999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

葡萄酒生產廢棄物與剩余污泥厭氧共消化研究進展

2022-02-06 01:00:40于莉芳馬芷萱楊佳毅鄭蘭香
農業工程學報 2022年20期
關鍵詞:體系

于莉芳,王 澤,馬芷萱,范 燁,蔣 睿,楊佳毅,鄭蘭香

葡萄酒生產廢棄物與剩余污泥厭氧共消化研究進展

于莉芳1,王 澤1,馬芷萱1,范 燁1,蔣 睿1,楊佳毅1,鄭蘭香2,3

(1. 西安建筑科技大學環境與市政工程學院,西安 710055;2. 寧夏大學生態環境學院,銀川 750021;3. 中國葡萄酒產業技術研究院,銀川 750021)

厭氧消化技術被廣泛應用于多種行業廢棄物的處置。然而,葡萄酒生產廢棄物濃度高、pH值低以及季節性變化的特性容易造成負荷沖擊,導致反應器微生物流失、運行不穩定。同時,剩余污泥組分復雜、水解率低導致產氣效率低。厭氧共消化具有均衡營養素、減緩抑制效應、豐富菌群多樣性和提高甲烷產量等優勢,也逐漸成為一種重要的葡萄酒生產廢棄物與剩余污泥的處置方式。盡管已有二者在不同運行策略下共消化性能的研究,但仍未有報道闡明其共消化的影響因素以及基于葡萄酒生產廢棄物特性建立直接種間電子傳遞的研究進展。因此,該文介紹了葡萄酒生產廢水與剩余污泥、葡萄酒生產固體廢棄物與剩余污泥的共消化進展,并分別歸納了2種體系中影響消化效能的主要因子;隨后總結了共消化體系中基于乙醇建立的直接種間電子傳遞的研究進展;最后,圍繞以上內容展望了共消化技術在葡萄酒生產廢棄物與剩余污泥協同處理的前景。

廢棄物;污泥;厭氧共消化;乙醇;直接種間電子傳遞

0 引 言

截止2021年全球葡萄種植面積達到7.34×106hm2,葡萄酒產量超過2.5×1010L[1]。據國家統計局數據,全國葡萄酒企業超800家,產量峰值達1.148×109L。葡萄酒生產過程需消耗大量的水和能源并伴隨相當大的廢物生成。通常,每生產1 L葡萄酒會伴隨生成0.5~14 L的有機廢水[2]和0.5~1.5 kg 固體廢棄物[3]。隨排放標準逐漸提高的同時酒廠對生產廢物的處置成本也逐年增加,尋求一種高效、節能的生物處置方式尤為重要。

中國剩余污泥(Waste Activated Sludge,WAS)生成量逐年增加,預計2025年將達到9×107t[4]。剩余污泥中不僅富含有機物,還攜帶病原體、重金屬、抗生素等有毒有害物質,需妥善處理避免二次污染[5-6]。厭氧消化技術能將污泥資源化、穩定化和無害化處理,但受限于污泥的低水解率和毒性物質等因素的影響導致消化效率低。通常,為改善污泥厭氧消化性能常采用機械破碎、超聲、熱堿和電化學等方式進行預處理[7-9],但預處理仍會生成抑制性副產物,如熱水解產生苯酚和難溶的氮磷化合物[10-11]等影響后續的產酸和產甲烷過程。

葡萄酒生產廢棄物與剩余污泥厭氧共消化(Anaerobic co-Digestion,AcoD)可通過稀釋毒性、均衡營養素等方式營造適宜的環境來豐富菌群的數量和多樣性,從而增強消化效率和系統穩定性[12-13]。此外,據報道稱AcoD技術已成功應用于餐飲業[14]、畜牧業[15]和農業[16]等多種行業廢水的處置。然而,AcoD仍無法突破產酸的熱力學限制。近年來,隨厭氧消化中存在直接種間電子傳遞(Direct Interspecies Electron Transfer,DIET)途徑被證實,即產甲烷菌接受產酸菌釋放的電子并將CO2還原為CH4。為進一步提高厭氧消化效率提供了新的解決思路。然而,DIET機制建立的條件較為苛刻,大多僅存在于以乙醇為底物或導電材料為介質的體系[17-18]。

葡萄酒生產廢棄物季節性產生無疑會顯著影響與剩余污泥共消化的運行,因此在總結葡萄酒生產廢棄物與剩余污泥厭氧AcoD研究進展的同時,介紹了影響AcoD性能的關鍵參數,并分析了AcoD體系中潛在的、基于乙醇建立的DIET機制,最后展望共消化技術在剩余污泥與葡萄酒生產廢棄物協同處理的研究方向。

1 葡萄酒生產廢棄物特性及與污泥共消化機制

葡萄酒生產過程中產生的有機廢水主要來源于加工設備的清洗和殘液的排出。廢水主要由醇、糖和有機酸組成的溶解性有機物、微量營養素、多酚類化合物、無機鹽以及殘留的肥料和農藥等組成[19-20],呈現可生化性好、高化學需氧量(Chemical Oxygen Demand,COD)、高懸浮固體(Suspended Solids,SS)、高色度和低pH值等特征,且水質水量隨季節性波動巨大。葡萄酒固體廢棄物(酒糟(Wine Lee,WL))主要來自壓榨、倒灌和過濾等工序,由葡萄渣(45%)、葡萄莖梗(7.5%)和葡萄籽(6%)等組成[21],基本特性與生產廢水類似、但COD濃度(>20 g/L)、總多酚(Total Polyphenols,TPP)濃度(>1.0 g/L)和鉀離子(K+)濃度(>2.5 g/L)較高[3,22](圖1)。排放未處理的葡萄酒生產廢物易造成土壤退化、水體污染等問題[34]。

