999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一道競賽試題的多角度探索

2022-04-25 13:50:34彭光焰
數理化解題研究·高中版 2022年3期

彭光焰

摘要:本文探究一道上海市高中數學競賽試題的解法,能供教師在教學過程中作參考,能對同學們在學習這類問題有所幫助和啟示.

關鍵詞:賽題;解法;三角形

中圖分類號:G632文獻標識碼:A 文章編號:1008-0333(2022)07-0002-05

1 一道賽題

題目(2012年上海市高中數學競賽試題第9題)如圖1,ABCD中,AB=x,BC=1, 對角線AC與BD的夾角∠BOC=45°,記直線AB與CD的距離為h(x).求h(x)的表達式,并寫出x的取值范圍.

此題短小精悍,內涵十分豐富,解法多樣,命題者真是匠心獨運,是值得研究的一道好題,下面給出本題的多種解法,其中解法7是命題者給出的參考答案,解法11是文[1]所給的,剩余10種解法是筆者給出的.

2 解法探析

2.1 利用解直角三角形

解法1作DF⊥AB于點F,CE⊥AB于點E,如圖2,設DF=CE=t.

則AF=BE=1-t2,

AE=x+BE=x+1-t2,

BF=x-1-t2.

故AC=t2+(x+1-t2)2=x2+2x1-t2+1,

BD=t2+(x-1-t2)2=x2+1-2x1-t2.

又SΔBOC=12OC·OBsin45°

=18AC·BD·sin45°=216AC·BD

=216x4+4x2t2-2x2+1.

而SABCD=tx=4S△BOC,

即xt=24x4+4x2t2-2x2+1,

x2t2=18(x4+4x2t2-2x2+1)

4x2t2=(x2-1)2,

故t=x2-12x,下略.

解法2如圖3,過點B作BE⊥AC于點E,過點D作DF⊥AB于點F,則ΔBEO為直角三角形.

圖3

設OE=BE=m,EC=n

因為BC=1,所以m2+n2=1.

在Rt△ABE中,

AE=AO+OE=2m+n,

x2=AB2=AE2+BE2=(2m+n)2+m2=4m2+4mn+(m2+n2)=4m2+4mn+1,

故m2+mn=x2-14.

又SABCD=2S△ABC,

即DF·x=2×12×AC×BE,

DF·x=m(2m+2n),

故DF=2(m2+mn)x=x2-12x.

因此,h(x)=DF=x2-12x,下略.

解法3如圖3,設AC=2a,BD=2b,

則在Rt△BEO中,OB=12BD=b,BE=EO=22b.

于是EC=OC-EO=a-22b,

AE=AO+EO=a+22b.

在Rt△ABE和RtΔBCE中,由勾股定理,得

x2=(a+22b)2+(22b)2,①

12=(a-22b)2+(22b)2,②

由①-②,得x2-1=22ab. ③

又SABCD=xh(x),

SABCD=2S△ABC

=2×12×AC×BE

=AC×BE=2a×22b=2ab,

所以xh(x)=2ab.④

把③代入④整理,得h(x)=x2-12x,下略.2.2 利用兩角和的三角函數

解法4如圖2,設∠CAB=β,∠ABD=α,則α+β=45°.

設BE=y,CE=n,

則AF=BE=y,DF=CE=n.

在Rt△ACE中,tanβ=nx+y,在Rt△BDF中,tanα=nx-y,

tan(α+β)=tanα+tanβ1-tanαtanβ=nx+y+nx-y1-n2x2-y2=1,

即2nxx2-y2-n2=1. ⑤

在Rt△BCE中,n2+y2=1,

即y2=1-n2.⑥

把⑥代入⑤并整理,得n=x2-12x.

即h(x)=x2-12x.

又12·AB·h(x)=12AB·AD·sin∠BAD

≤12AB·AD.

12·x2-12x·x≤12·x·1,

即x2-2x-1≤0,

1-2≤x≤2+1.

而h(x)>0,即x2-1>0,x>1,x<-1.

