李 歡 呂天樂 夏裕俊 李永兵
上海交通大學上海市復雜薄板結構數字化制造重點實驗室,上海,200240
電阻點焊技術因其生產效率高、成本低等優勢,一直以來都是薄板結構尤其是汽車車身的主要連接工藝[1]。據統計,通常一臺轎車車身上有4000~6000個焊點,占到整車焊裝總量的90%,焊點質量非常影響車身結構的安全性和可靠性[2]。然而,大規模生產中工況的波動會降低焊接工藝的有效性,造成許多焊接缺陷,飛濺就是較為常見且嚴重的一種。飛濺會導致熔核尺寸減小,焊點質量不合格[3],因此,對飛濺進行管控十分必要。在實際生產過程中,存在各種異常情況,其中邊距工況是最常見的異常情況,它的存在嚴重影響焊接質量[4]。
研究人員發現,飛濺現象的發生總是伴隨著過程信號的突變。WEN等[5]對不銹鋼點焊過程中的動態電阻信號進行了研究,測試了不同焊接工藝條件(邊距工況、裝配不良、軸向偏差等)的影響,結果表明動態電阻信號在飛濺發生時存在瞬時陡降,可以用來判斷飛濺是否發生。FARSON等[6]通過監測電極位移信號,發現其突變量與壓痕深度顯著相關。JI等[7]對鋁合金點焊的電極力和電極位移信號進行了研究,指出在發生飛濺時,電極力和電極位移信號均會發生明顯的下降,此現象反映了熔融液態金屬的飛濺。ZHANG等[8]將電極位移曲線轉化為二值矩陣,通過與概率神經網絡相結合,對焊點質量進行檢測,在小樣本中可快速準確地識別飛濺焊點。LUO等[9]對聲信號進行了研究,提出聲發射信號的振幅可以反映飛濺程度。可以看出,通過過程信號識別飛濺的研究已經比較成熟了。
在飛濺管控方面,傳統方法主要采用人工離線調整焊接參數。較先進的控制方法是采集實時信號并進行反饋控制[10]。HWANG等[11]對比了恒流焊接工藝和多脈沖焊接工藝對 Al-Si 鍍層熱成形鋼點焊的影響,發現多脈沖焊接工藝可以有效抑制飛濺,獲得高質量焊點,但是多脈沖焊接工藝會顯著增加焊接時間。SHIM等[12]對比了恒功率焊接和恒流焊接對飛濺的影響,發現在相同的工況下,恒功率焊接有助于獲得更高的熱輸入,減少由于熱輸入過大導致的前期飛濺,但恒功率焊接缺乏參數設置標準,需要根據不同工況手動調整焊接功率。此外,MIKNO等[13]對比了飛濺時電極力和電極位移的變化,發現由于電極力信號的高動態性,跟蹤電極力信號能更有效地控制焊接過程。然而,ZHOU等[14]指出,跟蹤過程信號是通過增大焊接電流來減弱異常工況影響的,在某些異常工況下,此方法會增加飛濺的可能,并不能保證焊接質量??梢钥闯?,以上飛濺管控策略在特定工況下效果良好,但當工況變化時,有可能失效。SHEN等[15]提出了一種電流短時調幅策略,以應對復雜的焊接工況,實驗結果表明該策略具有較強的魯棒性,但是,在初始電流較大的情況下,該策略會導致調幅次數增多、補時時間變長,顯著增加焊接時間。
本文提出了一種基于量化統計的電流調幅自適應控制策略,以解決電流短時調幅策略中調幅次數多、補時時間長的問題。文章介紹了實驗裝置、焊接工況和測量方法,進行了飛濺特征量的選擇,提出了一種基于量化統計的電流調幅自適應控制策略,具體分析了量化統計調幅策略的各個參數,并通過實驗對新方法與原方法進行了對比和驗證。
本文使用的電阻點焊實驗平臺包括FANUC R2000iB型六軸電阻點焊機器人、CENTERLINE C型伺服焊槍、MEDAR 6000s 型中頻直流(MFDC)焊接控制器(逆變頻率1 kHz)以及電流、電壓、電極力和位移等過程信號的測量傳感器,如圖1所示。傳感器的所有輸出信號由數據采集設備以500 kSPS的采樣頻率進行采集,然后顯示在計算機上。由于傳感器安裝位置遠離電極,故信號采集不會干擾焊接過程。焊接過程使用端面直徑6 mm的電極帽,冷卻水流量為11.3 L/min。