AcoD經過水解、酸化、產氫產乙酸和產甲烷四個過程將多糖、蛋白質和乙醇等轉化成CH4、CO2和有機肥等(圖2)。水解階段,在水解菌分泌的水解酶和蛋白酶的作用下將多糖和蛋白質等大分子降解為單糖和氨基酸等小分子物質。其中包括多酚化合物在內的難生物降解有機物會限制水解效率[22]。酸化階段,將水解產物進一步轉化為揮發性脂肪酸(Volatile Fatty Acids,VFAs)和醇類物質。因發酵細菌比生長和代謝速率快,該階段容易導致體系中VFAs的積累[10]。產氫產甲烷階段,在產氫產乙酸菌的參與下降解乙醇和轉化VFAs為乙酸、H2和CO2,體系中存在的嗜氫產乙酸菌則進行同型產乙酸過程還原H2為乙酸。產甲烷過程主要是嗜氫產甲烷和嗜乙酸產甲烷兩種途徑,嗜氫產甲烷途徑是利用H2和CO2產甲烷,嗜乙酸產甲烷途徑是轉化乙酸產甲烷。產甲烷菌對環境變化敏感,常成為厭氧消化的限速步驟[5]。

a. pH值a. pH valueb. 總多酚濃度b. Tatal Polyphenols(TPP) concentrationc. 乙醇濃度c. Ethanol concentration

d. COD濃度d. Chemical Oxygen Demand(COD) concentratione. 總氮濃度e. Tatal Nitrogen (TN) concentrationf. 總磷濃度f. Total Phosphorus(TP) concentration

圖2 葡萄酒廢棄物與剩余污泥厭氧共消化示意圖[1,24,27]

2 葡萄酒生產廢水與剩余污泥共消化

有研究表明,AcoD體系中底物混合比對消化性能影響顯著,而葡萄酒生產廢水與不同底物(牛糞、豬糞和微藻)AcoD體系的最佳混合比存在差異[15,35-36]。因此,針對葡萄酒生產廢水與剩余污泥AcoD需確定最佳混合比來提供適宜營養物濃度和碳氮比(C/N)等,還需探究采摘季(9—11月)短期大量高濃度有機廢水對AcoD體系的沖擊影響。

2.1 混合比例

研究發現,增加AcoD體系中葡萄酒生產廢水比例會促進COD、VS(Volatile Solid,揮發性固體)的去除,但隨體積比超過50%后消化效率又逐漸下降[12,24,37]。說明混合比例會影響共消化效果,且葡萄酒生產廢水與剩余污泥最佳混合比為1∶1,見表1。

表1 葡萄酒生產廢水與剩余污泥共消化特性

注:WW:葡萄酒生產廢水,WAS:剩余污泥,下同。

Note:WW:wine wastewater,WAS:waste activated sludge, the same below.

底物混合比例主要改變體系碳氮比,從而影響厭氧消化效率以及體系的穩定性。低C/N比雖能增強體系的緩沖能力并適應低pH的環境,但污泥中有機質水解后會釋放游離氨,游離氨(FAN)透過細胞膜進入細胞后破壞胞內外質子和pH平衡[38]。葡萄酒生產廢水高C/N比的水質與剩余污泥混合后可提高體系的C/N比、降低游離氨濃度。然而,C/N比過高時體系容易因中間產物揮發性脂肪酸轉化不及時而積累,從而抑制產甲烷活性和降低體系穩定性[39]。

此外,改變體系C/N比將顯著影響代謝途徑和微生物群落結構。Zheng等[40]指出隨C/N降低產甲烷途徑逐漸從嗜乙酸產甲烷向嗜氫產甲烷轉移,并富集出互營乙酸氧化菌,即在高氨氮-厭氧體系中“互營乙酸氧化-嗜氫產甲烷”途徑會替代嗜乙酸產甲烷途徑[41]。同時,隨著C/N降低,產氫產乙酸菌、嗜丙酸產乙酸菌和嗜丁酸產乙酸菌分別增加了1.97、2.67和1.76倍,而嗜乙酸產甲烷菌減少了43.8%[12]。高溫下C/N降低后,產氫產乙酸菌和嗜氫產甲烷菌分別增加了116.5和89.5%[37](表2)。中高溫環境群落結構隨C/N比降低有相同趨勢的演替,即產酸菌增加和嗜氫產甲烷菌增加。

表2 共消化與單一消化的菌群演替

2.2 水力停留時間

水力停留時間(Hydraulic Residence Time,HRT)作為厭氧消化過程中的關鍵參數,直接決定了底物與微生物接觸時間以及系統有機負荷,從而影響有機物的降解效率。總體上,適當延長HRT可進一步提高甲烷產率[25-26],而縮短HRT意味著提高有機負荷。高負荷下產酸菌將有機物降解產酸后使體系pH值迅速降低,容易形成對產甲烷菌的抑制從而減少堿度的產生、增加酸化的風險[42]。

另外,改變HRT的改變同樣影響微生物群落結構。Esteban-Gutiérrez等[43]發現縮短HRT會抑制產乙酸菌活性,導致丙酸、丁酸積累,從而抑制嗜乙酸型產甲烷菌活性、增加嗜氫產甲烷菌豐度。Peces等[44]縮短HRT后發現,嗜氫產甲烷菌豐度增加、嗜氫產甲烷途徑占比增加,使得嗜氫產甲烷菌與同型產乙酸菌競爭H2時更有優勢,一定程度上緩解了體系乙酸積累速度,但仍存在甲烷產率降低、VFAs積累等現象。這是核心微生物群為應對系統負載沖擊做出的群體響應[45],即增加相關功能菌數量(互營乙酸氧化菌和嗜氫產甲烷菌等)加快VFAs向甲烷的轉化,從而維持群落結構和消化系統的穩定。

3 葡萄酒固體廢棄物與剩余污泥共消化

酒糟是葡萄酒生產過程中主要的固體廢棄物,由未發酵果汁殘留物(莖、梗、籽)、發酵后殘留的沉淀物(廢酵母)和過濾劑(硅藻土)3種類型的物質組成,含有高濃度的K+和總多酚化合物(TPP)[2,22]。眾所周知,剩余污泥的低水解率以及大量積累的重金屬及抗生素限制消化效率。因此,需深入探究擴散限制和抑制因子對酒糟與剩余污泥AcoD體系的影響。

3.1 溫度

眾多研究表明,提高溫度可通過影響功能菌活性、代謝活性、化學平衡、傳質等促進厭氧水解過程[33,46-47]。Da Ros團隊發現[13,28-30],升高溫度后酒糟和剩余污泥AcoD體系容易酸化,且高溫下提高有機負荷后系統也難以成功運行。與高溫AcoD體系相比,中溫環境下產氣量和揮發性固體、COD去除率以及總堿度和氨氮濃度降低。這是因為升高溫度可提高有機物水解率、減少固體廢物量從而增加產氣量。高溫下對有機氮礦化程度高[48],向體系中釋放的NH4+-N濃度較高。但是,在系統穩定性和多酚類化合物去除方面明顯強于高溫環境(表3)。促進水解過程的同時大量的VFAs產生并積累,嚴重抑制產甲烷菌活性。中溫環境下微生物群多樣性高[12,46],各類微生物群分布較為均衡(表2),對多酚化合物去除效果更好。

表3 葡萄酒固體廢棄物與污泥共消化

注:WL:酒糟,CSTR:完全混合反應器,TS為總固體,下同。

Note:WL:wine lee,CSTR:continuous stirred tank reactor,TS is Total Solid, the same below.