所以1

2.3 利用余弦定理

解法5如圖2,設AC=2a,BD=2b,則OC=a,OB=b,并設h(x)=t.

在△BOC中,由余弦定理,得

cos45°=a2+b2-122ab.

即2ab=a2+b2-1.⑦

在Rt△ACE和Rt△BDF中,由勾股定理得,

(x+12-t2)2+t2=(2a)2,⑧

(x-12-t2)2+t2=(2b)2, ⑨CD1544F7-997A-4EC4-9B89-1B9C87C4BFFB

由⑧+⑨,得a2+b2=x2+12.⑩

把⑩代入⑦,得22ab=x2-1.B11

因為SABCD=xt,

SABCD=4S△BOC=4×12absin45°=2ab,

所以xt=2ab=x2-12.

而t=x2-12x,

因此h(x)=x2-12x.

而0

即0

故1

所以h(x)=x2-12x,1

解法6由解法5所設,在△BOC和△AOB中,分別由余弦定理可得,

a2+b2-12ab=22,B12

a2+b2-x22ab=-22,B13

由B12和B13⑧得

22ab=x2-1.B14

又SABCD=4S△BOC,

即tx=2ab.B15

把B14代入B15,得t=x2-12x.

即h(x)=x2-12x,下略.

解法7由平行四邊形對角線平方和等于四條邊的平方和得

OB2+OC2=12(AB2+BC2)=12(x2+1).B17

在△OBC中,由余弦定理,得

BC2=OB2+OC2-2OB·OCcos∠BOC,

所以OB2+OC2-2OB·OC=1.B18

由B17B18,得

OB·OC=x2-122.

SABCD=4S△OBC

=4×12×OB×OCsin∠BOC=x2-12,

故AB·h(x)=x2-12.

所以h(x)=x2-12x.

解法8如圖4,設AO=OC=a,BO=OD=b,h(x)=t.圖4

過點B作BE⊥AC于點E,過點O作OF⊥AB于點F,由Rt△AFO∽Rt△ABE,得OFBE=AOAB.

在Rt△BEO中,∠BOC=45°,

故BE=22b.

又OF=t2,

故t2b=ax.B19

在△BOC和△AOB中由余弦定理,得

12=a2+b2-2ab.B20

x2=a2+b2+2ab. B21

由B21-B20得,

x2-1=22ab.B22

把B19代入B22整理,得

t=x2-12x.

即h(x)=x2-12x.

2.4 利用平面向量

解法9設AB=a,BC=b,

則AC=a+b,DB=a-b,OC=12(a+b),OB=12(a-b).

因為OB·OC=(a-b)·(a+b)4=14(|a|2-|b|2)

=x2-14,

又OB·OC=|OB|·|OC|cos45°,

所以|OB|·|OC|cos45°=x2-14.

即|OB|·|OC|=2(x2-1)4.

則S△BOC=12|OB|·|OC|sin45°=x2-18.

又因為

SABCD=h(x)·x,

SABCD=4SΔBOC=x2-12,

所以x·h(x)=x2-12.

h(x)=x2-12x,下略.

解法10如圖5,以點A為原點,AB所在直線為x軸建立平面直角坐標系.于是B(x,0).

依題意可設C(x+m,n),D(m,n),則O(m+x2,n2).

故OC=(x+m2,n2),OB=(x-m2,-n2).

又AD=BC=1,故m2+n2=1.

所以OC·OB=(x+m2,n2)·(x-m2,-n2)

=x2-m2-n24=x2-14,

|OC|·|OB|=[(x+m2)2+n24]·[(x-m2)2+n24]

=14(x2+1)2-4m2x2.

而OC·OB=|OC|·|OB|cos45°,

x2-14=14(x2+1)2-4m2x2×22,

(x2-1)2=12(x2+1)2-2m2x2,(x2-1)2=12(x2+1)2-2(1-n2)x2

n=x2-12x,

即h(x)=n=x2-12x.

