999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

絲素蛋白再生醫學材料對細胞功能調控的研究進展

2022-02-14 09:40:57趙瑞波謝番羅丹丹孔祥東
絲綢 2022年1期

趙瑞波 謝番 羅丹丹 孔祥東

摘要: 絲素蛋白是重要的天然生物高分子材料,具有出色的機械性能、生物相容性、生物降解性,易于化學修飾等特性,成為再生醫學研究中重要的生物材料。近年來,基于絲素蛋白的再生醫學材料在骨、皮膚、神經、胰島等組織修復和再生醫學中被廣泛應用研究,絲素蛋白材料對細胞功能調控作用逐漸被闡明并成為其指導設計和構建醫用絲素蛋白材料結構的重要參考,加速了絲素蛋白材料在臨床醫學上的應用。本文在對絲素蛋白性質與再生醫學關系進行綜述分析的基礎上,總結絲素蛋白基生物材料在骨、皮膚、神經、胰島等再生醫學領域中對細胞及關聯干細胞的功能調控作用,為絲素蛋白材料的生物醫學設計和應用提供新的思路。

關鍵詞: 絲素蛋白;骨細胞;皮膚細胞;神經細胞;胰島細胞;再生醫學

中圖分類號: TS102.1;Q813 ? ?文獻標志碼: A ? ?文章編號: 1001-7003(2022)01-0010-10

引用頁碼: 011102DOI: 10.3969/j.issn.1001-7003.2022.01.002

絲素蛋白(Silk fibroin,SF)是蠶絲、蜘蛛絲等絲蛋白的主要組成。如圖1[1]所示,蠶繭中的蠶絲主要包含兩根絲素蛋白纖維(圖1(a)(b)),纖維外層被絲膠蛋白包裹,內層絲素蛋白纖維由一束絲質超細纖維組成(圖1(c)),在溶解過程中,脫膠絲素蛋白發生剝離,變成直徑幾百納米到1 μm的微纖維(圖1(d))。絲素纖維由直徑約30 nm的絲素納米纖維組成(圖1(e)),絲素納米纖維由平均厚度約0.4 nm和寬度約為20~32 nm的絲素納米帶組成(圖1(f)),絲素納米帶包含β-晶相和非晶相結構蛋白(圖1(g)(h))。此外,SF一級結構包含兩條肽鏈:一條重鏈,相對分子質量約為391 kDa,主要由甘氨酸和丙氨酸疏水重復序列(GAGAGS)(GAGAGY)組成(占總纖維蛋白50%),形成反向平行的β-折疊;另一條為相對分子質量26 kDa的輕鏈和糖蛋白P25組成[2]。SF二級結構以三種形式存在:Silk Ⅰ、Silk Ⅱ和Silk Ⅲ。其中,Silk Ⅰ為水溶性亞穩態溶液,存在α-螺旋結構及Ⅱ型β-折疊[3],另外含有無規卷曲結構;Silk Ⅱ主要由β-折疊組成,結構穩定且不溶于水;而Silk Ⅲ主要為三重螺旋鏈構象,主要存在于水/空氣界面。在蠶絲形成過程中,SF蛋白構象從溶解態Silk Ⅰ轉變為凝固的Silk Ⅱ。目前,通過有機溶劑(甲醇或乙醇)處理、物理剪切、電磁場等仿生策略可實現Silk Ⅰ向Silk Ⅱ的轉化[4],并在骨組織、皮膚組織、神經組織、胰島組織修復再生中具有廣闊的應用前景。

本文主要基于絲素材料特征分析,綜述絲素材料性質與細胞功能調控作用的關系,討論絲素蛋白材料在組織再生醫學中對骨細胞、皮膚細胞、神經細胞、胰島細胞及其他關聯細胞可能發揮的調控作用(圖2)。

1 絲素生物材料的主要特征

生物醫用材料在組織修復及再生醫學中需要具備3個關鍵特征。1) 材料必須具備生物相容性或生物安全性,具有較低的宿主免疫反應,可支持或提高細胞生命活動促進組織修復再生[5-6]。2) 材料具有適當的結構和高的比表面積及良好的通透性,支持氧氣/營養素運輸,實現并維持細胞間的相互作用。3) 對再生修復材料需具有生物降解性或吸收性,降解速率應與組織再生速率相匹配。SF作為天然生物材料,具備優異的生物相容性,可通過交聯或共混調節材料結晶度、存在形式等控制絲素蛋白材料的機械性能和降解速率,在組織工程和再生醫學研究中具有良好的應用潛力。

SF是一種生物相容性優異且免疫原性較低的天然材料,降解產生的氨基酸和多肽可以被細胞吸收利用。絲素蛋白材料的生物相容性取決于蛋白的脫膠提取和純化過程,常將碳酸鈉、氫氧化鈉溶液用于SF的脫膠[7]。脫膠的SF在體內外具有免疫惰性,絲素蛋白材料的體內生物相容性已開展廣泛研究,研究顯示與SF刺激有關的淋巴細胞活化因子IL-1β和炎性環氧合酶-2(COX-2)基因表達水平與膠原蛋白沒有明顯差異[8],可與骨細胞、胰島細胞、成骨細胞、成纖維細胞、內皮細胞、間充質干細胞等細胞高度相容。目前,SF已獲得美國食品藥品監督管理局(FDA)批準用于生物醫學應用,SF基外科手術網已通過了ISO 10993生物相容性和安全性測試并符合醫學標準[9-10]。SF降解后產物為氨基酸,無毒且安全性良好,其二級結構和含量是影響其在體內降解速率的重要因素。SF中β-折疊的含量越高SF降解越慢,再生醫學材料中SF的含量越高,孔徑越小,SF材料在體內的降解速率越小。此外,SF在體內降解也與材料所處的組織微環境密切相關。SF材料皮下植入時,在組織細胞如巨噬細胞的吞噬作用下,抗張強度逐漸降低,并最終緩慢降解[11-12]。在組織修復過程中,較低的降解速率可保持材料長時間的穩定性與機械強度,有利于制備傷口敷料,另外可使得材料的降解與新組織再生/修復的進程協調,具有良好的應用潛力。

機械強度可調節是SF應用于生物醫學領域的另一重要特征,在細胞調控中,材料剛性需與目標細胞剛性匹配,SF基材料剛性及強度變化對細胞分裂及功能分化具有重要作用。此外,絲素蛋白材料剛性會影響材料穩定性和降解性。研究顯示SF二級結構與機械性能密切關聯,可通過調控材料中β-折疊含量調節SF的機械性,形成不同剛性SF溶液、凝膠或支架等,該策略無需交聯即可提供與細胞相匹配的機械性能[13]。此外,研究顯示再生SF支架材料及絲素膜的機械性能與天然絲纖維相比較弱,可通過甲醇或乙醇誘導提高絲素內β-折疊含量增強材料機械性能[13-14],如將SF膜于甲醇中分別浸泡10 min和60 min,其彈性模量可分別增至40 MPa和80 MPa[15]。此外,不同來源SF的機械性能也有差異,與非桑樹來源的SF相比,桑樹來源的蠶絲絲素材料具有更高的機械性能[16]。