圖1 C型伺服焊槍及傳感器示意圖Fig.1 Schematic diagram of the C-type servo gunequipped with multiple sensors
在電阻點焊工藝中,兩個或兩個以上的板材被一對電極以電極力F(由安裝在下電極臂上的KISTLER表面應變傳感器測量,精度為2%)壓住,在電壓U(由接在上下電極上的屏蔽雙絞線測得)的作用下,焊接電流I(由掛在下電極臂上的一個 MEATROL Rogowski 線圈測量,精度為0.5%)通過板材產生焦耳熱,在板間形成熔核。根據歐姆定律,動態電阻R計算如下:
(1)
其中,Rg為伺服焊槍的基值電阻,即兩電極之間不放置板材時的電阻。此外,由安裝在線性導軌上的伺服編碼器HEIDENHAIN(標稱分辨率0.5 μm)測量移動電極位移Sm。
根據文獻[16],固定電極(上電極)位移Sf與F成正比,則兩電極之間的相對位移S計算如下:
(2)
其中,Kg為伺服焊槍固定電極臂的等效剛度系數。根據文獻[16],為了獲得Kg,需要將焊槍閉合、兩電極在不同電極力下接觸,此時移動電極位移Sm可以近似替代固定電極位移Sf,從而獲得固定電極位移Sf和電極力F關系,通過曲線擬合即可測定等效剛度系數Kg,本實驗中測定Kg為 4.54 kN/mm。
圖2為實驗所用試樣尺寸及邊距工況示意圖。試樣尺寸均為138 mm×38 mm。邊距工況表示焊點靠近較長側的邊緣,本研究中設置邊緣距離為3 mm。
圖2 試樣尺寸及邊距工況示意圖Fig.2 Specimen dimensions and Edge proximitycondition diagram
由于車身連接中存在不同的板材組合,為了提高管控策略的實用性,實驗選取了兩種不同厚度、不同強度的板材:BUSD和DP590,它們的化學成分及力學性能如表1、表2所示。
表1 BUSD和DP590的化學成分(質量分數)
表2 BUSD和DP590的力學性能
實驗設計了2種方案,表3給出了邊距工況下這2種方案的焊接參數。
飛濺金屬質量是衡量飛濺程度最直接、最有效的特征量,實驗中通過離線剝離的方式來確定各個焊點的飛濺程度。根據之前的研究[17],飛濺金屬量測量過程如下:
表3 由兩種板材組成的焊接方案
(1)使用精度為 1 mg的數字天平稱量焊接前的板材質量m0;
(2)使用數字天平稱量焊后工件質量,記為m1。因此發生飛濺時飛出液態金屬的質量Δme可計算如下:
Δme=m0-m1
(3)
(3)剝離工件,剔除殘留的飛濺金屬,再次使用數字天平稱量板材質量m2。因此飛濺金屬總質量Δm可計算如下:
Δm=m0-m2
(4)
異常焊接條件會引起熔核不對稱生長,因此,如圖2所示,需要測量兩個正交平面上的熔核直徑和熔核厚度,并采用平均熔核直徑Dn表征熔核尺寸:
(5)
其中,DL和DW分別代表長度和寬度方向的熔核直徑,平均熔核厚度Hn計算方法同理。為保證測量精度,都進行了5次重復實驗。壓痕深度HI的計算公式如下:
HI=2h-Hn
(6)
其中,h為板材厚度。
圖3所示為邊距工況下以7kA電流焊接DP590板材時的過程信號,可以看出,飛濺時刻texp在145 ms左右,此時電阻信號突變量為ΔR,位移信號突變量為ΔS,與文獻[5-6]的研究結果一致,說明電阻信號和電極位移信號均適用于識別飛濺。
