999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Artificial Intelligence Has a Problem with Grammar人工智能遭遇語法問題

2022-01-18 19:40:26萊恩·格林譯/傅穎LaneGreene
英語世界 2022年1期
關(guān)鍵詞:單詞建議人工智能

萊恩·格林 譯/傅穎 Lane Greene

The hitch illuminates the nature of language.

這一難題揭示了語言的本質(zhì)。

If you frequently Google language-related questions, whether out of interest or need, youve probably seen an advertisement for Grammarly, an automated grammar-checker. In ubiquitous YouTube spots Grammarly touts its ability not only to fix mistakes, but to improve style and polish too. Over more than a decade it has sprawled into many applications: it can check emails, phone messages or longer texts composed in Microsoft Word and Google Docs, among other formats.

Does it achieve what it purports to? Sometimes. But sometimes Grammarly doesnt do what it should, and sometimes it even does what it shouldnt. These strengths and failings hint at the essence of language and the peculiarity of human intelligence, as opposed to the artificial sort as it stands today.

Begin with the strengths. In a rough piece of student writing, Johnson counted 14 errors. Grammarly flagged five. For example, it sensibly suggested inserting a hyphen in “post cold war [world]”. It spotted a missing “the” in the phrase “with [the] European economy”. And it noticed an absent “about” in “wondering [about] the state of Europe”. By using Grammarly, the author of this essay could have avoided some red ink.

On the other hand, Grammarly has a problem with false positives, calling out mistakes that are not. The other two suggestions were not disastrous, but neither did they relate to “critical errors” as Grammarly maintains. In the assertion that enlargement had “created a fatigue” within the European Union, Grammarly needlessly suggested deleting the “a”. In another error-ridden sentence it recommended removing a comma, which fixed none of the problems. This false-positive tendency is not a deal-breaker for reasonably skilled writers who just want a second pair of eyes; you can dismiss any suggestion you like. But truly struggling scribblers might not know when Grammarlys ideas would make their prose worse rather than better.

Then there are the false negatives, or the mistakes Grammarly fails to notice. Depending on the text, Grammarly can seem to miss more errors than it marks. The companys chief executive, Brad Hoover, describes it as a “coach, not a crutch”—which sets expectations more appropriately than some of the ads do.

Artificial-intelligence systems like Grammarly are trained with data; for instance, translation software is fed sentences translated by humans. Grammarlys training data involve a large number of standard error-free sentences (so it knows what good English should look like) and human-corrected sentences (so the software can find the patterns of fixes that human editors might make). Developers also manually add certain rules to the patterns Grammarly has taught itself. The software then looks at a users prose: if a string of words seems ungrammatical, it tries to spot how the putative mistake most closely resembles one from its training inputs.

All this shows how far artificial “intelligence” is from the human kind (which Grammarly wants to correct to “humankind”). Computers outpace humans at problems that can be cracked with pure maths, such as chess. Advances in language technology have been impressive in, for example, speech recognition, which involves another sort of statistical guess—whether or not a stretch of sound matches a certain string of words. One Grammarly feature that works fairly well is sentiment analysis. It can rate the tone of an email before you send it, after being trained on texts that have been assessed by humans, for example as “admiring” or “confident”.

But grammar is the real magic of language, binding words into structures, binding those structures into sentences, and doing so in a way that maps onto meaning. And at this crucial structure-meaning interface, machines are no match for humans. Computers can parse (grammatical) sentences fairly well, labelling things like nouns and verb phrases. But they struggle with sentences that are difficult to analyse, precisely because they are ungrammatical—in other words, written by the kind of person who needs Grammarly.

To correct such prose requires knowing what the writer intended. But computers dont work in meaning or intention; they work in formulae. Humans, by contrast, can usually understand even rather mangled syntax, because of the ability to guess the contents of other minds. Grammar-checking computers illustrate not how bad humans are with language, but just how good.