3.2 葡萄酒固體廢棄物和剩余污泥中主要的抑制因子

葡萄酒固體廢棄物中高濃度的K+和TPP對厭氧微生物具有毒性。據報道稱,一定范圍的K+濃度可以緩解氨抑制,Lin等[50]發現,添加0.58~0.6 g/L K+能夠緩解高濃度氨對厭氧產酸的影響。但是,酒糟中K+濃度常超過2.5 g/L,容易使產甲烷菌中毒凋亡,而且VFAs積累和甲烷產量降低的現象在中溫環境中更突出[2,22,51]。多酚類化合物通常分為類黃酮類物質和非類黃酮類物質兩大類,前者包括花色苷及衍生物、黃酮醇類和黃烷醇類,后者中含有酚酸類、芪類[52],種類繁多、組分復雜。具有植物毒性的多酚類化合物存在于葡萄皮和籽中,并能抑制產甲烷菌等微生物的酶活性,是共消化的抑制性底物[53-54]。Mkruqulwa等[55]將木薯廢水與酒糟AcoD發現,多酚類化合物抑制了產甲烷菌活性。

剩余污泥積累的重金屬及抗生素。剩余污泥中重金屬的積累主要因胞外聚合物表面的羥基、羧基、磷酰基等基團吸附或螯合金屬離子所致[56]。高濃度重金屬(Ni、Co、和Zn等)能夠與蛋白質氨基酸中的巰氫基和輔酶M中巰基結合導致功能蛋白和關鍵酶失活[57]。抗生素廣泛應用疾病的治療,并隨排污系統最終積累在剩余污泥中[58]。研究表明,抗生素通過抑制細胞組分合成來破壞細菌生長,且產甲烷菌受其影響大,從而導致VFAs積累、甲烷產量降低[59]。

4 基于乙醇建立的DIET

眾多研究表明,厭氧消化涉及的胞外電子傳遞體系包括:MIET(Mediated Interspecies Electron Transfer,間接種間電子傳遞)和DIET 2種機制[17-18,60]。其中,MIET依靠H2和甲酸鹽兩種方式傳遞電子(圖3a),DIET依靠細菌的導電鞭毛(e-pili)和細胞色素(OmcS)傳遞電子。與MIET相比,產酸菌通過DIET無需載體即將電子傳遞給產甲烷菌,傳遞效率更高。同時,對緩解無機離子、有機物的抑制和強化難生物降解物質的降解作用效果顯著[61]。然而,DIET機制難以在常規厭氧消化體系中建立,但有研究表明可添加乙醇或與碳基材料共同來建立DIET機制[18,62]。

4.1 乙醇與剩余污泥共消化建立DIET

針對復雜的脂肪酸或難生物降解有機物存在的降解難、處理時間長等問題。向消化體系添加乙醇進行AcoD是一種有效的方式,這是因為乙醇不僅可作為消化底物,還可作為“刺激因子”促進電活性微生物(產電細菌和嗜電古菌)的富集,從而建立DIET機制強化對物質的去除(圖3b)。Zhao等[63]先將WAS生物發酵(pH值4.0~4.5)增加乙醇濃度,再將發酵液與WAS進行AcoD,產甲烷速率和COD去除率分別增加了25.1%和21.4%,電子傳遞活性提高了6.7倍,并富集出和等菌屬。Li等[64]將餐廚垃圾預發酵產乙醇后再與WAS進行AcoD,甲烷產率增加68%,電子傳遞活性提高2.2倍(表4)。

圖3 種間電子傳遞機制圖

表4 乙醇與不同底物AcoD性能

注:UASB:上流式厭氧污泥床,AFBR:厭氧流化床。

Note:UASB:upflow anaerobic sludge blanket,AFBR:anaerobic fluidized bed reactor.

代謝乙醇產生的能量主要用于微生物生長,細胞物質合成和參與生化反應三個方面。作為典型的DIET產電菌在大多數傳統的厭氧反應器菌群中難以被檢出,但是在乙醇與WAS的AcoD體系中得到富集[61,63]。乙醇可刺激等產電菌分泌能與嗜電古菌形成DIET所需的導電菌絲等細胞物質[68]。代謝乙醇產生的能量(-31.6 kJ/mol)可用于抵消短鏈脂肪酸(丙酸/丁酸等)轉化為乙酸所需能量(+76.2/+48.4 kJ/mol),從而促進VFAs降解和增加甲烷產量[65,69]。

4.2 乙醇與碳基材料協同促進DIET

碳基材料(活性炭、生物炭、石墨烯和碳布等)因其優異的物化性質(存在堿性官能團、具備氧化還原特性、比表面積大等)在維持消化系統穩定及微生物活性和提高種間電子轉移效率等方面發揮重要作用[70-71]。尤其是碳基材料的導電性,可代替/彌補e-pili和OmcS蛋白等細胞物質在產電細菌和嗜電古菌之間建立DIET并富集相關功能菌[70-73](圖 3c,3d)。

Liu等[74]以乙醇為唯一碳源純培養.和.,添加顆粒活性炭發現乙醇代謝速率加快、甲烷產量增加14倍。同時,還發現生物炭[75]、碳布[76]等碳基材料在.和.純培養體系中起到加速乙醇代謝產甲烷的作用。乙醇與碳基材料積極的協同效果在多種廢水處理系統中被體現,Zhao等[77]在處理生物乙醇型發酵產物發現,添加250 g/L 顆粒活性炭后COD去除率和甲烷產量分別增加6.4和8.7%;Zhao等[78]向含乙醇的甘蔗渣中加入100 g/L顆粒活性炭發現,甲烷產量和產甲烷速率分別增加3.1和3.3倍。碳基材料添加后體系常表現出產甲烷速率加快、甲烷產量增加,這得益于碳基材料通過自身的導電性建立DIET從而促進底物降解和提高代謝速率,與乙醇共同縮短DIET功能菌的富集時間和加快底物利用速率。