圖4a、圖4b為邊距工況下以8kA電流焊接DP590板材發生飛濺時電阻信號突變量ΔR與飛出金屬的質量Δme和飛濺金屬的總質量Δm的關系圖。圖4c、圖4d為同種工況下發生飛濺時位移信號突變量ΔS與飛出金屬的質量Δme和飛濺金屬的總質量Δm的關系圖。由圖4a、圖4b可以看出,ΔR與Δme、ΔR與Δm之間均沒有明確的相關性,即不能通過電阻信號突變量ΔR評估飛濺程度。從圖4c、圖4d可以看出,ΔS與Δme之間也沒有明確的相關性,而ΔS與Δm之間存在線性關系,擬合的斜率為0.207,線性相關系數R2為0.955,均方根誤差(RMSE)為5.69,線性度較好,這一結果與XIA等[17]的研究結果一致,說明位移信號突變量ΔS可作為飛濺量化評價的重要指標。
圖3 恒流模式下的電阻和位移信號 Fig.3 Resistance and displacement signals ofconstant current
(a)ΔR與Δme的散點圖 (b)ΔR與Δm的散點圖
(c)ΔS與Δme的散點圖 (d)ΔS與Δm的散點圖圖4 過程信號突變量與飛濺金屬質量的散點圖Fig.4 Scatter diagram of process signal suddenchange and expulsion metal quality
另外,通過金相觀察實驗,分析了飛濺發生前后的熔核尺寸,結果如圖5所示。由圖5a可以看出,飛濺發生在78 ms,對應的位移信號突變量ΔS為306 μm。圖5b為飛濺前1 ms(77 ms時)和飛濺后1 ms(79 ms時)的熔核形貌,可以看出,在電極力的作用下發生了飛濺,熔核內部出現空腔,飛濺發生前后熔核直徑基本不變,熔核厚度從2.6 mm減小到2.28 mm,減小了320 μm,與位移信號突變量ΔS近似相等,再次驗證了位移信號突變量ΔS可作為飛濺特征量。
(a)飛濺前后位移曲線對比
(b)熔核形貌(mm)圖5 飛濺發生前后的位移信號及熔核形貌Fig.5 Displacement signal and metallographic diagrambefore and after expulsion
因為通過電極位移信號可以有效地在線識別飛濺和量化飛濺程度,故本文采用位移信號突變量作為飛濺特征量進行統計分析,進而開展基于量化評價的電流調幅,實現飛濺的自適應控制,以適應快節拍復雜多變的焊接工況。
基于量化評價的調幅策略包含飛濺程度評估、自適應電流調幅、恒功率能量補充三個部分。飛濺程度評估通過電極位移信號識別飛濺,計算飛濺特征量ΔS,統計出一定周期內的平均飛濺時刻tavg和平均飛濺特征量ΔSavg。自適應電流調幅即根據統計結果對參數進行自適應選擇,進而實現不同工況下的適應性。恒功率能量補充即在電流調幅后,通過補充一定的焊接時長來彌補由于電流調幅導致的熱輸入下降,從而保證熔核質量。
圖6所示為邊距工況下以7kA電流焊接DP590時的飛濺程度評估情況。由圖6b可以看出,飛濺特征量ΔS在均值ΔSavg附近波動,分布比較集中,故可認為同一工況下,飛濺特征量ΔS基本一致。圖6c所示為飛濺時刻texp的統計圖,計算分析texp的分布可得,均值tavg為91.7,方差σ2為7.01,峰度系數為-0.59,偏度系數為0.0023。由于峰度系數與偏度系數的絕對值均小于1,故可認為飛濺時刻texp呈正態分布,即texp~N(91.7, 7.01)。最終將統計得到的正態分布參數及平均飛濺特征量ΔSavg記錄下來。
(a)位移信號曲線
(b)ΔS統計圖 (c)texp統計圖圖6 邊距工況下DP590板材的飛濺統計示意圖Fig.6 Expulsion statistics diagram of DP590 sheetunder edge proximity condition