如果你經(jīng)常上谷歌搜索與語言相關(guān)的問題,無論是出于興趣還是出于需要,你都可能看到過Grammarly的廣告,這是一款自動語法檢查工具。在漫天的優(yōu)兔插播廣告中,Grammarly宣稱它不僅能夠糾正錯誤,還能改進文風(fēng),給文章潤色。10多年來,它已經(jīng)打入許多應(yīng)用程序:它能夠檢查電子郵件、手機短信,或是以微軟Word文檔、谷歌文檔等其他格式編寫的長文本。

那它說到做到了嗎?有時候做到了。但有時候Grammarly失職了,有時候它甚至做了不該做的。這些優(yōu)缺點暗示出語言的本質(zhì)以及人類智能的特性,而非當(dāng)今所謂人工智能的特點。

先說Grammarly的優(yōu)點。在一篇質(zhì)量不高的學(xué)生作文中,《經(jīng)濟學(xué)人》的約翰遜語言專欄標出了14處錯誤。Grammarly則標記了5處。例如,它建議在詞組“post cold war [world](后冷戰(zhàn)[世界])”中插入連字符,這很合理;它發(fā)現(xiàn),短語“with [the] European economy(歐洲經(jīng)濟)”漏了the;它還注意到,“wondering [about] the state of Europe(對歐洲狀況的思考)”少了about。借助Grammarly,這篇文章的作者可以避免一些錯誤。

而另一方面,Grammarly存在誤報問題,它會指出并非錯誤的錯誤。Grammarly給出的另外兩條建議雖不至于離譜,但也談不上它所認為的“嚴重錯誤”。針對歐盟擴大在內(nèi)部“created a fatigue(引發(fā)了疲勞)”這句話,Grammarly建議刪除a,這多此一舉。另一個滿是錯誤的句子則被建議刪除逗號,可這并未解決任何問題。對那些只想多一雙眼睛檢查的寫作高手來說,這種頻現(xiàn)的誤報并不會壞事:你可以忽略想忽略的任何建議。但那些絞盡腦汁、水平不高的作者可能無法判斷,在什么情況下Grammarly的建議會幫倒忙。

此外,Grammarly還存在漏報問題,即無法發(fā)現(xiàn)某些錯誤。Grammarly漏掉的錯誤可能比標記出來的還要多,視文本內(nèi)容而定。該公司首席執(zhí)行官布拉德·胡佛將Grammarly形容為“教練,而非拐杖”。相較一些廣告,這個比方更為恰當(dāng)?shù)卦O(shè)定了此款軟件該符合的期望。

像Grammarly這樣的人工智能系統(tǒng)是用數(shù)據(jù)訓(xùn)練的。例如,翻譯軟件的訓(xùn)練數(shù)據(jù)是人工翻譯的句子。Grammarly的訓(xùn)練數(shù)據(jù)包括大量標準無誤的句子(所以它知道好的英語應(yīng)該是什么樣子)和人工糾正的句子(所以它能發(fā)覺人工編輯可能采取的改錯模式)。開發(fā)人員還將某些規(guī)則手動添加到Grammarly的自學(xué)修改模式中。這樣,當(dāng)該軟件檢查用戶文章時,如果一串單詞看起來不合語法,它便會試圖找出假定的錯誤與訓(xùn)練輸入的錯誤最相似的地方。

所有這些表明,人工“智能”和人的智能[即human kind,Grammarly會把這個詞組改為“humankind(人類)”]相去甚遠。計算機在下國際象棋等純數(shù)學(xué)問題上比人厲害。它在語言技術(shù)方面的進步也令人贊嘆,比如語音識別,這涉及另一種統(tǒng)計猜測,即一段聲音與某串單詞是否匹配。Grammarly具備一項很棒的功能:情緒分析。它可以在電子郵件發(fā)送之前對其語氣進行評估。它接受過訓(xùn)練,見識過哪些文本被人類評定為“贊賞的”或“自信的”等等。