除以上性質外,絲素蛋白材料易于加工,可根據功能和應用領域加工成為可注射溶液、纖維材料、薄膜材料、水凝膠材料、支架材料等,并已在硬組織(骨骼)和軟組織(皮膚、神經、胰島)等再生醫學研究中發揮細胞調控的重要作用。

2 絲素蛋白材料影響細胞行為的主要因素

細胞-胞外基質間的相互作用與細胞增殖、遷移、分化和功能調控密切相關。通過調節絲素蛋白材料的性質可模擬細胞外基質的主要功能,并可調控細胞黏附、生長和分化等行為。絲素蛋白材料影響細胞行為的主要因素可概括為三方面:絲素蛋白的氨基酸組成,SF材料的機械強度及材料的拓撲結構如材料尺寸、孔徑、表面特征等[17]。

絲素蛋白由18種氨基酸組成,其中甘氨酸(Gly)、丙氨酸(Ala)和絲氨酸(Ser)含量最多,占總氨基酸量的75%左右,與殼聚糖等氨基聚糖類似材料聯用,可模擬天然細胞外基質。不同蠶絲來源的絲素蛋白在氨基酸組成上有稍許差異,與家蠶絲素蛋白相比,天蠶等非家蠶絲素蛋白含有Arg-Gly-Asp(RGD)三肽序列[18],RGD可以與細胞膜上的整合素特異性結合,誘導整合素相關的信號通路,增強細胞的黏附[19],更好地促進細胞生長。

SF材料的生物力學性能對調節細胞生長、形態、分化、遷移和功能具有重要影響[20]。細胞可以通過感知基質力學性質,將機械刺激轉化為化學信號,刺激/抑制因子的分泌,從而調控細胞分化。機械信號是干細胞遷移及分化的關鍵調節劑[21],如較低的剪應力(0.2 kPa)可以通過SDF-1/CXCR4、Jun N端激酶、p38絲裂原活化蛋白激酶途徑誘導細胞遷移[22]。機體內不同組織剛度差異較大,如大腦的剛度約為01~1 kPa,而骨基質的剛度超過25 kPa[23-25]。研究證實,細胞外基質組成和結構及所產生的機械特性可以誘導干細胞增殖和分化為譜系細胞,如間充質干細胞(MSC)在體外經不同剛性如0.1~1 kPa、8~17 kPa和25~40 kPa材料誘導時會分別分化成神經細胞、肌肉細胞和成骨細胞[23];高的力學性能更利于成骨分化,當力學性能大于25 kPa時,骨髓間充質干細胞(BMSCs)傾向于成骨方向分化,力學性能低于20 kPa時,BMSCs易向神經方向分化[23,26]。此外,絲素材料在胚胎分化中同樣發揮重要作用,Sun等[27]制備的1 kPa左右的絲素蛋白-明膠水凝膠可以誘導小鼠胚胎干細胞分化為外胚層。

SF基生物材料形貌、大小等因素也會影響細胞功能。Bondar等[28]研究顯示170~250 nm絲素纖維可與內皮細胞整合素受體識別,促進細胞黏著斑形成,誘導細胞整合素分泌,顯著提高細胞黏附及生長。在絲素蛋白的支架中,Bidgoli等[29]通過加入納米級(<100 nm)和微米級(6 μm)生物玻璃微球,形成抗壓強度分別為0.94 MPa和1.2 MPa的復合SF支架材料,結合支架內10~50 μm和500~600 μm的分級孔徑可使骨髓間充質干細胞(BMSC)的黏附效率協同提高50%,并顯著促進成骨細胞分化。此外,支架材料的孔徑和表面粗糙度與細胞生長、分化等行為也密切相關,100~300 μm孔徑的SF支架中培養的細胞比其他孔徑中培養的細胞顯示出更強的生長、分化和分泌胞外基質的能力。材料孔徑為100~300 μm的SF支架能使BMSC具有更好的增殖能力,可提高胞外基質的密度,具有促進成骨分化和骨骼愈合的特性[30]。SF表面微結構的改變通過影響細胞黏著斑的形成進而調控細胞行為,Diener等[31]證實SF材料表面粗糙度對成骨細胞(MG63)黏附與生長具有重要作用,相對光滑表面更利于細胞黏附與生長。

3 再生醫學中絲素蛋白調控細胞的應用

3.1 骨細胞調控

絲素蛋白材料在骨組織生物醫用材料研究和轉化潛力巨大。在骨修復中,SF修復材料可誘導骨缺損部位的組織再生,原位降解產物可被新生骨組織細胞吸收。骨組織工程材料中,SF支架材料可誘導成骨細胞增殖、黏附和分化,誘導新生骨血管生成,促進骨組織再生[32-34]。骨組織中皮質骨和松質骨的楊氏模量范圍分別為15~20 GPa和0.1~2 GPa;皮質骨和松質骨的抗壓強度分別為100~200 MPa和2~20 MPa[35],而新骨組織生長最佳支架孔徑為200~350 μm[36-38]。SF支架具有適當的機械性能和空隙率可調性,可根據修復要求不同(如皮質骨和松質骨),合成不同力學性能、不同空隙、不同降解時間的梯度骨修復支架材料,實現體內可控降解并為新骨生長留出空間,為骨細胞生長分化提供仿生微環境,誘導骨細胞的增殖[36-38]。

在骨細胞調控中,絲素蛋白含有的Arg-Gly-Asp(RGD)多肽可有效與細胞外基質中整聯蛋白結合,促進成骨細胞黏附和增殖,提高骨再生能力[39]。與桑樹來源SF相比,非桑樹源SF具有更高比例的RGD多肽[40]。研究證實,非桑樹SF可顯著促進Saos-2成骨細胞的細胞附著和增殖能力,且細胞活力隨SF含量增加而明顯提升[40]。在骨組織修復中,多種信號通路與成骨細胞分化有關,Jung等[41]研究表明絲素蛋白可抑制Notch激活的基因,上調堿性磷酸酶(ALP)的表達量,促進骨髓細胞向成骨分化。此外,機械刺激對成骨細胞信號通路活化發揮重要調控作用,研究顯示2 000 μstrain 0.2 Hz力學刺激能夠激活JNK和ERK 1/2信號通路,可上調成骨樣細胞中護骨素(Osteoprotegerin,OPG)的表達量,促進成骨細胞分化和形成[42]。基于此,將絲素蛋白與磷酸鈣、生物玻璃等無機材料支架可以制備成具有可控的力學性質復合支架材料,以此調控細胞絲裂原活化蛋白激酶通路中ERK和JNK信號通路,調控成骨細胞分化和形成。