異常工況下焊接時,短時間內熱輸入過大導致熔核增長過快,當熔核突破塑性環時就會發生飛濺。其中,短時間內熱輸入越大,飛濺程度越嚴重,位移信號突變量越大。電流調幅的思想是在飛濺前降低電流以減少熱輸入,從而抑制飛濺,減小位移信號突變量。在調幅過程中,存在3個參數,即調幅時刻t0,調幅時長td,調幅系數α,其中t0確定調幅的時刻,td與α確定調幅的力度。如圖7所示,調幅時刻t0為0,根據電流調幅的思想,下次焊接時,區間[tavg-td-t0,tavg-t0]內的電流為初始電流的α倍。
圖7 電流調幅示意圖Fig.7 Schematic diagram of current amplitude modulation
自適應電流調幅即根據飛濺程度和飛濺概率,采用模糊控制算法確定調幅參數。
(1)調幅時刻t0。由圖6c統計結果可知,飛濺時刻texp均落在區間[tavg-3σ,tavg+3σ]內,且根據正態分布的性質可知,飛濺時刻texp落在區間[tavg-3σ,tavg+3σ]內的概率為99.7%,所以若飛濺時刻落在區間[tavg-3σ,tavg+3σ]內,則認為texp~N(tavg,σ2)。如果飛濺時刻texp服從N(tavg,σ2)時texp不在區間[tavg-td-t0,tavg-t0]內,可能是由于隨機波動導致飛濺時刻提前,則飛濺時刻t0增加σ。t0初始值為0且最大不超過3σ。
(a)td與ΔS的關系圖
(b)α與ΔS的關系圖圖8 調幅時長與調幅系數對飛濺量的影響Fig.8 Effects of amplitude modulation duration andamplitude modulation coefficient on expulsion
(2)調幅系數α與調幅時長td。為了探究調幅系數α和調幅時長td對飛濺抑制的影響,以8kA電流對DP590板材進行了焊接,調幅時刻t0為0。如圖8a所示,調幅系數α為0.5,不斷增大調幅時長td時,飛濺特征量ΔS總體趨勢下降,但波動較大,下降不明顯。圖8b中,調幅時長td為20 ms,隨著調幅系數α的不斷減小,飛濺特征量ΔS不斷減少,且波動較小。實驗結果說明調幅系數α對ΔS的影響較大,調幅時長td對ΔS的影響較小。因此將調幅系數α作為主要研究對象。
根據SHEN等[15]的研究,飛濺的發生是由于熔核增長過快,熔核尺寸突破塑性環造成的。圖9a為邊距工況下以8kA初始電流對DP590板材進行焊接的電流示意圖,實驗采用0.35~0.95的調幅系數α,調幅時刻t0為0,調幅時長td為20 ms。對調幅后的焊點進行金相分析,測量其熔核直徑Dn與塑性環直徑DC,如圖9b所示。由圖9c可以看出,隨著調幅系數α的增大,塑性環與熔核直徑均不斷變大,其中塑性環尺寸增加比較均勻,而熔核在小電流下增長緩慢,電流變大時急劇增長,說明熔核對電流的敏感度比塑性環大。小電流時,熔核增長速度小于塑性環,電流增大時,由于熔核對電流的敏感度更高,導致熔核增長大于塑性環,因此,當調幅系數α取0.65時,熔核與塑性環之間的尺寸差達到最大值,為0.24 mm。
(a)焊接電流示意圖
(b)熔核直徑Dn及塑性環直徑DC測量示意圖
(c)調幅系數與熔核、塑性環尺寸及尺寸差的關系圖9 調幅系數與塑性環及熔核尺寸的關系圖Fig.9 Relationship schematic diagram of amplitudemodulation coefficient and corona and nugget size