表5 乙醇與多種碳材料共同促進DIET

5 展 望

5.1 明晰代謝機制

歐洲及南非等傳統產酒國對葡萄酒廢棄物厭氧處理研究起步早,對現有葡萄酒生產廢物與剩余污泥的AcoD研究已初步實現工程化。然而,AcoD效果仍取決于微生物群之間的代謝和協同能力。利用宏基因組和代謝組學等多組學技術深入解析AcoD體系中“菌群-底物”隨C/N比和溫度等運行工況改變的代謝偶聯,為定向培養、調控微生物和強化消化性能提供微觀指導。

5.2 DIET機制的建立和確定

葡萄酒生產廢棄物中含有乙醇且其濃度隨生產工藝和季節變化明顯(圖1c)。因此,AcoD體系中是否能夠富集以和等典型DIET功能菌,并以此建立DIET機制仍有待確定。

與此同時,越來越多的學者認為具備參與DIET的電活性微生物種類遠比已被證實的更廣泛,而且嗜氫產甲烷菌也參與DIET。例如,Rotaru等[81]于2014年進行的與.共培養實驗證實不具備DIET的能力。但是,最近Zheng等人發現屬中一株被命名為“YSL”的菌株可通過DIET與.共培養[82]。Zhao等[83]認為與在乙醇與剩余污泥AcoD體系建立了DIET。然而,嗜氫產甲烷菌主導/參與的體系中難以運用常規手段驗證DIET的存在,需使用宏基因組等高級別方法檢測其代謝途徑來確定是否存在DIET。

5.3 建立共消化模型

厭氧消化模型(Anaerobic Digestion Model No 1,ADM1)通過設定模型組分、建立動力學方程來描述反應過程中參與的生化和物化進程,廣泛用于厭氧消化工藝的設計、模擬和預測[84]。Garcia-Gen等[85]在上流式厭氧污泥床中混合葡萄酒廢水、明膠和豬糞,并基于ADM1模型建立了一套AcoD模型。Ripoll等[86]建立葡萄酒生產廢水與剩余污泥中溫半連續混合消化模型,并由此探究有機負荷對有機物去除、甲烷產量及代謝動力學的影響。但是,采摘季與非采摘季葡萄酒廢棄物的水質、水量差異大,且中、高溫環境中微生物活性也明顯不同,需分別針對性的建立AcoD模型。為進一步闡明不同運行參數對AcoD性能影響機制和提高AcoD效能提供有效的依據。

6 結 論

葡萄酒生產廢棄物與剩余污泥AcoD是一種高效的廢物利用和資源回收策略。國外眾多中試及以上規模的試驗研究證實,通過調控AcoD的運行工況顯著影響系統的效率和穩定性。卻未深入解釋運行工況改變后底物降解與微生物代謝的內在聯系,也無法克服熱力學限制進一步提高消化性能。有待進一步研究的問題是:表征和量化AcoD體系中水解速率、產甲烷活性及相關酶活性或濃度隨運行工況的變化;建立并改進AcoD模型從而更準確地預測AcoD體系中存在的多種相互作用;探索AcoD體系建立DIET機制的可行性并確定最佳條件和各代謝途徑貢獻率。

[1] OIV, 2021. OIV Statistical report on world vitiviniculture[EB/OL]. (2021-07-16)[2022-08-12] https: //www.oiv.int.

[2] Bolzonella D, Papa M, Da Ros C, et al. Winery wastewater treatment: A critical overview of advanced biological processes[J]. Critical Reviews in Biotechnology, 2019, 39(4): 489-507.

[3] Ioannou L A, Puma G L, Fatta-Kassinos D, et al. Treatment of winery wastewater by physicochemical, biological and advanced processes: A review[J]. Journal of hazardous materials, 2015, 286: 343-368.

[4] 戴曉虎. 我國污泥處理處置現狀及發展趨勢[J]. 科學,2020,72(6):30-34.

Dai Xiaohu. Applications and perspectives of sludge treatment and disposal in China[J]. Science, 2020, 72(6): 30-34. (in Chinese with English abstract)

[5] Wu B, Dai X, Chai X. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations[J]. Water Research, 2020, 180: 115912.

[6] Ziemba C, Peccia J. Net energy production associated with pathogen inactivation during mesophilic and thermophilic anaerobic digestion of sewage sludge[J]. Water Research, 2011, 45(16): 4758-4768.

[7] Nabi M, Liang J S, Zhang P Y, et al. Anaerobic digestion of sewage sludge pretreated by high pressure homogenization using expanded granular sludge blanket reactor: Feasibility, operation optimization and microbial community[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104720.

[8] Liu X, Wang Q, Tang Y, et al. Hydrothermal pretreatment of sewage sludge for enhanced anaerobic digestion: Resource transformation and energy balance[J]. Chemical Engineering Journal, 2021, 410: 127430.

[9] Tian X B, Wang C, Trzcinski A P, et al. Insights on the solubilization products after combined alkaline and ultrasonic pre-treatment of sewage sludge[J]. Journal of Environmental Sciences, 2015, 29(3): 97-105.

[10] Li C X, Zhang G Y, Zhang Z K, et al. Alkaline thermal pretreatment at mild temperatures for biogas production from anaerobic digestion of antibiotic mycelial residue[J]. Bioresource Technology, 2016, 208: 49-57.

[11] Zhang D, Feng Y M, Huang H B, et al. Recalcitrant dissolved organic nitrogen formation in thermal hydrolysis pretreatment of municipal sludge[J]. Environment International, 2020,138:105629.

[12] Ripoll V, Garcia-Agabo C, Perez M, et al. Improvement of biomethane potential of sewage sludge anaerobic co-digestion by addition of “sherry-wine” distillery wastewater[J]. Journal of Cleaner Production, 2020, 251: 119667.