此外,當絲素蛋白中甘氨酸和丙氨酸含量超過70%時,降解過程中會形成六肽(GAGAGA和GAGAGY)序列,推測此類六肽序列可能參與抑制Notch并激活MAPK信號通路等促成骨因子分泌和傳遞的重要分子機制,但其調控作用仍需進一步研究。絲素蛋白材料中蛋白相對分子質量與細胞成骨及骨礦化密切相關,研究顯示低相對分子質量絲素蛋白(2~10 kDa),具有良好的親水性并呈現負電性,具有促進生物礦化的作用。采用低相對分子質量絲素蛋白制備支架材料在骨再生過程中顯示出良好的骨誘導特性,具有替代骨形態發生蛋白(BMP2)的應用潛力[43]。絲素蛋白材料硬度等性質對骨細胞進行礦化行為調控也密切相關,并對骨細胞膠原蛋白和骨鈣素的分泌具有顯著調控作用。

3.2 皮膚細胞調控

SF基材料已被廣泛用于皮膚再生治療中,如縫扎結扎絲線、絲素面膜、腹壁重建外科手術網,整形外科中的絲素海綿及聲帶填充物等[44-46]。絲素蛋白可在密封傷口腔輔助傷口愈合時緩慢降解,降解產物可被機體吸收利用。此外,SF還具有保水性和彈性,也利于皮膚組織的修復與再生。

成纖維細胞是皮膚修復調控的重要細胞,具有形成膠原纖維、彈力纖維構筑皮膚基質的功能。SF材料對皮膚損傷止血及修復效果顯著[12],當SF材料與皮膚接觸后,SF蛋白可與纖維蛋白原和血小板結合,誘發凝血級聯反應,發揮止血作用。利用纖維蛋白原、凝血酶與絲素蛋白制備成多孔海綿狀復合材料,將其用作止血基質并可有效協同纖維蛋白原和凝血酶的止血作用[47]。Park等[48]研究顯示皮膚損傷修復時,SF材料可激活細胞MEK、JNK、PI3K信號通路刺激成纖維細胞遷移到傷口部位,同時抑NF-κB信號通路,可提高成纖維細胞內cyclin D1蛋白、纖維連接蛋白、波形蛋白和VEGF的表達量,誘導傷口愈合再生[45]。此外,將纖維細胞(如正常細胞L929、NIH/3T3)和癌細胞(Saos-2、CaSki)封裝到SF水凝膠中,發現SF能顯著抑制Saos-2、CaSki的生長,并維持L929、NIH/3T3的正常生長,推測原因可能與SF凝膠機械性能及微結構有關[49]。血管化是促進組織修復中的關鍵問題之一,設計和開發血管誘導系統對于維持血管生成、促進缺損組織的修復中發揮重要作用。在傷口修復中,基于SF納米纖維負載血管生成因子在刺激缺損區域內的血管生成中具有良好作用,并顯著加快傷口修復進程。在血管化內皮細胞的調控中,SF材料在內皮祖細胞募集激發血管形成中發揮顯著作用,制備絲素蛋白材料時,調節蛋白溶液至pH值為4.0,可消除電荷排斥,以實現更強的親水相互作用,促進蛋白相互組裝,以此制備的絲素材料可顯著提高細胞血管內壁黏附因子CD31分泌,促進傷口血管化[50]。進一步在絲素蛋白材料中添加膠原肽和S-亞硝基谷胱甘肽,可提高細胞外基質富集作用,激活內皮細胞一氧化氮信號通路,在體內可促進新血管形成[51-52],顯示絲素蛋白與細胞外基質在促進血管化調控中具有協同作用。

在皮膚創傷修復調控中,絲素蛋白具有較低的免疫原性,在使用的初始階段會引起輕度炎癥,有利于破壞損傷部位存在的病原體,同時募集免疫細胞刺激其分泌趨化因子和生長因子(IL-1β、IL-6等)[15]。傷口修復過程中,絲素蛋白材料中富含氨基酸能促進傷口細胞活化并形成抗菌微環境;同時激活巨噬細胞JNK-STAT信號通路,介導巨噬細胞形成M2極化,進一步降低損傷組織部位炎癥反應,分泌血管生長因子,并促進成纖維細胞增殖和膠原蛋白分泌組裝,招募成纖維細胞和毛細血管等細胞,加速組織修復再生。在使用后期,SF材料緩慢降解,炎癥反應減弱進一步促進組織修復[53-54]。在大面積皮膚修復中,基于SF材料的人造真皮可有效促進細胞浸潤,血管形成和細胞外基質富集[55]。在Ⅲ級燒傷創面治療研究中顯示,與對照組相比,SF水凝膠材料治療后創傷面血管密度提高約10倍[53],并顯著促進組織中CK 10和CK 14表達,表明SF材料可顯著促進新形成表皮中角質細胞的分化,并增強上皮再生和組織向內生長。此外,在頑固性皮膚損傷修復中,SF材料同樣顯示良好應用潛力,絲素材料在急性傷口和糖尿病傷口愈合初期可快速促進組織形成毛細血管[56]。

3.3 神經細胞調控

神經組織再生醫學材料研究聚焦于材料對神經細胞行為(生長、細胞擴散、遷移和分化)的調控,介導神經細胞及神經干細胞對材料所處微環境的正向響應,實現基于材料調控的神經組織修復是當前面臨的主要挑戰。絲素纖維材料在神經組織修復中具有信號傳導的作用,為神經細胞調控提供契機,并在腦組織工程修復中已顯示良好前景[57-59]。將絲素蛋白微粒填充到腦損傷部位后,可顯著減少腦損傷體積,并在修復14 d后誘導感覺功能的修復[57]。腦組織修復中,絲素蛋白可誘導P12神經細胞黏附因子(E-cadherin和N-cadherin)表達增加,使神經細胞能良好地黏附生長于絲素材料表面[58]。細胞黏附后NCAM可促進神經細胞形態伸長,L-CAM提高神經細胞的遷移,促進神經突出的形成,協同誘導神經細胞的分化成熟。此外,NCAM和L1-CAM與絲素蛋白結合后可加速與其他細胞的相助作用,原位調控神經細胞微環境,加快神經組織修復[59]。細胞外基質中的層黏連蛋白(Laminin,LN)是維持細胞外基質的關鍵結構蛋白,是腦基質的主要結構組成,基于LN蛋白及其衍生多肽已成為神經調控重要因子,如Arg-Gly-Asp(RGD)、Ile-Lys-Val-Ala-Val(IKVAV)、Tyr-Ile-Gly-Ser-Arg(YIGSR)、Arg-Tyr-Val-Val-Leu-Pro-Arg(YVVLPR)和Arg-Asn-Ile-Ala-Glu-Ile-Ile-Lys-Asp-Ile(RNIAEIIKDI)。IKVAV多肽是LN蛋白α鏈C末端的組成結構,可快速激活細胞MAPK/ERK1/2和PI3K/Akt信號通路[60],促進神經干細胞黏附、神經突生長、血管生成和Ⅳ膠原酶表達,可有效促進神經干細胞向神經元分化。基于IKVAV肽修飾的SF水凝膠多孔支架可顯著提升神經干細胞中β-微管蛋白Ⅲ(神經元分化的標志物)和MAP-2(成熟神經元標記物)表達,有效提高神經元分化和成熟,并顯著提升細胞活性[39]。再生絲素蛋白取向對神經細胞分化關系密切,將神經祖細胞(NPCs)與定向和隨機再生絲素蛋白(RSF)支架共培養研究發現:定向RSF和隨機RSF可顯著促進神經祖細胞增殖增,細胞增殖效率分別為143.8%±13.3%和156.3%±14.7%;在神經元分化調控中,定向RSF和隨機RSF介導神經元分化效率為93.2% ±6.4%和3 167.1%±4.8%,且RSF可為NPC提供功能性微環境,可為神經組織工程提供新策略[61]。

