999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Extended Binding Number Results on Fractional(g,f,n,m) critical Deleted Graphs

2022-01-07 08:31:36LanMeihuiGaoWei

Lan MeihuiGao Wei

(1.School of Information Engineering,Qujing Normal University,Qujing655011,China?2.School of Information Science and Technology,Yunnan Normal University,Kunming650500,China)

Abstract As an extension of the factor,the fractional factor allows each edge to give a real number in the range of0to1,and degree of fraction of each vertex to be controlled within a certain range(determined by the values of functions g and f,corresponding to the upper and lower fractional degree boundary).The score factor has a wide range of applications in communication networks,and the score critical deleted graph can be used to measure the feasibility of transmission when the network is damaged at a certain moment.In this short note,we mainly present some extended binding number conclusions on fractional(g,f,n,m) critical deleted graphs.

Key words Graph Binding number Fractional factor Fractional(g,f,n,m) critical deleted graph

1 Introduction

All graphs considered in this paper are simple and finite.LetGbe a graph with vertex setV(G)and edge setE(G).We denote bydG(v)andNG(v)(simply byd(v)andN(v))the degree and the neighborhood of any vertexvinG,respectively.Letδ(G)=minv∈V(G){d(v)}.ForS?V(G),we denote byG[S]the subgraph ofGinduced byS,and setG?S=G[V(G)S].For two vertex disjoint subsetsS,T?V(G),seteG(S,T)=|{e=uv|u∈S,v∈T}|.Notations and terminologies used but undefined in this paper can be found in[1].

Suppose thatgandfare two integer valued functions defined on vertex set ofGsatisfying0≤g(v)≤f(v)for anyv∈V(G).A fractional(g,f) factor can be considered as a functionhwhich assigns to each edge a number in[0,1]andg(v)≤(v)≤f(v)for each vertexv,whereh(e)is the fractional degree ofvinG.Ifg(v)=aandf(v)=bfor allv∈V(G),then a fractional(g,f) factor is a fractional[a,b] factor.A graphGis called a fractional(g,f,m) deleted graph if for each edge subsetH?E(G)with|H|=m,there exists a fractional(g,f) factorhsuch thath(e)=0for alle∈H.A graphGis a fractional(g,f,n,m) critical deleted graph if the resting subgraph after deletingnvertices fromGis a fractional(g,f,m) deleted graph.

We sayGhas all fractional(g,f) factors ifGhas a fractionalpfactor for eachp:V(G)→N withg(v)≤p(v)≤f(v)for anyv∈V(G).Ifg(v)=a,f(v)=bfor each vertexvandGhas all fractional(g,f) factors,then we say thatGhas all fractional[a,b] factors.A graphGis an all fractional(g,f,m) deleted graph if after deleting anymedge ofGthe remaining graph has an all fractional(g,f) factor.A graphGis an all fractional(g,f,n,m) critical deleted graph if after deleting anynvertices ofGthe remaining graph is an all fractional(g,f,m) deleted graph.Ifg(v)=a,f(v)=bfor eachv∈V(G),then an all fractional(g,f,n,m) critical deleted graph becomes an all fractional(a,b,n,m) critical deleted graph,i.e.,after deleting anynvertices ofGthe remaining graph is still an all fractional(a,b,m) deleted graph.

The following subsection depends heavily on two lemmas which are given by Liu and Zhang[1]and their equivalent description can be found in[3]and[4].We only prove Theorem1.1 since the tricks to prove Theorem1.2 and Theorem1.3 are the same.The main idea and tricks to prove Theorem1.1 are followed from[3]and[4],but we have new techniques here.

2 Proof of Theorem1.1

whereScontains at leastnvertices.

The subsetsSandTare chosen so that|T|is minimum.Clearly,T?=?anddG?S(x)≤b?1for anyx∈T.

The definitions ofl,H′,T0,H,H1,andH2are the same as in[3]and[4].If|V(H)|=0,then from(2.1)we obtain

a|S|≤b|T0|+bl+bn+2m?1

or

which contradicts todG?S(x)≤b?1for anyx∈T.We acquire

a contradiction by|T0|+l≥2.Therefore,we have|V(H)|>0.

Assume thatI1,C1,I(i)for1≤i≤binH1,andI2,C2,Tj,cj,ijfor1≤j≤b?1inH2(as well asWandU)are as the same as defined in[3]and[4].By Lemma3.5 in[4],we get

According to Lemma3.4 in[4],we infer

By the definition ofU,we acquire

LetX=T0∪lKb∪I1∪I2.Then,

wheret0=|T0|.Setbind(G)=B,then we get

By(2.4 ) (2.6 ),we infer

Using

and combining with(2.7),we get

In light of(2.3 ),(2.8 )and(2.2 ),we acquire

We consider two cases oft0+l.