[13] Da Ros C, Cavinato C, Pavan P, et al. Mesophilic and thermophilic anaerobic co-digestion of winery wastewater sludge and wine lees: An integrated approach for sustainable wine production[J]. Journal of Environmental Management, 2017, 203: 745-752.

[14] 袁海榮,王奎升,朱保寧,等. 果蔬垃圾與餐廚垃圾混合厭氧消化產氣性能[J]. 農業工程學報,2011,27(增刊1):91-95.

Yuan Hairong, Wang Kuisheng, Zhu Baoning, et al. Anaerobic digestion performances of fruit and vegetable waste and kitchen waste[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp.1): 91-95. (in Chinese with English abstract)

[15] Akassou M, Kaanane A, Crolla A, et al. Statistical modelling of the impact of some polyphenols on the efficiency of anaerobic digestion and the co-digestion of the wine distillery wastewater with dairy cattle manure and cheese whey[J]. Water Science and Technology, 2010, 62(3): 475-483.

[16] 寧靜,朱葛夫,呂楠,等. 碳氮比對豬糞與玉米秸稈混合厭氧消化產沼氣性能的影響[J]. 農業工程學報,2018,34(增刊1):93-98.

Ning Jing, Zhu Gefu, Lv Nan, et al. Effects of C/N ratio on biogas production by anaerobic co-digestion of pig manure and corn straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018,34(Supp.1): 93-98. (in Chinese with English abstract)

[17] Feng D, Guo X B, Lin R C, et al. How can ethanol enhance direct interspecies electron transfer in anaerobic digestion?[J]. Biotechnology Advances, 2020, 52, 107812.

[18] Yin Q D, Wu G X. Advances in direct interspecies electron transfer and conductive materials: Electron flux, organic degradation and microbial interaction[J]. Biotechnology Advances, 2019, 37(8): 107443.

[19] Beck C, Prades G, Sadowski A G, et al. Activated sludge wastewater treatment plants optimisation to face pollution overloads during grape harvest periods[J]. Water Science and Technology, 2005, 51(1): 81-88.

[20] Bustamante M, Paredes C, Moral R, et al. Uses of winery and distillery effluents in agriculture: Characterisation of nutrient and hazardous components[J]. Water Science and Technology, 2005, 51(1): 145-151.

[21] Broome J C, Warner K D. Agro-environmental partnerships facilitate sustainable wine-grape production and assessment[J]. California Agriculture, 2008, 62, 133–141.

[22] Bustamante M A, Moral R, Paredes C, et al. Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry[J]. Waste Management, 2008, 28(2): 372-380.

[23] Montalvo S, Martinez J, Castillo A, et al. Sustainable energy for a winery through biogas production and its utilization: A Chilean case study[J]. Sustainable Energy Technologies and Assessments, 2020, 37: 100640.

[24] Rodriguez L, Villasenor J, Fernandez F J, et al. Anaerobic co-digestion of winery wastewater[J]. Water Science and Technology, 2007, 56(2): 49-54.

[25] Zahedi S, Solera R, Perez M, et al. An eco-friendly way to valorize winery wastewater and sewage sludge: Anaerobic co-digestion[J]. Biomass and Bioenergy, 2020, 142, 105779.

[26] Ripoll V, Garcia-Agabo C, Solera R, et al. Modelling of the anaerobic semi-continuous co-digestion of sewage sludge and wine distillery wastewater[J]. Water Research and Technology, 2020, 6: 1880-1889.

[27] Vlyssides A G, Barampouti E M, Mai S, et al. Wastewater characteristics from Greek wineries and distilleries[J]. Water Science and Technology, 2005, 51(1): 53-60.

[28] Da Ros C, Cavinato C, Pavan P, et al. Winery waste recycling through anaerobic co-digestion with waste activated sludge[J]. Waste Management, 2014, 34(11): 2028-2035.

[29] Da Ros C, Cavinato C, Cecchi F, et al. Anaerobic co-digestion of winery waste and waste activated sludge: assessment of process feasibility[J]. Water Science and Technology, 2014, 69(2): 269-277.

[30] Da Ros C, Micolucci F, Gottardo M, et al. Development and application of an automatic feeding control to manage anaerobic co-digestion of winery wastes[J]. Journal of Cleaner Production, 2017, 161: 75-83.

[31] Zacharof M P. Grape winery waste as feedstock for bioconversions: applying the biorefinery concept[J]. Waste and Biomass Valorization, 2017, 8(4): 1011-1025.

[32] Welz P J, Holtman G, Haldenwang R, et al. Characterisation of winery wastewater from continuous flow settling basins and waste stabilisation ponds over the course of 1 year: Implications for biological wastewater treatment and land application[J]. Water Science and Technology, 2016, 74(9): 2036-2050.

[33] Buitrón G, Francisco J, Ojeda F, et al. Biogas production from a highly organic loaded winery effluent through a two-stage process[J]. BioEnergy Research, 2019, 12(3): 714-721.

[34] Liang X Y, Rengasamy P C, Smernik R, et al. Does the high potassium content in recycled winery wastewater used for irrigation pose risks to soil structural stability?[J]. Agricultural Water Management, 2021, 243: 106422.

[35] Riano B, Molinuevo B, Garcia-Gonzalez M C, et al. Potential for methane production from anaerobic co-digestion of swine manure with winery wastewater[J]. Bioresource Technology, 2011, 102: 4131-4136.

[36] Mader A E, Holtman G A, Welz P J, et al. Treatment wetlands and phyto-technologies for remediation of winery effluent: Challenges and opportunities[J]. Science of the Total Environment, 2022, 807, 150544.

[37] Agabo-Garcia C, Perez M, Solera R, et al. Adaptation of thermophilic sludge-inoculum to co-digestion with Sherry-wine distillery waste-water[J]. Biomass and Bioenergy, 2020, 139: 105628.

[38] Capson-Tojo G, Moscoviz R, Astals S, et al. Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion[J]. Renewable and Sustainable Energy Reviews, 2020, 117: 109487.

[39] Cai Y F, Zheng Z H, Wei L X E, et al. The characteristics of multi-substrates (low and high C/N) anaerobic digestion: Focus on energy recovery and the succession of methanogenic pathway[J]. Bioresource Technology, 2022, 343: 125976.