SF蛋白凝膠的機械性能對神經干細胞同樣有顯著調控作用,與高模量(1 028、1 735 Pa及19 700 Pa)SF水凝膠相比,183 Pa絲素蛋白水凝膠中的神經干細胞分化和成熟水平顯著提高。IKVAV修飾的絲素蛋白水凝膠是腦組織工程的潛在3D支架。蘇州大學呂強團隊[62-65]研究證實,不同處理的絲素蛋白納米纖維與神經干細胞的增殖、分化和遷移行為密切相關,其分別采用真空水處理、50%甲醇、80%甲醇處理制備了絲素蛋白納米纖維。將不同處理與神經干細胞共培養時發現,與對照組相比,真空水處理、50%甲醇和80%甲醇處理的絲素蛋白納米纖維均能顯著降低神經干細胞的死亡,且真空水處理和50%甲醇處理組可促進神經干細胞向星形膠質細胞的分化,而80%甲醇處理組能抑制神經干細胞向星形膠質細胞的分化,實現了基于絲素蛋白材料對神經干細胞的直接調控。

脊髓損傷與修復中神經軸突的形成是實現脊髓損傷修復的關鍵環節。Qu等[66]將神經元和星形膠質細胞摻入400、800 nm和1 200 nm SF纖維中,與對照組相比,SF材料處理可顯著提高星形膠質細胞遷移效率,誘導神經突排列和伸長,直徑小于1 200 nm SF更有利于腦室下區域衍生神經元發育和成熟,促進神經膠質纖維酸性蛋白表達,400 nm SF處理的神經細胞伸展面積顯著高于1 200 nm SF處理組。由此顯示,SF纖維材料可為脊髓等中樞神經細胞突觸生長提供良好微環境,且有望通過調控纖維尺度實現神經軸突的再生能力。

3.4 胰島細胞調控

胰島細胞是機體重要的分泌細胞,胰島B細胞的移植是治療I型糖尿病重要策略之一。然而,移植胰島中細胞基質網絡和脈管系統會由于手術、機體免疫等因素被破壞,造成胰島細胞功能喪失,仿生構建組織/細胞生長微環境在胰島B細胞功能維持方面顯示良好的應用潛力[5]。SF水凝膠及其多孔支架材料具有與細胞相匹配的彈性模量,在加工過程中,可通過調節絲素蛋白結構類型及氨基酸組成比例等方式形成可注射水凝膠或蛋白支架,該SF水凝膠或蛋白支架可在移植中形成免疫屏障為胰島細胞提供良好的生長空間,SF蛋白材料形成的包裹層具有多孔結構,利于營養物質和氣體運輸(圖3)[67]。此外,絲素蛋白中的RGD序列可以與胰島細胞表面的整合素相互作用,以促進胰島細胞的黏附、增殖,并調節改善胰島微環境和內皮細胞活性促進移植胰島的血管化,對維持胰島素的分泌有積極影響。

目前,基于SF包裹胰島細胞或間充質干細胞用于Ⅰ型糖尿病治療已成為當前研究的熱點,有研究證實絲素蛋白用于構建胰島的ECM[68-69],可增加胰島細胞的存活率及對胰島素的敏感性[70]。研究證實:SF水凝膠包裹小鼠胰島可為胰島細胞提供天然微環境,在體外包封7 d后胰島細胞仍然存活,并維持胰島素分泌以應對葡萄糖刺激。與未包裹細胞相比,包封胰島細胞中胰島素、胰高血糖素等基因表達量增加,而細胞角蛋白19和波形蛋白表達下降,表明經SF凝膠包裹的胰島細胞分化程度降低,可維持更長時間的生理活性和功能。此外,將胰島細胞與MSCs共同包裹時,胰島素分泌可協同提高3.2倍[71],可以改善移植胰島的活性,且包裹胰島與MSCs的小鼠可快速恢復到正常血糖,而僅包裹胰島細胞的處理組小鼠在4 d恢復到正常血糖水平,僅包裹MSCs的治療時間為15 d[72],表明絲素水凝膠包裹可顯著調促進間充質干細胞與胰島細胞的協同作用,并有利于胰島素的分泌。此外,SF水凝膠材料中加入肝素、白介素4、地塞米松等[40,73]促進周圍組織的血管形成,誘發M2巨噬細胞極化作用,可進一步延長移植胰島細胞的生理活性,具有良好的臨床應用潛力。

3.5 其他細胞調控

除骨組織、皮膚組織、神經組織和胰島組織相關的細胞調控,絲素再生醫學材料研究已延伸于多種組織細胞的調控中,如將絲素蛋白膜與人牙周膜成纖維細胞共同培養發現,絲素蛋白膜可顯著提高細胞的黏附力和生存時間[74]。肝細胞經SF膠囊化構筑的活性再生醫學復合材料,可顯著提升肝細胞中葡萄糖、尿素和白蛋白代謝速率[75],為急性肝衰竭肝細胞移植提供具有功能活性的細胞群體。研究顯示,將骨髓間充質干細胞(BMSCs)種植在再生絲素蛋白(RSF)支架上,形成SF支架-干細胞復合體(RSF-MSC),該復合體可使MSCs分化為肝細胞樣細胞,并在小鼠急性肝臟損傷模型中穩定存活3個月,同時促進損傷部位的血管、膽小管樣結構和肝細胞樣細胞的形成,加速肝臟修復,由此顯示在急性肝衰竭或慢性肝損傷的情況下,MSCs復合地RSF載細胞復合材料在組織再生中具有巨大的潛力[76]。此外,SF材料中富含羧基和氨基活性基團,易于對生物分子或配體的功能化修飾,可與抗生素、生長因子和其他生物活性分子交聯,在多功能SF材料研制中具有重要應用潛力[77-79]。

