余雪萍 涂春鳴 肖 凡 劉 貝 郭 祺
三端口隔離DC-DC變換器軟開(kāi)關(guān)特性
余雪萍 涂春鳴 肖 凡 劉 貝 郭 祺
(湖南大學(xué)國(guó)家電能變換與控制工程技術(shù)研究中心 長(zhǎng)沙 410082)
三端口隔離三有源橋(TAB)DC-DC變換器作為新能源接入的一種積極探索與嘗試,在分布式光伏接入、新能源汽車及多電壓等級(jí)直流用電需求等領(lǐng)域得到了廣泛關(guān)注。軟開(kāi)關(guān)能力作為TAB應(yīng)用的關(guān)鍵優(yōu)勢(shì)之一,可以有效地降低開(kāi)關(guān)損耗、提升變換效率。然而,由于開(kāi)關(guān)管數(shù)量增多,TAB的工作模式及移相控制方法較雙有源橋(DAB)DC-DC變換器出現(xiàn)了成倍增加的現(xiàn)象,現(xiàn)有DAB的零電壓開(kāi)通(ZVS)已不利于推廣至TAB。該文在分析TAB工作原理的基礎(chǔ)上,從開(kāi)關(guān)管驅(qū)動(dòng)信號(hào)出發(fā),將TAB的等效電路進(jìn)行了分解,構(gòu)建雙電源作用下電感電流的統(tǒng)一表達(dá)式。基于疊加定理,TAB每個(gè)開(kāi)關(guān)管開(kāi)通時(shí)刻的電感電流均可以由多個(gè)雙方波電壓源作用下的電感電流相加得到,并且不受移相控制方法的影響,計(jì)算簡(jiǎn)便。基于TAB等效電路的分解模型,該文繪制不同移相控制方法下TAB的全開(kāi)關(guān)ZVS區(qū)域,并對(duì)其進(jìn)行討論分析。最后搭建實(shí)驗(yàn)平臺(tái),驗(yàn)證了該方法的可行性與有效性。
軟開(kāi)關(guān) 隔離式DC-DC變換器 電感電流 移相控制
隨著能源問(wèn)題的日益嚴(yán)峻,新能源的應(yīng)用得到了廣泛的關(guān)注和研究。由于新能源的間歇性、時(shí)變性和隨機(jī)性等特點(diǎn),在新能源系統(tǒng)中需儲(chǔ)備儲(chǔ)能單元對(duì)電能進(jìn)行削峰填谷,進(jìn)而實(shí)現(xiàn)對(duì)負(fù)載的連續(xù)穩(wěn)定供電[1-3]。傳統(tǒng)的新能源系統(tǒng)中,新能源發(fā)電單元、負(fù)載和儲(chǔ)能單元由多個(gè)雙向或單相的獨(dú)立直流變換器進(jìn)行連接,結(jié)構(gòu)復(fù)雜、體積較大。采用三有源橋(Triple Active Bridge, TAB)取代多個(gè)獨(dú)立變換器,不僅可以滿足各個(gè)端口間能量的雙向流動(dòng)、電壓匹配和電氣隔離,還可以簡(jiǎn)化系統(tǒng)結(jié)構(gòu)、減小裝置質(zhì)量和體積,提升整體變換效率[4-7]。目前,TAB已成為以上應(yīng)用領(lǐng)域的研究熱點(diǎn)之一。
相較于雙有源橋(Dual-Active-Bridge, DAB)[8-10],TAB的很多研究工作還停留在初步的理論研究和探討階段,仍存在大量的理論和共性關(guān)鍵問(wèn)題有待解決。DAB的控制策略有單移相(Single-Phase-Shift, SPS)、擴(kuò)展移相(Extended-Phase-Shift, EPS)、雙移相(Dual-Phase-Shift, DPS)和三重移相(Triple- Phase-Shift, TPS)。通過(guò)增加控制自由度,DAB可實(shí)現(xiàn)零電壓開(kāi)通(Zero Voltage Switching, ZVS)、無(wú)功環(huán)流和功率損耗的多目標(biāo)優(yōu)化。同樣地,TAB在以上控制策略下,也存在ZVS區(qū)域。但由于端口數(shù)量增多,TAB的工作模式和控制自由度均大大增加。因此,DAB的模態(tài)分析法和分段線性法在應(yīng)用到TAB時(shí),其計(jì)算過(guò)程會(huì)較為復(fù)雜。