然而,語言真正的神奇之處在于語法,它將單詞綁定到結(jié)構(gòu)中,將這些結(jié)構(gòu)綁定到句子中,使之表情達意。結(jié)構(gòu)與意義之間的交互至關(guān)重要,在這點上,機器無法與人類相比。盡管計算機能很好地(從語法上)解析句子,標出諸如名詞和動詞短語等句子成分,但面對難以分析的句子,計算機束手無策,這恰恰是因為這些句子不符合語法,換句話說,寫出這些句子的正是需要Grammarly的人。

要修改這類文本,就要知道作者的意圖。但是,計算機無法理解意義或意圖,它們靠的是公式。相比之下,人類因為有能力猜測別人的想法,所以通常能夠理解十分混亂的句法。用計算機檢查語法,并不能說明人類處理語言的能力有多么糟糕,相反,這只能說明人類的語言能力十分出色。

(譯者為“《英語世界》杯”翻譯大賽獲獎?wù)撸?/p>

猜你喜歡
單詞建議人工智能
接受建議,同時也堅持自己
單詞連一連
2019:人工智能
商界(2019年12期)2019-01-03 06:59:05
好建議是用腳走出來的
人工智能與就業(yè)
看圖填單詞
數(shù)讀人工智能
小康(2017年16期)2017-06-07 09:00:59
下一幕,人工智能!
建議答復(fù)應(yīng)該
浙江人大(2014年4期)2014-03-20 16:20:16
最難的單詞
主站蜘蛛池模板: 91小视频在线观看| 亚洲欧美日韩另类在线一| 亚洲天堂视频在线播放| 天天视频在线91频| 少妇人妻无码首页| 亚洲大学生视频在线播放| 国产色偷丝袜婷婷无码麻豆制服| 亚洲天堂在线视频| 亚洲精品成人福利在线电影| 一级爆乳无码av| 韩日无码在线不卡| 亚洲无码日韩一区| 精品成人免费自拍视频| 91精品国产麻豆国产自产在线| 99这里精品| 一级爱做片免费观看久久| 亚洲视频在线青青| 亚洲美女一级毛片| 99九九成人免费视频精品| 国产va在线| 亚洲视频四区| 3p叠罗汉国产精品久久| 99热这里都是国产精品| av在线无码浏览| 青青草原国产| 亚洲国产成人自拍| 亚洲一级毛片免费观看| 国产欧美日韩另类精彩视频| 2020精品极品国产色在线观看| 欧美国产综合视频| 欧美不卡在线视频| 亚洲日本中文字幕天堂网| 激情六月丁香婷婷四房播| 精品无码国产自产野外拍在线| 特级做a爰片毛片免费69| 中文字幕va| 四虎成人在线视频| 亚洲动漫h| 真人高潮娇喘嗯啊在线观看 | 91娇喘视频| 亚洲美女高潮久久久久久久| 福利一区在线| 美女无遮挡免费网站| 亚洲国产午夜精华无码福利| 9啪在线视频| 亚洲国产清纯| 中文成人在线| 在线视频97| a级高清毛片| 深夜福利视频一区二区| 亚洲高清无码久久久| 国产正在播放| 一本一道波多野结衣av黑人在线| 在线亚洲小视频| 无码人中文字幕| 久久中文字幕2021精品| 国产精品亚洲日韩AⅤ在线观看| 91精品啪在线观看国产91九色| 国产人人射| 99九九成人免费视频精品| 成人国产精品网站在线看| 欧美亚洲综合免费精品高清在线观看 | 黄色网站在线观看无码| 一本大道视频精品人妻| 色婷婷国产精品视频| 人与鲁专区| 黄片一区二区三区| 国产美女无遮挡免费视频网站| 亚洲视频欧美不卡| 美女毛片在线| 97青青青国产在线播放| 台湾AV国片精品女同性| 久久黄色小视频| 欧美a级在线| 国产精品福利社| 欧美国产视频| 免费无码AV片在线观看国产| 真人免费一级毛片一区二区| 亚洲无码高清免费视频亚洲| 久久成人免费| 99久久国产综合精品2023| 四虎国产精品永久在线网址|