2.5 利用平面解幾何

解法11如圖4所示的平面直角坐標系,于是B(x,0),然后利用直線的到角公式來求解.

設∠DAB=θ (0<θ<π),

于是D(cosθ,sinθ),C(cosθ+x,sinθ),h(x)=sinθ.

再設AC,BD所在直線的斜率分別為k1,k2,且k1,k2均存在.

于是k1=sinθcosθ+x,k2=sinθcosθ-x.

根據到角公式,

tanπ4=k1-k21+k1k2,

將k1,k2代入上式,

整理,得1=-2xsinθ1-x2.

故h(x)=sinθ=x2-12x.

解法12建立如圖6所示平面直角坐標系.由已知條件可知,可設(a,a),B(b,0),則A(-a,-a).

由兩點式可得直線AB的方程為

ax-(a+b)y-ab=0.

則h(x)就是點C到直線AB的距離,即

h(x)=2aba2+(a+b)2.B23

又|AB|2=x2,

即x2=(a+b)2+a2,B24

|BC|2=12,

即1=(a-b)+a2,B25

由B24-B25,得

x2-1=4ab.B26

把B23和B26代入B23得h(x)=x2-12x ,下略.

參考文獻:

[1] 徐慶惠.由一道數學競賽題的幾種解法反思數學教學[J].數學教學,2012(09):10-12.

[責任編輯:李璟]CD1544F7-997A-4EC4-9B89-1B9C87C4BFFB

主站蜘蛛池模板: 午夜少妇精品视频小电影| 精品福利网| 国产女人在线| 国产91丝袜在线播放动漫 | 国产在线日本| 久久青草免费91线频观看不卡| 国产探花在线视频| 中文字幕在线看| 国产99在线观看| 99偷拍视频精品一区二区| 国产丝袜第一页| 色首页AV在线| 中文字幕伦视频| 亚洲三级电影在线播放| 亚洲侵犯无码网址在线观看| 欧美日韩国产系列在线观看| 欧美.成人.综合在线| 久久免费精品琪琪| 精品综合久久久久久97| 亚洲愉拍一区二区精品| 婷婷久久综合九色综合88| 777国产精品永久免费观看| 成人午夜福利视频| 凹凸精品免费精品视频| 在线观看国产精美视频| 久久久久国产精品嫩草影院| 国产女人在线| 亚洲人成在线精品| 日韩av无码精品专区| 日本一区中文字幕最新在线| 亚洲人成日本在线观看| 极品私人尤物在线精品首页| 亚洲Av综合日韩精品久久久| 欧美人在线一区二区三区| 91精品小视频| 免费高清自慰一区二区三区| 99精品视频在线观看免费播放| 91无码网站| 呦女精品网站| 自拍偷拍欧美| 在线视频精品一区| 香蕉久久国产超碰青草| 日本午夜影院| 色久综合在线| 尤物视频一区| 毛片网站免费在线观看| 国产精品专区第1页| 国产欧美在线观看一区| 国产迷奸在线看| 久久窝窝国产精品午夜看片| 亚洲男女天堂| 永久成人无码激情视频免费| 911亚洲精品| 亚洲欧洲日韩综合色天使| 国产全黄a一级毛片| 99视频在线精品免费观看6| 亚洲精品片911| 欧美性精品不卡在线观看| 91福利国产成人精品导航| 久久熟女AV| 成人日韩精品| 精品欧美视频| 99尹人香蕉国产免费天天拍| 色婷婷亚洲综合五月| 日韩精品无码一级毛片免费| 亚洲中文字幕精品| 青草视频久久| 伊人久久婷婷| 九九热在线视频| 国产精品第| 国产乱子精品一区二区在线观看| 久久精品国产国语对白| 青青青伊人色综合久久| 欧美一级大片在线观看| 日本国产一区在线观看| 免费一级毛片在线播放傲雪网| 香蕉在线视频网站| 欧美成人精品在线| 成AV人片一区二区三区久久| 一区二区三区四区精品视频| 国内精品视频区在线2021| 日本91在线|