4 結 語

絲素蛋白材料已被廣泛用于組織修復與再生醫學研究中,絲素蛋白具有良好的生物相容性,可發揮積極的細胞調控作用,顯示出良好的修復醫學應用前景,已成為備受關注的醫學生物材料。當前,絲素蛋白生物材料研究已經取得重要的進展,并可以根據需求加工形成顆粒、薄膜、纖維(管狀)、支架、水凝膠、海綿狀等,在組織工程和再生醫學相關細胞的功能調控中發揮重要作用,在未來骨組織、皮膚組織、神經組織、胰島組織等再生醫學中具有廣泛的應用預期。

當前,構筑載細胞的活性醫用材料已成為再生醫學研究的焦點,而絲素蛋白的廣泛研究及其對細胞調控作用,使其成為最具有應用前景的再生醫學材料之一。絲素蛋白材料影響細胞行為的主要因素可概括為以下三方面:絲素蛋白的氨基酸組成,絲素蛋白的生物力學性能,絲素蛋白材料的拓撲結構如尺寸、孔徑、表面特征等。盡管絲素蛋白材料的物理、化學制備和加工方面及相關理化學性質調控研究已積累了很多有價值的成果,然而闡明絲素蛋白及其降解或衍生材料與細胞的相互作用等生物學調控功能,仍然是當前絲素蛋白活性生物材料研究和實用化面臨的挑戰。為此需要對絲素蛋白材料在活體中的形態特征及其細胞功能調控機制開展更深入的研究,加快推動絲素蛋白生物材料實用化及相關醫療器械的開發研究。

參考文獻:

[1]NIU Q Q, PENG Q F, LU L, et al. Single molecular layer of silk nanoribbon as potential basic building block of silk materials[J]. ACS Nano, 2018, 12(12): 11860-11870.

[2]INOUE S, TANAKA K, ARISAKA F, et al. Silk fibroin of bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6 ︰ 6 ︰ 1 molar ratio[J]. Journal of Biological Chemistry, 2000, 275(51): 40517-40528.

[3]ASAKURA T. Structure of silk Ⅰ (bombyx mori silk fibroin before spinning) -type Ⅱ beta-turn, not alpha-helix[J]. Molecules, 2021, 26(12): 3706-3725.

[4]ZHAO M H, QI Z Z, TAO X S, et al. Chemical, thermal, time, and enzymatic stability of silk materials with silk Ⅰ structure[J]. International Journal of Molecular Medicine, 2021, 22(8): 4136-4151.

[5]明津法, 黃曉衛, 寧新, 等. 絲素蛋白材料制備及應用進展[J]. 絲綢, 2021, 58(2): 20-26.

MING Jinfa, HUANG Xiaowei, NING Xin, et al. Preparation and application of silk fibroin materials[J]. Journal of Silk, 2021, 58(2): 20-26.

[6]ZHAO R B, CAO J P, YANG X Y, et al. Inorganic material based macrophage regulation for cancer therapy: Basic concepts and recent advances[J]. Biomaterials Science, 2021, 9(13): 4568-4590.

[7]SAHOO J K, CHOI J, HASTURK O, et al. Silk degumming time controls horseradish peroxidase-catalyzed hydrogel properties[J]. Biomaterials Science, 2020, 8(15): 4176-4185.

[8]EOM S J, LEE N H, KANG M C, et al. Silk peptide production from whole silkworm cocoon using ultrasound and enzymatic treatment and its suppression of solar ultraviolet-induced skin inflammation[J]. Ultrasonics Sonochemistry, 2020, 61: 104803-104810.

[9]TOMEH M A, HADIANAMREI R, ZHAN X. Silk fibroin as a functional biomaterial for drug and gene delivery[J]. Pharmaceutics, 2019, 11(10): 494-515.

[10]KIJANSKA M, MARMARAS A, HEGGLIN A, et al. In vivo characterization of the integration and vascularization of a silk-derived surgical scaffold[J]. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2016, 69(8): 1141-1150.

[11]LI Y W, LIU Z M, TANG Y P, et al. Three-dimensional silk fibroin scaffolds enhance the bone formation and angiogenic differentiation of human amniotic mesenchymal stem cells: A biocompatibility analysis[J]. Biochimica et Biophysica Acta, 2020, 52(6): 590-602.

[12]CHOUHAN D, MANDAL B B. Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside[J]. Acta Biomaterialia, 2020, 103: 24-51.

[13]張媚, 王富平, 魏如男, 等. 絲素蛋白β-折疊含量影響細胞生長的研究[J]. 絲綢, 2019, 56(5): 14-19.

ZHANG Mei, WANG Fuping, WEI Ru’nan, et al. Study on effect of -sheet content of silk fibroin on cell growth[J]. Journal of Silk, 2019, 56(5): 14-19.

[14]CHOI M, CHOI D, HONG J. Multilayered controlled drug release silk fibroin nanofilm by manipulating secondary structure[J]. Biomacromolecules, 2018, 19(7): 3096-3103.

[15]GHOLIPOURMALEKABADI M, SAPRU S, SAMADKUCHAKSARAEI A, et al. Silk fibroin for skin injury repair: Where do things stand[J]. Advanced Drug Delivery Reviews, 2020, 153: 28-53.

[16]GUAN J, ZHU W, LIU B, et al. Comparing the microstructure and mechanical properties of bombyx mori and antheraea pernyi cocoon composites[J]. Acta Biomaterialia, 2017, 47: 60-70.

[17]胡豆豆, 楊明英, 朱良均. 絲素蛋白生物材料對細胞行為的影響[J]. 蠶桑通報, 2016, 47(1): 6-10.

HU Doudou, YANG Mingying, ZHU Liangjun. Influence of silk fibroin-based biomaterials on cell behaviors[J]. Bulletin of Sericulture, 2016, 47(1): 6-10.

[18]ASAKURA T, TANAKA C, YANG M, et al. Production and characterization of a silk-like hybrid protein, based on the polyalanine region of samia cynthia ricini silk fibroin and a cell adhesive region derived from fibronectin[J]. Biomaterials, 2004, 25(4): 617-624.

[19]PATRA C, TALUKAR S, NOVOYATLEVA T, et al. Silk protein fibroin from antheraea mylitta for cardiac tissue engineering[J]. Biomaterials, 2012, 33(9): 2673-2680.

[20]楊亞, 閆鳳祎, 王卉, 等. 絲素蛋白/磷酸八鈣復合材料生物界面的蛋白質吸附和細胞響應[J]. 紡織學報, 2021, 42(2): 41-46.