TAB的研究?jī)?nèi)容目前多關(guān)注各端口間的解耦、建模以及不同運(yùn)行模式下的控制策略切換等方面,而針對(duì)TAB的軟開(kāi)關(guān)實(shí)現(xiàn)條件,還缺乏深入的分析和研究[11-12]。文獻(xiàn)[11]提出了一種TAB的系統(tǒng)模型,并基于該模型給出了相應(yīng)的優(yōu)化控制方法,可提高能量從電網(wǎng)端口向儲(chǔ)能端口流動(dòng)時(shí)的轉(zhuǎn)化效率。文獻(xiàn)[12]構(gòu)建了TAB的小信號(hào)模型并基于該模型設(shè)計(jì)了PI解耦控制器,該控制器可將TAB強(qiáng)耦合的各端口解耦為三個(gè)交流等效電路,進(jìn)而降低了TAB的設(shè)計(jì)復(fù)雜性并提高了其動(dòng)態(tài)響應(yīng)特性。但以上文獻(xiàn)均未考慮TAB的軟開(kāi)關(guān)特性。文獻(xiàn)[13]基于傅里葉等效法,分析了DAB的ZVS邊界條件,但是只考慮了電流的基波分量,忽略了諧波分量,在高頻應(yīng)用場(chǎng)合會(huì)有較大的誤差。文獻(xiàn)[14]提出了一種多諧振腔的三端口變換器,并考慮了方波電壓的基頻和三倍頻分量進(jìn)行端口高頻鏈電流的計(jì)算,相較于只考慮基頻的計(jì)算方法,其ZVS精度有所提高,但是該方法只適用于所提出的電路結(jié)構(gòu),不具有普適性。文獻(xiàn)[15-17]基于傅里葉等效法分析了DAB多個(gè)工作模式下的ZVS區(qū)域,但主要考慮的是基波分量,忽略了諧波分量。文獻(xiàn)[18]基于分段線性法,準(zhǔn)確繪制了DAB不同工作模式下的ZVS區(qū)域,以此為基準(zhǔn),分析了傅里葉等效法在考慮不同諧波分量時(shí)其ZVS區(qū)域的誤差。文獻(xiàn)[19]基于分段線性法,對(duì)DAB在DPS控制下的四個(gè)工作模式進(jìn)行了ZVS區(qū)域的求解,該方法可應(yīng)用到TAB,但由于端口數(shù)量的增加,計(jì)算過(guò)程較為復(fù)雜。文獻(xiàn)[20]基于分段線性法,分析了輕載狀態(tài)時(shí),DAB在TPS控制下的ZVS區(qū)域。文獻(xiàn)[21]研究了三電平DAB的軟開(kāi)關(guān)特性,并對(duì)四種工作模式下的ZVS區(qū)域進(jìn)行了分析,進(jìn)而實(shí)現(xiàn)了DAB的多目標(biāo)優(yōu)化調(diào)制。可以發(fā)現(xiàn),現(xiàn)有文獻(xiàn)多是針對(duì)DAB的某一特定工作模式或特定移相控制方法下的多種工作模式進(jìn)行分析研究,其分析方法有兩種,即分段線性法和傅里葉等效法。分段線性法可以準(zhǔn)確地繪制ZVS的區(qū)域,但需針對(duì)不同的工作模式或者移相控制策略分別進(jìn)行計(jì)算。而且隨著端口數(shù)量的增多,其計(jì)算過(guò)程非常繁瑣、復(fù)雜。傅里葉等效法只能考慮有限級(jí)數(shù)的諧波分量,需在計(jì)算精度和計(jì)算復(fù)雜性之間做出權(quán)衡,并且需對(duì)不同的工作模式和移相策略分別進(jìn)行推導(dǎo)和計(jì)算。因此,現(xiàn)有DAB的ZVS研究方法不利于推廣至TAB的應(yīng)用。基于此,文獻(xiàn)[22]針對(duì)TAB構(gòu)建了包含全部諧波分量的軟開(kāi)關(guān)準(zhǔn)確模型,從而實(shí)現(xiàn)所有開(kāi)關(guān)管的軟開(kāi)關(guān)參數(shù)設(shè)計(jì),但是該方法僅適用于SPS控制,對(duì)于更為復(fù)雜的移相策略則不太適用。
TAB應(yīng)用的關(guān)鍵優(yōu)勢(shì)之一就是其開(kāi)關(guān)管的軟開(kāi)關(guān)能力。對(duì)于高壓開(kāi)關(guān)器件,實(shí)現(xiàn)所有開(kāi)關(guān)管的ZVS是降低損耗的有效方式,也是提升變換效率的有效手段。本文以TAB為研究對(duì)象,采用疊加定理將多端口變換器分解為多個(gè)雙電源共同作用的子電路,推導(dǎo)了子電路模型中開(kāi)關(guān)管開(kāi)通時(shí)電感電流的統(tǒng)一公式。最后由各子模型中電流的統(tǒng)一公式,構(gòu)建了TAB各開(kāi)關(guān)管開(kāi)通時(shí)電感電流的統(tǒng)一公式,并根據(jù)開(kāi)關(guān)管的ZVS邊界條件,繪制了不同占空比下變換器的全開(kāi)關(guān)ZVS區(qū)域。本文所提出的方法操作簡(jiǎn)便、準(zhǔn)確度高,且不受工作模態(tài)和移相控制方法的影響,易于推廣、可移植性強(qiáng)。