在實際調幅的過程中,為了最大程度地抑制飛濺,需要不斷調整調幅系數α,使得塑性環與熔核之間的尺寸差達到最大。為了減少調整次數,提高調幅效率,采用基于飛濺量化評價的控制策略——模糊控制算法——以實現自適應調幅過程。算法輸入為飛濺特征量ΔS和飛濺概率p。根據圖6b統計結果,以7kA電流焊接(0.8+0.8)mm DP590板材時,平均飛濺特征量ΔSavg為193.5 mm,約為板材總厚度的12%。因此可將飛濺特征量ΔS分為三個等級,ΔS在板材厚度8%~12%范圍內為M,大于12%為L,小于8%為S。飛濺概率p分為三個等級,p在0~0.3之間為S,在0.3~0.7之間為M,在0.7~1之間為L。表4所示為模糊控制規則表,其中不同程度的飛濺特征量ΔS和飛濺概率p對應不同的初始調幅系數α。經過電流調幅后,若仍發生飛濺,則α自減0.1,α不小于0.5。
由圖8a可以看出,隨著調幅時長td不斷增大,飛濺特征量ΔS雖波動較大,但總體趨勢仍在下降,即調幅時長td對飛濺的影響較小。在調幅的過程中,當α為0.5時仍發生飛濺,可適當增加調幅時長td,直到飛濺完全消除。td初始值為σ,每次增加σ。
由于短時調幅是通過在飛濺前降低電流強度的方式來管控飛濺的,在相同焊接時長的情況下會導致熱輸入的下降,為了保證熔核質量,需要增加能量補充機制。由焦耳定律可知:
E=I2Rt
(7)
將式(7)離散化:
(8)
其中,Ii和Ri分別為i時刻的電流和電阻值。
為了保證總體的熱輸入,需要針對調幅部分進行能量補充。通常,電阻點焊中受控參數為電流、功率等電學相關量。SHEN等[15]研究表明,采用原焊接電流進行能量補充會導致飛濺時刻后移,無法完全消除飛濺。另外,SHIM等[12]指出,恒功率焊接模式可有效抑制飛濺。因此,本文根據前期焊接能量計算平均功率Pavg作為后期補充能量的功率:
(9)
則補時時長ta的計算公式如下:
(10)
其中,ΔE為調幅前后的能量差。不同時刻焊接電流Ia的計算公式如下:
(11)
其中,Ri-1為前一毫秒的電阻值。
為了更直觀地解釋電流調幅和能量補充的過程,圖10展示了參數的具體選擇過程,圖10a為初始電流波形。首先根據電極位移信號識別飛濺時刻texp,計算飛濺特征量ΔS,對飛濺量進行統計,計算平均飛濺時刻所屬正態分布的參數tavg與σ2,平均飛濺特征量ΔSavg及飛濺概率p。圖10b為首次調幅電流示意圖,初始化調幅參數t0=0,td=σ,同時根據模糊控制規則確定參數α,以α取0.6為例,根據當前參數再次進行焊接,若仍發生飛濺,則將α逐次遞減0.1。如果α為0.5時飛濺仍存在,則將調幅時長td增加σ,直至飛濺完全消除。在恒功率補時階段,根據前期焊接能量計算平均功率Pavg,并根據能量差計算補時時間ta、補時電流Ia,最終電流及功率示意圖見圖10c。
(a)初始電流波形(b)基于量化統計的首次調幅電流(c)最終電流和功率示意圖圖10 電流及功率調節示意圖Fig.10 Schematic diagram of current andpower regulation
圖11為基于量化統計的電流控制策略流程圖。該策略針對飛濺情況進行調節,且初始統計階段不進行調幅。在調幅的過程中,通過對位移信號突變量的統計,采用模糊控制算法確定調幅參數,進行前期焊接,以實現自適應電流調幅。同時統計前期焊接的總能量,計算平均功率和補時時間,對后期補時階段進行恒功率模式焊接,實現自適應能量補充。
注:初次焊接時不進行調幅和補時(a)基于量化統計的控制方案