YANG Ya, YAN Fengyi, WANG Hui, et al. Protein adsorption and cell response on bio-interfaces of silk fibroin/octacalcium phosphate composites[J]. Journal of Textile Research, 2021, 42(2): 41-46.

[21]CHEN L J, HUANG T, QIAO Y N, et al. Perspective into the regulation of cell-generated forces toward stem cell migration and differentiation[J]. Journal of Cellular Biochemistry, 2019, 120(6): 8884-8890.

[22]YUAN L, SAKAMOTO N, SONG G B, et al. Low-level shear stress induces human mesenchymal stem cell migration through the SDF-1/CXCR4 axis via MAPK signaling pathways[J]. Stem Cells and Development, 2013, 22(17): 2384-2393.

[23]ENGLER A J, SEN S, SWEENEY H L, et al. Matrix elasticity directs stem cell lineage specification[J]. Cell, 2006, 126(4): 677-689.

[24]COX T R, ERLER J T. Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer[J]. Disease Models & Mechanisms, 2011, 4(2): 165-178.

[25]BUITRAGO J O, PATEL K D, El-FIQI A, et al. Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties[J]. Acta Biomaterialia, 2018, 69: 218-233.

[26]OH S H, AN D B, KIM T H, et al. Wide-range stiffness gradient PVA/HA hydrogel to investigate stem cell differentiation behavior[J]. Acta Biomaterialia, 2016, 35: 23-31.

[27]SUN W, INCITTI T, MIGLIARESI C, et al. Genipin-crosslinked gelatin-silk fibroin hydrogels for modulating the behaviour of pluripotent cells[J]. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10(10): 876-887.

[28]BONDAR B, FUCHS S, MOTTA A, et al. Functionality of endothelial cells on silk fibroin nets: Comparative study of micro-and nanometric fibre size[J]. Biomaterial, 2008, 29(5): 561-572.

[29]BIDGOLI M R, ALEMZADEH I, TAMJIA E, et al. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior[J]. Materials Science and Engineering C, 2019, 103: 109688-109715.

[30]ZHANG Y F, FAN W, MA Z C, et al. The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7[J]. Acta Biomaterialia, 2010, 6(8): 3021-3028.

[31]DIENER A, NEBE B, LUTHEN F, et al. Control of focal adhesion dynamics by material surface characteristics[J]. Biomaterials, 2005, 26(4): 383-392.

[32]CAI Y R, GUO J M, CHEN C, et al. Silk fibroin membrane used for guided bone tissue regeneration[J]. Materials Science and Engineering C, 2017, 70: 148-154.

[33]DU C L, JIN J, LI Y C, et al. Novel silk fibroin/hydroxyapatite composite films: Structure and properties[J]. Materials Science & Engineering C, 2009, 29(1): 62-68.

[34]JIN Y S, KUNDU B, CAI Y R, et al. Bio-inspired mineralization of hydroxyapatite in 3D silk fibroin hydrogel for bone tissue engineering[J]. Colloids and Surfaces B: Biointerfaces, 2015, 134: 339-345.

[35]BHARADWAZ A, JAYASURIYA A C. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration[J]. Materials Science and Engineering C, 2020, 110: 110698-110716.

[36]BOSE S, ROY M, BANDYOPADHYAY A. Recent advances in bone tissue engineering scaffolds[J]. Trends Biotechnology, 2012, 30(10): 546-554.

[37]WANG C, HUANG W, ZHOU Y, et al. 3D printing of bone tissue engineering scaffolds[J]. Bioactive Materials, 2020, 5(1): 82-91.

[38]MURPHY C M, HAUGH M G, O’BRIEN F J. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering[J]. Biomaterials, 2010, 31(3): 461-466.

[39]SUN W, INCITTI T, MIGLIARESI C, et al. Viability and neuronal differentiation of neural stem cells encapsulated in silk fibroin hydrogel functionalized with an IKVAV peptide[J]. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11(5): 1532-1541.

[40]KUMAR M, GUPTA P, BHATTACHARJEE S, et al. Immunomodulatory injectable silk hydrogels maintaining functional islets and promoting anti-inflammatory M2 macrophage polarization[J]. Biomaterials, 2018, 187: 1-17.

[41]JUNG S R, SONG N J, YANG D K, et al. Silk proteins stimulate osteoblast differentiation by suppressing the Notch signaling pathway in mesenchymal stem cells[J]. Journal of Food and Nutrition Research, 2013, 33(2): 162-170.

[42]楊敏, 黃凌云, 呂澤平, 等. MAPK信號通路在力學刺激對MG-63成骨樣細胞護骨素表達中的作用[J]. 中華骨質疏松和骨礦鹽疾病雜志, 2019, 12(1): 58-64.

YANG Min, HUANG Lingyun, L Zeping, et al. Effects of MAPK signaling pathway on mechanical stimulation-induced osteoprotegrin expression of MG-63 osteoblast-like cell[J]. Chinese Journal of Osteoporosis and Bone Mineral Research, 2019, 12(1): 58-64.

[43]MIDHA S, MURAB S, GHOSH S. Osteogenic signaling on silk-based matrices[J]. Biomaterials, 2016, 97: 133-153.

[44]HORAN R L, BRAMONO D S, STANLEY J R, et al. Biological and biomechanical assessment of a long-term bioresorbable silk-derived surgical mesh in an abdominal body wall defect model[J]. Hernia, 2009, 13(2): 189-199.

[45]CHOUHAN D, DEY N, BHARDWAJ N, et al. Emerging and innovative approaches for wound healing and skin regeneration: Current status and advances[J]. Biomaterials, 2019, 216: 119267.

[46]BROWN J E, GULKA C P, GIORDANO J, et al. Injectable silk protein microparticle-based fillers: A novel material for potential use in glottic insufficiency[J]. Journal of Voice, 2019, 33(5): 773-780.

[47]TEUSCHL A H, ZIPPERLE J, HUBER G C, et al. Silk fibroin based carrier system for delivery of fibrinogen and thrombin as coagulant supplements[J]. Journal of Biomedical Materials Research, 2017, 105(3): 687-696.

[48]PARK Y R, SULTAN M T, PARK H J, et al. NF-κB signaling is key in the wound healing processes of silk fibroin[J]. Acta Biomaterialia, 2018, 67: 183-195.

[49]LAOMEEPHOL C, GUEDES M, FERREIRA H, et al. Phospholipid-induced silk fibroin hydrogels and their potential as cell carriers for tissue regeneration[J]. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14(1): 160-172.

[50]HAN H Y, NING H Y, LIU S S, et al. Silk biomaterials with vascularization capacity[J]. Advanced Functional Materials, 2016, 26(3): 421-436.

[51]FAROKHI M, MOTTAGHITALAB F, REIS R L, et al. Functionalized silk fibroin nanofibers as drug carriers: Advantages and challenges[J]. Journal of Controlled Release, 2020, 321: 324-347.