圖1 TAB拓?fù)浣Y(jié)構(gòu)




圖3 TAB工作模式












可以發(fā)現(xiàn),其占空比組合方式比DAB多出一倍,工作模式為DAB的3倍。DAB的分段線性法或傅里葉等效法推廣至TAB時(shí),其計(jì)算過(guò)程會(huì)較為復(fù)雜繁瑣。因此,迫切需要一個(gè)統(tǒng)一的表達(dá)式,可以直觀地表示TAB的各個(gè)模態(tài)在不同占空比組合下的電流值。

圖4 TAB觸發(fā)脈沖及方波電壓




圖6 雙電源電路的電壓電流波形
兩個(gè)方波電源作用下電流的統(tǒng)一公式為







由此可知





表1 不同相位基準(zhǔn)時(shí)驅(qū)動(dòng)信號(hào)相關(guān)電壓的移相角

Tab.1 Phase shift angle of the switches at different phase reference



取式(7)~式(14)中典型的四種占空比關(guān)系為





圖8 不同移相控制下的全開(kāi)關(guān)ZVS區(qū)域
為驗(yàn)證圖8中不同占空比下全開(kāi)關(guān)ZVS區(qū)域的有效性,本文基于RT-Lab實(shí)驗(yàn)平臺(tái)開(kāi)展了實(shí)驗(yàn)驗(yàn)證,實(shí)驗(yàn)結(jié)果如圖9~圖16所示。



圖11 實(shí)驗(yàn)3波形




圖15 實(shí)驗(yàn)3動(dòng)態(tài)波形

本文針對(duì)TAB全開(kāi)關(guān)管的軟開(kāi)關(guān)特性,從各端口驅(qū)動(dòng)信號(hào)出發(fā),將各端口的方波電壓以開(kāi)關(guān)管相位為參考,分解為多個(gè)幅值相同、相位不同的0.5占空比的方波電壓。基于疊加定理,本文將TAB的等效電路分解為多個(gè)雙電源作用的子電路,并推導(dǎo)出子電路中開(kāi)關(guān)管開(kāi)通時(shí)電感電流的統(tǒng)一表達(dá)式。最后由多個(gè)子電路中電感電流的疊加即可得到特定開(kāi)關(guān)管開(kāi)通時(shí)的電流。不同于DAB電感電流的分段線性計(jì)算方法和傅里葉等效法,本文提出的方法計(jì)算簡(jiǎn)便、不受移相控制方法的影響,可直接得到所有占空比下TAB全開(kāi)關(guān)管的ZVS區(qū)域。最后,基于RT-Lab實(shí)驗(yàn)平臺(tái),驗(yàn)證了本文所提方法的正確性和有效性,并得到以下結(jié)論:


[1] 盛逸標(biāo), 林濤, 陳寶平, 等. 面向新能源外送系統(tǒng)次/超同步振蕩的控制器參數(shù)協(xié)調(diào)優(yōu)化[J]. 電工技術(shù)學(xué)報(bào), 2019, 34(5): 983-993.
Sheng Yibiao, Lin Tao, Chen Baoping, et al. Coor- dination and optimization of controller parameters for subsynchronous/super-synchronous oscillation in new energy delivery systems[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 983-993.
[2] 李夢(mèng)柏, 謝竹君, 林衛(wèi)星, 等. 一種適用于新能源并網(wǎng)的高增益單向直流變壓器[J]. 電工技術(shù)學(xué)報(bào), 2018, 33(2): 301-309.
Li Mengbo, Xie Zhujun, Lin Weixing, et al. Cascaded LC-AC transformer unidirectional DC-DC converter with high stepping ratio[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 301-309.
[3] 王會(huì)超, 秦昊, 周昶, 等. 計(jì)及新能源預(yù)測(cè)不確定性的跨區(qū)域日前—日內(nèi)調(diào)度模型[J]. 電力系統(tǒng)自動(dòng)化, 2019, 43(19): 60-67.
Wang Huichao, Qin Hao, Zhou Chang, et al. Cross- regional day-ahead to intra-day scheduling model considering forecasting uncertainty of renewable energy[J]. Automation of Electric Power Systems, 2019, 43(19): 60-67.
[4] Duarte J, Hendrix M, Simoes M. Three-port bidire- ctional converter for hybrid fuel cell systems[J]. IEEE Transactions on Power Electronics, 2007, 22(2): 480-487.
[5] Krishnaswami H, Mohan N. Three-port series- resonant DC-DC converter to interface renewable energy sources with bidirectional load and energy storage ports[J]. IEEE Transactions on Power Electronics, 2009, 24(10): 2289-2297.
[6] Bhattacharjee A K, Kutkut N, Batarseh I. Review of multi port converters for solar and energy storage integration[J]. IEEE Transactions on Power Electro- nics, 2019, 34(2): 1431-1445.
[7] 余雪萍, 涂春鳴, 肖凡, 等. 三端口隔離DC-DC變換器的暫態(tài)直流偏置機(jī)理及抑制策略[J]. 電工技術(shù)學(xué)報(bào), 2020, 35(9): 1962-1972.
Yu Xueping, Tu Chunming, Xiao Fan, et al. Transient dc bias mechanism and suppression strategy of the three-port isolated DC-DC converter[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 1962- 1972.
[8] 李婧, 袁立強(qiáng), 谷慶, 等. 一種基于損耗模型的雙有源橋DC-DC變換器效率優(yōu)化方法[J]. 電工技術(shù)學(xué)報(bào), 2017, 32(14): 66-76.
Li Jing, Yuan Liqiang, Gu Qing, et al. An efficiency optimization method in dual active bridge DC-DC converter based on loss model[J]. Transactions of China Electrotechnical Society, 2017, 32(14): 66-76.
[9] Zhao Biao, Song Qiang, Liu Wenhua, et al. Transient DC bias and current impact effects of high- frequency-isolated bidirectional DC-DC converter in practice[J]. IEEE Transactions on Power Electronics, 2016, 31(4): 3203-3216.
[10] 魏騰飛, 王曉蘭, 李曉曉. 雙向直流隔離變換器功率回流的分析及消除[J]. 電機(jī)與控制學(xué)報(bào), 2019, 23(11): 100-108,117.
Wei Tengfei, Wang Xiaolan, Li Xiaoxiao. Analysis and elimination backflow power in bidirectional DC-DC isolation converter[J]. Electric Machines and Control, 2019, 23(11): 100-108,117.
[11] Zou Shenli, Lu Jiangheng, Alireza Khaligh. Modeling and control of a triple active bridge converter[J]. IET Power Electronics, 2020, 13(5): 961-969.
[12] Ishita Biswas, Debaprasad Kastha, Prabodh Bajpai. Small signal modeling and decoupled controller design for a triple active bridge multiport DC-DC converter[J]. IEEE Transactions on Power Electronics, 2020, DOI:10.1109/TPEL.2020.3006782.
[13] Li Xiaodong, Bhat A K S. Analysis and design of high-frequency isolated dual-bridge series resonant DC/DC converter[J]. IEEE Transactions on Power Electronics, 2010, 25(4): 850-862.
[14] 李微, 王議鋒, 韓富強(qiáng), 等. 一種隔離型三端口雙向LCLC多諧振直流變換器[J]. 電工技術(shù)學(xué)報(bào), 2018, 33(14): 3231-3244.
Li Wei, Wang Yifeng, Han Fuqiang, et al. An isolated three-port bidirectional LCLC multi-resonant DC-DC converter[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3231-3244.
[15] Everts J, Krismer F, Jeroen V D K, et al. Optimal ZVS modulation of single-phase single-stage bidire- ctional DAB AC-DC converters[J]. IEEE Transa- ctions on Power Electronics, 2014, 29(8): 3954-3970.
[16] Everts, Jordi. Closed-form solution for efficient ZVS modulation of DAB converters[J]. IEEE Transactions on Power Electronics, 2016: 7561-7576.