[40] Zheng Z H, Cai Y F, Zhang Y, et al. The effects of C/N (10–25) on the relationship of substrates, metabolites, and microorganisms in “inhibited steady-state” of anaerobic digestion[J]. Water Research, 2021, 188: 116466.

[41] Pan X F, Zhao L X, Li C X, et al. Deep insights into the network of acetate metabolism in anaerobic digestion: focusing on syntrophic acetate oxidation and homoacetogenesis[J]. Water research, 2021, 190: 116774.

[42] Rui X, Yang Z H, Chen T, et al. Anaerobic co-digestion of municipal wastewater sludge with food waste with different fat, oil, and grease contents: Study of reactor performance and extracellular polymeric substances[J]. Rsc Advances, 2015, 5(125): 103547-103556.

[43] Esteban-Gutirrez M, Garcia-Aguirre J, Irizar I, et al. From sewage sludge and agri-food waste to VFA: Individual acid production potential and up-scaling[J]. Waste Management, 2018, 77: 203-212.

[44] Peces M, Astals S, Jensen P D, et al. Transition of microbial communities and degradation pathways in anaerobic digestion at decreasing retention time[J]. New Biotechnology, 2021, 60: 52-61.

[45] Xu R, Yang Z H, Zheng Y, et al. Organic loading rate and hydraulic retention time shape distinct ecological networks of anaerobic digestion related microbiome[J]. Bioresource Technology, 2018, 262: 184-193.

[46] Yu J, Zhao Y, Zhang H, et al. Hydrolysis and acidification of agricultural waste in a non-airtight system: Effect of solid content, temperature, and mixing mode[J]. Waste Management, 2017, 59: 487-497.

[47] Zeshan, Karthikeyan O P, Visvanathan C, et al. Effect of C/N ratio and ammonia-N accumulation in a pilot-scale thermophilic dry anaerobic digester[J]. Bioresource Technology, 2012, 113: 294-302.

[48] Capson-Tojo G, Moscoviz R, Astals S, et al. Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion[J]. Renewable and Sustainable Energy Reviews, 2020, 117: 109487.

[49] Aylin-Alagoz B, Yenigiin O, Erdincler A, et al. Ultrasound assisted biogas production from co-digestion of wastewater sludges and agricultural wastes: Comparison with microwave pre-treatment[J]. Ultrasonics Sonochemistry, 2018, 40: 193-200

[50] Lin L, Wan C L, Liu X, et al. Anaerobic digestion of swine manure under natural zeolite addition: VFA evolution, cation variation, and related microbial diversity[J]. Applied Microbiology and Biotechnology, 2013, 97(24): 10575-10583

[51] Wu D, Li L, Zhao X F, et al. Anaerobic digestion: A review on process monitoring[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 1-12.

[52] 張欣珂,趙旭,成池芳,等. 葡萄酒中的酚類物質Ⅰ:種類,結構及其檢測方法研究進展[J]. 食品科學,2019,40(15):255-268.

Zhang Xinke, Zhao Xu, Cheng Chifang, et al. Phenolics in wines: A review of categories, structures and detection methods[J]. Food Science, 2019, 40(15): 255-268.

[53] Battista F, Fino D, Erriquens F, et al. Scaled-up experimental biogas production from two agro-food waste mixtures having high inhibitory compound concentrations[J]. Renewable Energy, 2015, 81: 71-77.

[54] Tabassum M R, Xia A, Murphy J D, et al. Seasonal variation of chemical composition and biomethane production from the brown seaweed Ascophyllum nodosum[J]. Bioresource Technology, 2016, 216: 219-226.

[55] Mkruqulwa U, Okudoh V, Oyekola O, et al. Optimizing methane production from co-digestion of cassava biomass and winery solid waste using response surface methodology[J]. Waste and Biomass Valorization, 2020, 11(9): 4799-4808.

[56] Cai Y F, Hua B B, Gao L J, et al. Effects of adding trace elements on rice straw anaerobic mono-digestion: Focus on changes in microbial communities using high-throughput seq-uencing[J]. Bioresource Technology, 2017, 239: 454-463.

[57] Cai Y F, Zheng Z H, Wang X F, et al. Obstacles faced by methanogenic archaea originating from substrate-driven toxicants in anaerobic digestion[J]. Journal of Hazardous Materials, 2021, 403: 123938.

[58] Song Y, Han Z, Song K, et al. Antibiotic consumption trends in China: Evidence from six-year surveillance sales records in Shandong Province[J]. Frontiers in Pharmacology, 2020, 11: 491

[59] Senta I, Kostanjevecki P, Krizman-Matasic I, et al. Occurrence and behavior of macrolide antibiotics in municipal wastewater treatment: Possible importance of metabolites, synthesis byproducts, and transformation products[J]. Environmental Science and Technology, 2019, 53(13): 7463-7472.

[60] Baek G, Kim J, Lee C, et al. Role and potential of direct interspecies electron transfer in anaerobic digestion[J]. Energies, 2018, 11(1): 1-18.

[61] 司哺春,劉凱強,林新宇,等. 直接種間電子傳遞對緩解厭氧消化抑制效應的研究進展[J]. 農業工程學報,2020,36(24):227-235.

Si Buchun, Liu Kaiqiang, Lin Xinyu, et al. Research progress of the relief of anaerobic digestion inhibitions based on direct interspecies electron transfer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(24): 227-235. (in Chinese with English abstract)

[62] Jeong-Hoon P, Hyun-Jin K, Kang-Hee P, et al. Direct interspecies electron transfer via conductive materials: a perspective for anaerobic digestion applications[J]. Bioresource Technology, 2018, 254: 300-311.

[63] Zhao Z Q, Li Y, He J Y, et al. Establishing direct interspecies electron transfer during laboratory-scale anaerobic digestion of waste activated sludge via biological ethanol-type fermentation pretreatment[J]. ACS Sustainable Chemistry Engineering, 2018, 6(10): 13066-13077.

[64] Li Y, Tang Y P, Xiong P, et al. High-efficiency methanogenesis via kitchen wastes served as ethanol source to establish direct interspecies electron transfer during anaerobic Co-digestion with waste activated sludge[J]. Water Research, 2020, 176: 115763.