Case1t0+l≥1.In this case,byaB≥b2+bn+m??,we haveaB(t0+lb)?b(t0+l)?bn?2m+1≥0.Thus(2.9)becomes

(b?2)(b?j)≥aB?aj?b+j.

Now consider

A contradiction can be obtained by using the similar discussion in[3]and[4].Therefore,whatever|I1|=0,or|I2|=0,or both|I1|≥1and|I2|≥1,we get a contradiction.

Case2t0+l=0.In this case,by(2.9)we acquire

The following discussion is divided into three subcases relying on whetherI1orI2is empty.

Subcase2.1|I1|=0.

We notice that(2.11)becomes Ifa=b,then(b?2)(b?j)?(aB?aj?b+j)≤j?a?bn?2m.Whenj=a?1,it reaches the minimum value?bn?2m?1,and whenj=a?2,it reaches the second minimum value?bn?2m?2.By learning the proof of Lemma2.3 in[1],we know that when choose the maximum independent set,for each connected component,we first select vertex which has minimum degree inG?S.ThusI2contains vertex which has degree at mostb?2inG?S,and furthermore we have(b?2)(b?j)?(aB?aj?b+j)≤j?a?bn?2m≤?bn?2m?2.Ifb≥a+1,then(b?2)(b?j)?(aB?aj?b+j)≤?bn?2m?2 since(a,b)?=(1,2).In all,we get a contradiction to(2.12).

Subcase2.2|I2|=0.

It equals to

which contradicts to|I1|≥1.

Using the similar trick as in Subcase2.2,we deduce a confliction.

In all,the desired conclusion is completely proved.

3 Conclusion and discussion

In this contribution,we extended the result published in“Journal of Ambient Intelligence and Humanized Computing”by Gao et al.[5].Here,we introduce the following open problem.

Problem3.1What is the tight binding number bound(without parameter|V(G)|)for a graph to be fractional(g,f,n,m) critical deleted(resp.fractional(a,b,n,m) critical deleted or all fractional(g,f,n,m) critical deleted)?

主站蜘蛛池模板: 久久精品国产亚洲麻豆| 国产精品任我爽爆在线播放6080| 欧美一级在线播放| 欧美福利在线观看| 国产日韩精品欧美一区灰| 久久免费视频播放| 毛片一区二区在线看| 婷婷六月在线| 国产精品福利尤物youwu | 精品国产中文一级毛片在线看 | 色婷婷亚洲十月十月色天| 久久精品国产在热久久2019| 国产成人综合欧美精品久久| 亚洲第一av网站| 午夜人性色福利无码视频在线观看| 亚洲人成电影在线播放| 粗大猛烈进出高潮视频无码| 波多野结衣一区二区三区四区视频| 国产精品第5页| 91在线激情在线观看| 91小视频在线播放| 手机在线国产精品| 欧美午夜在线观看| 国产欧美高清| 久久亚洲美女精品国产精品| 最新加勒比隔壁人妻| 国产成人亚洲欧美激情| 日韩性网站| 2021国产在线视频| 原味小视频在线www国产| 国产一区二区精品福利 | 青草娱乐极品免费视频| 日本一区中文字幕最新在线| 国产成人一区| 国产办公室秘书无码精品| 亚卅精品无码久久毛片乌克兰| 国产打屁股免费区网站| 亚洲欧美日韩动漫| 久久青草免费91线频观看不卡| 国产精品部在线观看| 色哟哟色院91精品网站| 91精品小视频| 国产自在线播放| 国产毛片片精品天天看视频| 色香蕉网站| 欧美午夜一区| 99精品热视频这里只有精品7| 日本91在线| 午夜在线不卡| 亚洲va视频| 国模极品一区二区三区| 亚洲无码熟妇人妻AV在线| a级毛片在线免费| 色综合天天操| 色屁屁一区二区三区视频国产| 九九久久精品国产av片囯产区| 黄色网在线| 国国产a国产片免费麻豆| 丁香亚洲综合五月天婷婷| 色悠久久久| 黄片一区二区三区| 国产精品播放| 91系列在线观看| 国产99精品视频| 亚洲色成人www在线观看| 国产欧美精品专区一区二区| 国产熟睡乱子伦视频网站| 亚洲第一区在线| 99久久人妻精品免费二区| 97视频免费看| 国产综合日韩另类一区二区| 蜜芽国产尤物av尤物在线看| 久久综合色88| 精品视频一区在线观看| 亚洲欧美成aⅴ人在线观看| 久久动漫精品| 精品视频一区在线观看| 91人妻在线视频| 一级毛片网| 女高中生自慰污污网站| 中文无码毛片又爽又刺激| 国产九九精品视频|