. doi: 10.1093/treephys/tps054.

[53] FAN Y X, LIN F, YANG L M, et al. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem [J]. Biol Fertil Soils, 2018, 54(1): 149–161. doi: 10.1007/s00374-017-1251-8.

[54] AVERILL C, BHATNAGAR J M, DIETZE M C, et al. Global imprint of mycorrhizal fungi on whole-plant nutrient economics [J]. Proc Natl Acad Sci USA, 2019, 116(46): 23163–23168. doi: 10.1073/pnas.1906655116.

[55] VITOUSEK P M. Litterfall, nutrient cycling, and nutrient limitation in tropical forests [J]. Ecology, 1984, 65(1): 285–298. doi: 10.2307/1939 481.

Comparison Studies on Water Transport and Nutrient Acquisition of Trees with Different Mycorrhiza Types in Subtropical Forest

ZHAO Min1,2,3, LIAN Juyu1,2, LIU Xiaorong1,2, LIU Hui1,2, YE Qing1,2*

(1. Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; 2 Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; 3University of Chinese Academy of Sciences,Beijing 100049, China)

To reveal the mechanisms of changing trend of mycorrhizal tree dominance under the environmental influence of increasing seasonal drought and nitrogen deposition in the lower subtropical monsoon evergreen broad-leaved forest, the hydraulic traits and nutrient traits of three ectomycorrhizal (EM), including,and, and three arbuscular mycorrhizal (AM) dominant trees, including,andvar., were measured. The results showed that the leaf water potential at which 50% and 88% hydraulic conductance are lost (50and88) and leaf turgor loss point (tlp) of EM trees were lower than those of AM trees, while thesapwood specific hydraulic conductivity (S), leaf specific hydraulic conductivity (L), photosynthetic nitrogen use efficiency (PNUE) and photosynthetic phosphorus use efficiency (PPUE) of EM trees were higher than those of AM trees. The results suggested that EM trees have stronger drought resistance ability and higher water and nutrient use efficiency compared with AM trees. This might be the physiological mechanism of increasing dominance of EM trees while decreasing dominance of AM trees under the background of increasing drought and nitrogen deposition.

Ectomycorrhizal tree; Arbuscular mycorrhzial tree; Hydraulic trait; Nutrient trait; Lower subtropical forest

10.11926/jtsb.4385

2020-01-20

2021-03-06

南方海洋科學與工程廣東省實驗室(廣州)人才團隊引進重大專項(GML2019ZD0408)資助

This work was supported by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (Grant No. GML2019ZD0408).

趙敏,女,碩士研究生,從事植物生理生態研究。E-mail: zhaomin1223@163.com

通信作者 Corresponding author. E-mail: qye@scbg.ac.cn

猜你喜歡
植物
誰是最好的植物?
為什么植物也要睡覺
長得最快的植物
各種有趣的植物
植物也會感到痛苦
會喝水的植物
植物的防身術
把植物做成藥
哦,不怕,不怕
將植物穿身上
主站蜘蛛池模板: 国产精品永久不卡免费视频| 波多野结衣中文字幕一区| 日本免费a视频| 青草国产在线视频| 国产天天射| 欧美成人精品在线| 一级毛片免费播放视频| 怡红院美国分院一区二区| 狠狠干综合| 69精品在线观看| 国产精品吹潮在线观看中文| 国产真实乱人视频| 中文字幕资源站| 亚洲综合精品第一页| 国产aaaaa一级毛片| 国产日韩精品一区在线不卡| 幺女国产一级毛片| 国产精品一区二区不卡的视频| 亚洲综合在线网| 亚洲欧美另类色图| 国产一级二级在线观看| 久久综合婷婷| 精品日韩亚洲欧美高清a | 亚洲精品无码久久毛片波多野吉| 天天色天天综合| 国产成人成人一区二区| 欧类av怡春院| 波多野结衣国产精品| 国产亚卅精品无码| 国产人成乱码视频免费观看| 真人高潮娇喘嗯啊在线观看| 久久免费成人| 91无码视频在线观看| 伊人久久综在合线亚洲91| 色综合五月| 国产白浆视频| 欧美一级高清片久久99| 亚洲人成色在线观看| 久久久久88色偷偷| 色婷婷亚洲综合五月| 久久免费视频6| 国产一在线| 国产成人久久综合777777麻豆| 乱码国产乱码精品精在线播放| 欧洲欧美人成免费全部视频| 韩国v欧美v亚洲v日本v| 久青草网站| 国产在线91在线电影| 国产午夜福利在线小视频| 亚洲人成网站在线观看播放不卡| 在线国产欧美| 无码网站免费观看| 亚洲色大成网站www国产| 91伊人国产| 国产人在线成免费视频| 国国产a国产片免费麻豆| 乱系列中文字幕在线视频| 亚洲天堂网在线播放| 久草青青在线视频| 亚洲精品不卡午夜精品| 亚洲人人视频| 国产va视频| 欧美日本视频在线观看| 91色爱欧美精品www| 国产精品亚洲一区二区三区在线观看| 亚洲资源站av无码网址| 高清久久精品亚洲日韩Av| 毛片基地视频| 在线永久免费观看的毛片| 欧美啪啪网| 高h视频在线| 国产精品漂亮美女在线观看| 国内精品久久九九国产精品| 精品亚洲欧美中文字幕在线看| 欧美色99| 国产69囗曝护士吞精在线视频| 欧美怡红院视频一区二区三区| 青青青国产精品国产精品美女| 亚洲中文字幕手机在线第一页| 一区二区三区四区精品视频| 亚洲精品色AV无码看| 国产在线视频自拍|