[65] Zhao Z Q, Zhang Y B, Yu Q L, et al. Communities stimulated with ethanol to perform direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate[J]. Water Research, 2016, 102: 475-484.

[66] Wang C Q, Qiao W L, Chen H, et al. A short-term stimulation of ethanol enhances the effect of magnetite on anaerobic digestion[J]. Applied Microbiology and Biotechnology, 2019, 103: 1511-1522.

[67] Macedo T Z, Okada D Y, Delforno T P, et al. The comparative advantages of ethanol and sucrose as co-substrates in the degradation of an anionic surfactant: microbial community selection[J]. Bioprocess and Biosystems Engineering volume, 2015, 38: 1835-1844.

[68] Ueki T, Nevin A K P, Rotaru A E, et al. Geobacter Strains Expressing Poorly Conductive Pili Reveal Constraints on Direct Interspecies Electron Transfer Mechanisms[J]. mBio, 9(4): e01273-18.

[69] Zhao Z Q, Wang J F, Li Y, et al. Why do DIETers like drinking: Metagenomic analysis for methane and energy metabolism during anaerobic digestion with ethanol[J]. Water Research, 2020, 171: 115425.

[70] Wang C, Liu Y, Gao X, et al. Role of biochar in the granulation of anaerobic sludge and improvement of electron transfer characteristics[J]. Bioresource Technology, 2018, 268: 28-35.

[71] Chowdhury B, Lin L, Dhar B R, et al. Enhanced biomethane recovery from fat, oil, and grease through co-digestion with food waste and addition of conductive materials[J]. Chemosphere, 2019, 236: 124362.

[72] Yu N J W, Guo B, Zhang Y D, et al. Self-fluidized GAC-amended UASB reactor for enhanced methane production[J]. The Chemical Engineering Journal, 2021, 420(2): 127652.

[73] Zhao Z Q, Zhang Y B, Woodard T L, et al. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials[J]. Bioresource Technology, 2015, 191, 140-145.

[74] Liu F H, Rotaru A E, Shrestha P M, et al. Promoting direct interspecies electron transfer with activated carbon[J]. Energy and Environmental Science, 2012, 5: 8982.

[75] Chen S S, Rotaru A E, Shrestha P M, et al. Promoting interspecies electron transfer with biochar[J]. Scientific Reports, 2014, 4: 5019.

[76] Chen S S, Rotaru A E, Liu F H, et al. Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures[J]. Bioresource Technology, 2014, 173: 82-86.

[77] Zhao Z Q, Li Y, Quan X, et al. New application of ethanol-type fermentation: Stimulating methanogenic communities with ethanol to perform direct interspecies electron transfer[J]. ACS Sustainable Chemistry Engineering, 2017, 5(10): 9441-9453.

[78] Zhao Z Q, Zhang Y. Application of ethanol-type fermentation in establishment of direct interspecies electron transfer: A practical engineering case study[J]. Renewable Energy, 2019, 136: 846-855.

[79] Yuan H Y, Ding L J, Zama E F, et al. Biochar modulates methanogenesis through electron syntrophy of microorganisms with ethanol as a substrate[J]. Environmental Science and Technology, 2018, 52(21): 12198-12207.

[80] Lin R C, Cheng J, Zhang J B, et al. Boosting biomethane yield and production rate with graphene: The potential of direct interspecies electron transfer in anaerobic digestion[J]. Bioresource Technology, 2017, 239: 345-352.

[81] Rotaru A E, Shrestha P M, Liu F H, et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy and Environmental Science, 2014, 7: 408-415.

[82] Zheng S L, Liu F H, Wang B C, et al. Methanobacterium capable of direct interspecies electron transfer[J]. Environmental Science and Technology, 2020, 54(23): 15347-15354.

[83] Zhao Z Q, Sun C, Li Y, et al. Upgrading current method of anaerobic co-digestion of waste activated sludge for high-efficiency methanogenesis: Establishing direct interspecies electron transfer via ethanol-type fermentation[J]. Renewable Energy, 2020, 148(C): 523-533.

[84] Maharaj B C, Mattei M R, Frunzo L, et al. ADM1 based mathematical model of trace element complexation in anaerobic digestion processes[J]. Bioresource Technology, 2018, 276: 253-259.

[85] García-Gen S, Lema J M, Rodríguez J, et al. Generalised modelling approach for anaerobic co-digestion of fermentable substrates[J]. Bioresource Technology, 2013, 147: 525-533.

[86] Ripoll V, Agabo C, Solera R, et al. Modelling of the anaerobic semi-continuous co-digestion of sewage sludge and wine distillery wastewater[J]. Environmental Science: Water Research and Technology, 2020, 6: 1880-1889.

Research progress of anaerobic co-digestion of winery waste and residue activated sludge

Yu Lifang1, Wang Ze1, Ma Zhixuan1, Fan Ye1, Jiang Rui1, Yang Jiayi1, Zheng Lanxiang2,3

(1.,,710055,; 2.,,750021,; 3.,750021,)