[52]RAMADASS S K, NAZIR L S, THANGAM R, et al. Type I collagen peptides and nitric oxide releasing electrospun silk fibroin scaffold: A multifunctional approach for the treatment of ischemic chronic wounds[J]. Colloids and Surfaces B, 2019, 175: 636-643.

[53]CHOUHAN D, LOHE T U, SAMUDRALA P K, et al. In situ forming injectable silk fibroin hydrogel promotes skin regeneration in full thickness burn wounds[J]. Advanced Healthcare Materials, 2018, 7(24): 1801092-1801109.

[54]THURBER A E, OMENETTO F G, KAPLAN D L. In vivo bioresponses to silk proteins[J]. Biomaterials, 2015, 71: 145-157.

[55]GUAN G, BAI L, ZUO B, et al. Promoted dermis healing from full-thickness skin defect by porous silk fibroin scaffolds (PSFSs)[J]. Bio-medical Materials and Engineering, 2010, 20(5): 295-308.

[56]CHOUHAN D, JANANI G, CHAKRABORTY B, et al. Functionalized PVA-silk blended nanofibrous mats promote diabetic wound healing via regulation of extracellular matrix and tissue remodelling[J]. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12(3): 1559-1570.

[57]MOISENOVICH M M, PLOTNIKOV E Y, MOYSENOVICH A M, et al. Effect of silk fibroin on neuroregeneration after traumatic brain injury[J]. Neurochemical Research, 2019, 44(10): 2261-2272.

[58]WEI G J, WANG L P, DONG D M, et al. Promotion of cell growth and adhesion of a peptide hydrogel scaffold via mTOR/cadherin signaling[J]. Journal of Cellular Physiology, 2018, 233(2): 822-829.

[59]AN B, TANG-SCHOMER M, HUANG W, et al. Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks[J]. Biomaterials, 2015, 48: 137-146.

[60]LI X W, LIU X Y, JOSEY B, et al. Short laminin peptide for improved neural stem cell growth[J]. Stem Cells Translational Medicine, 2014, 3(5): 662-670.

[61]LI G F, CHEN K, DAN Y, et al. Laminin-coated electrospun regenerated silk fibroin mats promote neural progenitor cell proliferation, differentiation, and survival in vitro[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 190-202.

[62]DING Z Z, HAN H Y, FAN Z H, et al. Nanoscale silk-hydroxyapatite hydrogels for injectable bone biomaterials[J]. ACS Applied Materials & Interfaces, 2017, 9(20): 16913-16921.

[63]SANG Y H, LI M R, LIU J J, et al. Biomimetic silk scaffolds with an amorphous structure for soft tissue engineering[J]. ACS Applied Materials & Interfaces, 2018, 10(11): 9290-9300.

[64]WANG L L, LU G Z, LU Q, et al. Controlling cell behavior on silk nanofiber hydrogels with tunable anisotropic structures[J]. ACS Biomaterials Science & Engineering, 2018, 4(3): 933-941.

[65]LU Q, HU X, WANG X Q, et al. Water-insoluble silk films with Silk Ⅰ structure[J]. Acta Biomaterialia, 2010, 6(4): 1380-1387.

[66]QU J, WANG D, WANG H H, et al. Electrospun silk fibroin nanofibers in different diameters support neurite outgrowth and promote astrocyte migration[J]. Journal of Biomedical Materials Research, 2013, 101(9): 2667-2678.

[67]KUMAR M, NANDI S K, KAPLAN D L, et al. Localized immunomodulatory silk macrocapsules for islet-like spheroid formation and sustained insulin production[J]. ACS Biomaterials Science & Engineering, 2017, 3(10): 2443-2456.

[68]ZHU Y, WANG D Z, YAO X H, et al. Biomimetic hybrid scaffold of electrospun silk fibroin and pancreatic decellularized extracellular matrix for islet survival[J]. Journal of Biomaterials Science, 2021, 32(2): 151-165.

[69]PARK S Y, KIM B, LEE Y K, et al. Silk fibroin promotes the regeneration of pancreatic beta-cells in the C57BL/KsJ-Lepr(db/db) mouse[J]. Molecules, 2020, 25(14): 3259-3266.

[70]CHEN S, MATSUMOTO H, MOROOKA Y, et al. Smart microneedle fabricated with silk fibroin combined semi-interpenetrating network hydrogel for glucose-responsive insulin delivery[J]. ACS Biomaterials Science & Engineering, 2019, 5(11): 5781-5789.

[71]DAVIS N E, BEENKEN-ROTHKOPF L N, MIRSOIAN A, et al. Enhanced function of pancreatic islets co-encapsulated with ECM proteins and mesenchymal stromal cells in a silk hydrogel[J]. Biomaterials, 2012, 33(28): 6691-6697.

[72]HAMILTON D C, SHIH H H, SCHUBERT R A, et al. A silk-based encapsulation platform for pancreatic islet transplantation improves islet function in vivo[J]. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11(3): 887-895.

[73]MAO D, ZHU M F, ZHANG X Y, et al. A macroporous heparin-releasing silk fibroin scaffold improves islet transplantation outcome by promoting islet revascularisation and survival[J]. Acta Biomaterialia, 2017, 59: 210-220.

[74]GEAO C, COSTA-PINTO A R, CUNHA-REIS C, et al. Thermal annealed silk fibroin membranes for periodontal guided tissue regeneration[J]. Journal of Materials Research, 2019, 30(2): 27-45.

[75]NAYAK S, DEY S, KUNDU S C. Silk sericin-alginate-chitosan microcapsules: Hepatocytes encapsulation for enhanced cellular functions[J]. International Journal of Biological Macromolecules, 2014, 65: 258-266.

[76]XU L J, WANG S F, SUI X, et al. Mesenchymal stem cell-seeded regenerated silk fibroin complex matrices for liver regeneration in an animal model of acute liver failure[J]. ACS Applied Materials & Interfaces, 2017, 9: 14716-14723.

[77]NGUYEN T P, NGUYEN Q V, NGUYEN V H, et al. Silk fibroin-based biomaterials for biomedical applications: A review[J]. Polymers (Basel), 2019, 11(12): 1933-1957.

[78]GRABSKA-ZIELINSKA S, SIONKOWAKA A. How to improve physico-chemical properties of silk fibroin materials for biomedical applications? Blending and cross-linking of silk fibroin: A review[J]. Materials, 2021, 14(6): 1510-1540.

[79]RIBEIRO V P, SILVACORREIA J, GONCALVES C, et al. Rapidly responsive silk fibroin hydrogels as an artificial matrix for the programmed tumor cells death[J]. PLos One, 2018, 13(4): 194441-194461.