(b)基于量化統計的控制流程圖圖11 基于量化統計的調幅控制圖Fig.11 Control diagram of amplitude modulationstrategy based on quantitative statistics
圖12為邊距工況下以8kA初始電流對DP590板材進行焊接的過程信號示意圖,可以看出,通過采用基于量化統計的自適應電流調幅策略,最終調幅系數α為0.5,調幅電流4kA。由圖12a可以看出,與SHEN等[15]短時電流調幅策略相比,采用量化調幅的恒功率能量補時策略后,補時時長由40 ms減至24 ms,減少了40%。由圖12b可以看出,采用恒功率模式的補時能量比短時調幅的補時能量少20 J。
(a)短時調幅與量化調幅的電流對比圖
(b)短時調幅與量化調幅的能量對比圖圖12 短時調幅和量化調幅的電流與能量對比圖Fig.12 Current and energy comparison diagram of shorttime amplitude modulation and quantitativeamplitude modulation
為了保證量化統計策略下的焊接質量,對比了邊距工況下恒流模式與基于量化統計的調幅策略在兩種板材下的結果。
表5所示為2種方案下飛濺特征量ΔS、平均熔核直徑Dn、平均壓痕深度HI的統計結果,表中“量化”表示基于量化統計的調幅策略,“恒流”表示邊距工況下恒流模式。可以看出,相比于恒流焊接,基于量化統計的調幅策略均有效抑制了飛濺,同時平均熔核直徑增加0.67 mm,平均壓痕深度減少0.24 mm。量化調幅通過在飛濺前降低電流,使得熔核與塑性環的尺寸差達到最大,從而消除飛濺,同時根據焊接功率進行補時,保證焊接質量。實驗結果表明,采用量化調幅恒功率策略的補時能量雖然比短時調幅恒流策略的補時能量少20 J,但仍能有效保證焊接質量。
表5 邊距工況下2種方案的控制結果
另外通過實驗對比了邊距工況下短時電流調幅策略與基于量化統計的調幅策略在不同板材下的調整情況,結果如表6所示,表中“量化”表示基于量化統計的調幅策略,“短時”表示邊距工況下短時電流調幅策略??梢钥闯?,基于量化統計的調幅策略由于采用模糊控制的自適應方法,相比于短時電流調幅可以更快速地確定調幅系數,從而有效縮短調幅時間,減小調幅次數。同時由于能量補充時采用恒功率策略,在抑制飛濺的同時將補時時長減少了75%,有效提高了焊接效率。
表6 邊距工況下2種方案的最終調整時間
本文提出一種基于電極位移信號的飛濺量化自適應控制策略來抑制異常工況下不同板材的飛濺情況。通過對BUSD和DP590兩種板材進行實驗和數據分析可以得出以下結論:
(1)相比于動態電阻信號,電極位移信號更適用于識別及量化飛濺。飛濺金屬總質量與動態電阻信號的突變量無關,僅與電極位移信號的突變量線性相關。飛濺發生前后熔核直徑基本不變,熔核厚度的減少量與電極位移信號的突變量基本一致,即電極位移信號突變量可作為飛濺特征量來量化飛濺程度。
(2)提出基于量化統計的電流調幅控制策略,制定了以飛濺特征量和飛濺概率為輸入,調幅系數、調幅時長和調幅時刻為輸出的模糊控制策略。該方法根據飛濺程度確定調幅參數,提高調幅效率。實驗表明,與傳統短時電流調幅策略相比,該方法可將調幅次數減少50%。
(3)提出基于恒能量與恒功率補時策略,以調幅前后的能量差為補時總能量,以前期功率為補時功率,實現對焊點能量的補充。補時階段動態電阻減小,恒功率模式下補時焊接電流增大,從而減少補時時間。實驗表明,與傳統短時電流調幅策略相比,該方法可將補時時長減少75%左右,有效提高生產效率。