Anaerobic digestion has been widely used in the disposal of various industrial wastes. However, the load shock and microbial loss have been caused by the high chemical oxygen demand (COD) content, low pH, and seasonal production of winery waste. Meanwhile, the low methane production efficiency cannot fully meet the requirements, particularly for the complex components and low hydrolysis rate of the waste activated sludge. Anaerobic co-digestion (AcoD) can be expected to serve a pivotal disposal way for the winery waste and waste activated sludge, due to the balance nutrients, loss inhibitory effects, high microbial synergy, and methane production. A systematic review was made on the research progress in the AcoD process of the wine wastewater and waste activated sludge. Two systems were selected as the wine wastewater and waste activated sludge, as well as the wine solid waste and waste activated sludge. The main factors of two systems were summarized in the AcoD performance. The wine wastewater was mainly from the processes, such as pressing, pouring, filtering, and cleaning. At the same time, there were also the high COD content, low carbon/nitrogen (C/N) ratio, high generation, and seasonal production. Thus, the optimal mixing ratio was performed to determine the suitable contents of nutrients and C/N ratio. An investigation was also made on the impact of the short-term, large-scale high-concentrations wastewater in the AcoD system during the picking seasons (9~11). Three types of substances were consists of the unfermented juice residues (stems) sediments after fermentation (waste yeast), and filters (diatomaceous earth) in the wine lees, which was the main solid waste in the winery production process. Wine lees were characterized by the low pH, low C/N ratio, high total solids, as well as the high-concentrations of K+ and polyphenols. Generally, the hydrolysis was considered as the rate-limiting step for the WAS in the AcoD process. The approach was applied to raise the temperature for the better hydrolysis and solubilization of organic components. The impact of multiple toxic substances were investigated in the AcoD system. The accumulated antibiotics and heavy metals were considered as the negative for the microbes. Secondly, a summary was made on the ethanol-based direct interspecies electron transfer in the AcoD. The extracellular electron transfer system (EET) was involved two main types of mechanisms: the mediated interspecies electron transfer (MIET) and direct interspecies electron transfer (DIET) in the anaerobic digestion. Compared with the MIET, the DIET was considered to be a more efficient electron transfer pathway through the cell components (e-pili or cytochrome OmcS) without relying on the electron carriers. Although the DIET between the bacteria and methanogens was difficult to establish in the conventional anaerobic digestion system, the establishment of DIET can be promoted by adding ethanol or cooperating with the carbon-based materials. Ethanol was set as the substrate in the AcoD system functions, as the precursor to stimulate DIET by enriching the electroactive microbes for the co-digesting complex organic wastes. Therefore, the ethanol was widely applied as the electron donor in the presence of carbon-based materials to induce the DIET. The carbon-based materials presented the high conductivity to promote the DIET, in order to accelerate the substrates degradation for the less enrichment time of functional microbes. Ultimately, the omics technologies were used as the community-substrate metabolic coupling of the AcoD system. The finding can provide a strong reference to clarify the methanogenesis metabolic pathway for the co-digestion models, in order to characterize the metabolic kinetics in the AcoD process.

wastes; sludge; anaerobic co-digestion; ethanol; direct interspecies electron transfer

10.11975/j.issn.1002-6819.2022.20.023

X7

A

1002-6819(2022)-20-0199-10

于莉芳,王澤,馬芷萱,等. 葡萄酒生產廢棄物與剩余污泥厭氧共消化研究進展[J]. 農業工程學報,2022,38(20):199-208.doi:10.11975/j.issn.1002-6819.2022.20.023 http://www.tcsae.org

Yu Lifang, Wang Ze, Ma Zhixuan, et al. Research progress of anaerobic co-digestion of winery waste and residue activated sludge[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(20): 199-208. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.20.023 http://www.tcsae.org

2022-08-19

2022-10-05

國家重點研發計劃項目(2019YFD1002500);陜西省教育廳重點科學研究計劃項目(22JT024)

于莉芳,博士,副教授,主要研究方向為廢水生物處理。Email:yulifang@xauat.edu.cn

猜你喜歡
體系
TODGA-TBP-OK體系對Sr、Ba、Eu的萃取/反萃行為研究
“三個體系”助力交通安全百日攻堅戰
杭州(2020年23期)2021-01-11 00:54:42
構建體系,舉一反三
探索自由貿易賬戶體系創新應用
中國外匯(2019年17期)2019-11-16 09:31:14
常熟:構建新型分級診療體系
中國衛生(2015年12期)2015-11-10 05:13:40
如何建立長期有效的培訓體系
現代企業(2015年1期)2015-02-28 18:43:18
E-MA-GMA改善PC/PBT共混體系相容性的研究
汽車零部件(2014年5期)2014-11-11 12:24:28
“曲線運動”知識體系和方法指導
加強立法工作 完善治理體系
浙江人大(2014年1期)2014-03-20 16:19:53
日本終身學習體系構建的保障及其啟示
主站蜘蛛池模板: 亚洲国产综合自在线另类| 国产高清不卡| 亚洲av无码人妻| 中文字幕va| 日韩无码黄色| 国产香蕉在线视频| 毛片一区二区在线看| 国产精品午夜电影| 亚洲最大在线观看| 久久精品无码国产一区二区三区| 亚洲AV无码久久天堂| 国产不卡在线看| 亚洲精品黄| 午夜啪啪福利| 爱爱影院18禁免费| 激情成人综合网| 国产激爽爽爽大片在线观看| 亚洲欧美另类视频| 亚洲第一av网站| 97色伦色在线综合视频| 亚洲国产天堂久久九九九| 亚洲AⅤ综合在线欧美一区| AV老司机AV天堂| 国产精品偷伦视频免费观看国产| 欧美日韩国产系列在线观看| 老司国产精品视频91| 国产精选小视频在线观看| 免费激情网址| 美女啪啪无遮挡| 亚洲第一中文字幕| 国产精品播放| 国产乱子伦无码精品小说| 国产真实二区一区在线亚洲| 亚洲国产AV无码综合原创| 在线观看无码av免费不卡网站 | 最新加勒比隔壁人妻| 无码人妻免费| 亚洲高清在线播放| 欧美色图久久| yjizz视频最新网站在线| 国产www网站| 夜夜拍夜夜爽| 中文字幕人成乱码熟女免费| 国产97色在线| 国产精品九九视频| 午夜啪啪网| 欧美成人二区| 日韩麻豆小视频| 亚洲日本韩在线观看| 亚洲综合色婷婷中文字幕| 久久久久久久久亚洲精品| 亚洲精品老司机| 亚洲丝袜中文字幕| 99re精彩视频| 丝袜无码一区二区三区| 91av成人日本不卡三区| 亚洲国产理论片在线播放| 在线观看91香蕉国产免费| 国产91在线免费视频| 精品久久777| 欧美亚洲国产一区| 精品撒尿视频一区二区三区| 国产精品手机在线播放| 狠狠亚洲婷婷综合色香| 国产成人在线无码免费视频| 老司国产精品视频| 精品久久综合1区2区3区激情| 国产一级毛片高清完整视频版| 亚洲无码高清免费视频亚洲| 91成人在线观看| 99ri国产在线| 国产aaaaa一级毛片| 超清无码熟妇人妻AV在线绿巨人| 亚洲人网站| 一级成人a毛片免费播放| 国产久草视频| 国产自在线播放| 久久精品亚洲专区| 这里只有精品免费视频| 狠狠做深爱婷婷综合一区| 国产91熟女高潮一区二区| 国内精品久久人妻无码大片高|