[17] Li Xiaodong, Bhat A K S. Analysis and design of high-frequency isolated dual-bridge series resonant DC/DC converter[J]. IEEE Transactions on Power Electronics, 2010, 25(4): 850-862.
[18] Riedel J, Holmes D G, Mcgrath B P, et al. ZVS soft switching boundaries for dual active bridge DC-DC converters using frequency domain analysis[J]. IEEE Transactions on Power Electronics, 2017, 32(4): 3166-3179.
[19] Hu Yan, Zhang Yu, Chen Qing, et al. Efficiency evaluation for DAB converter with reactive power minimization strategy and full ZVS operation[C]// 2019 IEEE Energy Conversion Congress and Expo- sition (ECCE), Baltimore, 2019: 4274-4280.
[20] 黃珺, 王躍, 李卓強(qiáng), 等. 基于三重移相控制的雙主動(dòng)全橋直流變換器優(yōu)化調(diào)制策略[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2016, 36(6): 1658-1666.
Huang Jun, Wang Yue, Li Zhuoqiang, et al. Optimized modulation scheme of dual active bridge DC-DC converter based on triple-phase-shift control[J]. Proceedings of the CSEE, 2016, 36(6): 1658-1666.
[21] 童安平, 邵持, 杭麗君, 等. 混合三電平DAB變換器軟開(kāi)關(guān)分析與多目標(biāo)優(yōu)化調(diào)制技術(shù)研究[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2020, 40(24): 8098-8110.
Tong Anping, Shao Chi, Hang Lijun, et al. Investigation on soft switching characteristics and the multi-objective optimized modulation strategy for hybrid three-level DAB converter[J]. Proceedings of the CSEE, 2020, 40(24): 8098-8110.
[22] 田昕, 王聰, 沙廣林, 等. 三端口直流變換器軟開(kāi)關(guān)分析的一種準(zhǔn)確模型[J]. 電源學(xué)報(bào), 2020, 18(4): 94-101.
Tian Xin, Wang Cong, Sha Guanglin, et al. An accurate model for soft-switching analysis of three- port DC-DC converter[J]. Journal of Power Supply, 2020, 18(4): 94-101.
[23] Zhao Chuanhong, Round S D, Kolar J W. An isolated three-port bidirectional DC-DC converter with decoupled power flow management[J]. IEEE Transactions on Power Electronics, 2008, 23(5): 2443-2453.
[24] 趙彪, 宋強(qiáng). 雙主動(dòng)全橋DC-DC變換器的理論和應(yīng)用技術(shù)[M]. 北京: 科學(xué)出版社, 2017.
Soft Switching Characteristics of the Three-Port Isolated DC-DC Converter
(National Electric Power Conversion and Control Engineering Technology Research Center Hunan University Changsha 410082 China)
As an active exploration, the triple active bridge (TAB) has been widely concerned in the fields of distributed photovoltaic access, new energy vehicles, and multi-voltage level DC power demand. Soft switching is one of the key advantages of TAB, which can effectively reduce switching loss and improve conversion efficiency. However, due to the increase in the number of switches, the working mode and phase shift control method of TAB have multiplied compared with the dual active bridge (DAB), and the existing ZVS method of DAB is not applicable to TAB. Based on the analysis of TAB working principle, the equivalent circuit of TAB is decomposed from switching signals, and the uniform expression of the inductor current under dual-power supply is constructed. According to the superposition theorem, the inductor current at the opening time of certain switch can be obtained by adding the inductor current under multiple dual-power supplies. Moreover, it is not affected by the phase shift method, and the calculation is simple. Based on the decomposition circuit model, this paper draws and analyzes the ZVS region of TAB under different phase shift control methods. Finally, an experimental platform is built to verify the feasibility and effectiveness of the proposed method.
Soft switching, isolated DC-DC converter, inductor current, phase shift control
10.19595/j.cnki.1000-6753.tces.200963
TM46
國(guó)家重點(diǎn)研發(fā)計(jì)劃資助項(xiàng)目(2018YFB0904100)。
2020-08-01
2020-09-26
余雪萍 女,1990年生,博士研究生,研究方向?yàn)槎喽丝谥绷髯儞Q器等。E-mail: Xuepingyu@163.com(通信作者)
涂春鳴 男,1976年生,博士,教授,主要研究方向?yàn)殡娔苜|(zhì)量與控制、電力電子技術(shù)在電力系統(tǒng)中的應(yīng)用等。E-mail: chunming_tu@263.net
(編輯 陳 誠(chéng))