Abstract: Silk fibroin is an important natural biopolymer material with excellent mechanical properties, biocompatibility, biodegradability, and easy chemical modification of functional groups. It has received extensive attention in biomedical materials and regenerative medicine research. In recent years, silk fibroin-based regenerative medicine biomaterials have shown good application potential in repair and regenerative medicine concerning tissues such as bone, skin, nerves and pancreatic islets. The interactions between these materials and cells are gradually elucidated, which further provides positive feedback to the silk biomedical materials design and preparation, significantly accelerating the clinical translation of silk fibroin-based biomedical materials.

Currently, silk fibroin materials have been manufactured into injectable solution, fiber material, film material, hydrogel material and scaffold material that can mimic the functions of extracellular matrix in the regulation of cell adhesion, proliferation and differentiation. Generally, the biomedical materials in tissue repair and regenerative medicine have several characterizations, such as biocompatibility, low host immune response and good permeability, which could support or enhance cellular life activities to promote tissue repair and regeneration. As an important natural material, silk fibroin has displayed excellent biocompatibility, biodegradability, low immunogenicity, mechanical properties and easy chemical modification of functional groups, presenting high potential in cell regulation for regenerative medicine. The adjustable mechanical strength is another important feature of silk fibroin, which could make its rigidity match thatof cells, revealing an important role in cell division and functional differentiation. In the recent decade, the regulation of silk fibroin material on cell function has been gradually clarified and has become the important cue for design and construction of silk fibroin biomaterials, which accelerates the clinical medicine application of silk fibroin, showing great potential in cell regulation during bone, skin, nerve, pancreatic islets tissue repair and regenerative medicine.

In terms of bone cells regulation, silk fibroin scaffold material can induce osteoblast proliferation, adhesion and differentiation, induce new bone angiogenesis and promote bone tissue regeneration. More importantly, silk fibroin biomaterials could be degraded and absorbed in situ during new bone generations. As for skin cells regulation, silk fibroin-based materials are widely used in skin regeneration treatment, and they have been produced into suture and ligation silk thread, silk fibroin mask, abdominal wall reconstruction surgical net, silk fibroin sponge in plastic surgery and vocal cord filler. Furthermore, silk fibroin could influence the NF-κB associated signaling, and the treatment of fibroblasts with silk fibroin could increase the expression of cyclin D1, vimentin, fibronectin, and vascular endothelial growth factor, which benefits skin regeneration. In the recent decade, silk fibroin materials have further been investigated widely and deeply for nerve tissues engineering. During the process of nerve cell regulation, silk fibroin-based biomedical materials could induce the expression of neural cell adhesion molecules, which could enhance cell adhesion and proliferation. Besides, the regulations for neural cells are always concerned with the silk orientation, which is demonstrated in neural progenitor cells, and the migration efficiency of neurons and astrocytes on different diameters of silk fiber scaffolds has further been verified.

Materials-based encapsulation is an important strategy for cell behavior regulation. Due to the regulatory function and biosafety of silk fibroin material, it is regarded as a feasible cell coating material and is used for islet cells encapsulation in type I diabetes therapy research. Currently, the silk fibroin wrapping pancreatic islet cells or mesenchymal stem cells have become a hot research topic, and it has been confirmed that silk fibroin can be used to construct the ECM-similar structure to support long-term survival and insulin-secretion function of islet cells or islet microtissue in vitro and in vivo, which presents great potential for the islet implant.

At present, silk fibroin is synthesized into many types of biomedical materials according to clinical research demand, which reflectsits great potentials in cell regulations in regenerative medicine. The preparation of cell-carrying active medical materials has become the focus of regenerative medicine research, and the extensive research on silk fibroin and its cell regulation make it one of the most promising regenerative medicine materials. Although much valuable experience has been accumulated in physical and chemical preparation and processing of silk protein materials and in related physiochemical property regulation studies, the elucidation of the biological regulation functions of silk protein and its degraded or derived materials such as the interaction with cells is still a challenge for the research and practicalization of silk protein active biomaterials. Therefore, it is necessary to carry out in-depth biomedical research on the morphological and functional changes over the cellular effect of silk fibroin materials in vivo, which may accelerate the clinical application of silk fibroin-based biomedical materials and development of related medical devices.

Key words: silk fibroin; bone cells; skin cells; nerve cells; pancreatic islet cells; regenerative medicine

主站蜘蛛池模板: 欧洲亚洲欧美国产日本高清| av一区二区三区高清久久| 在线精品欧美日韩| 国产99热| 一级在线毛片| 国产精品视频a| 久久免费视频6| 91精选国产大片| 久久精品国产一区二区小说| 91麻豆精品国产高清在线| 国产噜噜噜| 毛片免费在线| 日韩最新中文字幕| 无码网站免费观看| 伊人久久久久久久| 亚洲欧洲一区二区三区| 欧美成人精品一级在线观看| 亚洲国产无码有码| 国产欧美亚洲精品第3页在线| 国产午夜人做人免费视频中文| 亚洲中文字幕久久精品无码一区 | 成年看免费观看视频拍拍| 欧美性天天| 久久熟女AV| 野花国产精品入口| 五月激激激综合网色播免费| 国产成人久视频免费| 国产午夜在线观看视频| 国产美女在线免费观看| 99尹人香蕉国产免费天天拍| 午夜福利在线观看成人| 第九色区aⅴ天堂久久香| 国产福利免费在线观看| 无码中文字幕加勒比高清| 国产激情无码一区二区免费| 亚洲国产精品日韩专区AV| 新SSS无码手机在线观看| 日韩在线1| 99精品视频在线观看免费播放| 亚洲国产日韩欧美在线| 日本国产精品一区久久久| 国产资源免费观看| 久久99国产精品成人欧美| 亚洲精品中文字幕无乱码| 色香蕉网站| 天天摸天天操免费播放小视频| 欧美区一区| 亚洲美女一级毛片| 欧美伊人色综合久久天天| 免费观看成人久久网免费观看| 亚洲第一黄片大全| 又大又硬又爽免费视频| 亚洲精品777| 国产麻豆福利av在线播放| 国产精品视频观看裸模| 国产一级毛片在线| 亚洲国产成人久久精品软件| 国产成人精品高清在线| 国产尹人香蕉综合在线电影| 91亚洲国产视频| 亚洲第一成年网| 亚洲国产成人超福利久久精品| 欧美精品成人| 在线国产资源| 日本妇乱子伦视频| 91www在线观看| 在线观看精品国产入口| 成人av手机在线观看| 亚洲综合极品香蕉久久网| 2021国产在线视频| 精品福利视频导航| 亚洲天堂2014| 亚洲男人天堂网址| 毛片手机在线看| 99视频精品在线观看| 亚洲bt欧美bt精品| 青青青伊人色综合久久| 日本亚洲国产一区二区三区| 国产老女人精品免费视频| 91久久大香线蕉| a免费毛片在线播放| 中文字幕免费在线视频|