999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

多功能超疏水紡織品的制備及應用研究進展

2022-05-23 22:28:32李慧慧王群賈偉科王際平
現代紡織技術 2022年3期

李慧慧 王群 賈偉科 王際平

摘要:在實際生產和生活中,具有特殊潤濕性的多功能紡織品引起人們越來越多的關注,“荷葉效應”的提出推動了國內外研究者對材料表面特殊浸潤性的進一步探究。本文針對在材料表面通過構造微納米結構來調節特殊浸潤性所涉及的方法進行了歸納,綜述了材料超疏水性能的基本原理及其在自清潔、油水分離、耐腐蝕(如耐酸、堿、鹽溶液)等方面的應用,總結了材料超疏水表面構建過程中存在的一些問題,并展望了超疏水材料的應用前景。

關鍵詞:特殊潤濕性;超疏水;微納結構;低表面能;功能性紡織品

中圖分類號:TS195.6文獻標志碼:A文章編號:1009265X(2022)03003908

Recent advances in the fabrication and application of

multifunctional superhydrophobic textiles

LI Huihui, WANG Qun, Jia Weike, WANG Jiping

Abstract: Multifunctional textiles with special wettability have attracted more and more attention for their potential application, and the proposal of "lotus effect" has furtherly attracted researchers' interests in the development of the special wettability. This paper firstly summarized methods forconstructing micronano structures on fabrics to adjust the special wettability, then made a representation for the superhydrophobic theory and applications in selfcleaning, oilwater separation and corrosion resistance (such as resistance to acid, alkali and salt solution). Finally, we summarized the critical issues existing in constructing superhydrophobic coatings and prospected their applications in the future.

Key words: special wettability; superhydrophobic; micronano structure; low surface energy; functional textiles

近年來,紡織品表面特殊浸潤性調控因其實用價值越來越引起國內外研究者的關注。因受到自然界生物的啟發,如壁虎的角、蝴蝶翅膀等,人們聯想到了材料表面仿生超疏水涂層的設計[12]。Wang等[3]通過研究自然界生物的微觀結構,揭示了荷葉表面超疏水特性主要歸因于葉片表面的微納凸起結構及蠟質晶體。并將這種特性定義為材料表面的“超疏水”需滿足一定的條件,即水靜態接觸角大于150°,滑動角小于10°[4]。“荷葉效應”啟發了人們基于各種基材表面構造微納結構的思路,并結合低表面能材料的整理手段,制備出具有超疏水特性的涂層,以滿足不同領域的應用需求。材料表面超疏水涂層的構造方法有很多,如等離子體處理[5]、水熱反應[6]、靜電逐層組裝[7]、溶膠凝膠[8]、接枝涂層及靜電紡絲等[910]。超疏水材料的應用范圍包括防水[11]、廢水處理[1213]、阻燃[14]、油水分離[1517]、耐腐蝕[1819]、抗紫外[20]、防冰[2122]、防污[23]以及減阻領域等[2425]。

鑒于材料表面超疏水涂層的制備方法簡單易行及應用廣泛等特點,本文系統地闡述了在織物表面構造微納結構,同時結合硅烷類低表面能材料的整理技術從而獲得超疏水性能的方法,分析并歸納了超疏水機理及超疏水紡織品在自潔性、抗紫外、防污染等方面的應用。最后,總結了超疏水涂層在構造及應用方面的關鍵性問題。

1超疏水表面的構建方法

受自然生物體特殊潤濕性的啟發,材料表面仿生超疏水表面的設計備受關注。如王立新等[26]通過構建豬籠草滑移區微納米復合結構(月骨體、蠟質晶體)的三維模型,證實了滑移區的超疏水性能取決于由微米級月骨體與納米級蠟質晶體構成的微納復合結構。仿生研究為設計超疏水表面提供了理論支持,即在材料表面構造一定的粗糙度,并結合低表面能化學組分的一種整理技術。因此,研究人員致力于開發綠色和環保的仿生新技術,以制備結合牢度強、超疏水穩定性好的自清潔紡織品。

1.1浸漬法

浸漬涂層法,即通過一種或兩種浸漬工藝在材料表面制備超疏水涂層。Singh等[27]將洗凈的棉織物依次浸漬在聚三乙氧基乙烯基硅烷(Polytriethoxyvinylsilane, PTEVS)溶膠液、聚二甲基硅烷(Polydimethylsiloxane, PDMS)溶液,獲得了棉織物表面的PTEVS/PDMS超疏水涂層;借助離子層吸附反應將AgBr負載至PTEVS/PDMS修飾的棉織物表面,制備了具有超疏水和光催化復合功能織物(AgBrPTEVS/PDMS@cotton)。AgBrPTEVS/PDMS@cotton表現出優異的自清潔功能,水接觸角達到154°,滑動角為8°。將親水性的有色液滴置于傾斜的改性后的棉織物表面,有色液滴液體沿著斜面滾落,織物表面無殘留。Ren等[28]以浸涂熱壓的方式制備了具有紫外線屏蔽功能的ZnOPDMS修飾的棉織物(ZnOPDMS@cotton),該棉織物在紫外光下照射75 h,水接觸角依然維持在156°,滑動角從最初的4°變為7°,表明ZnO納米顆粒在棉纖維上的均勻分布賦予了ZnOPDMS@cotton優異的紫外線屏蔽功能。

1.2水熱法

水熱法通常是指在一定溫度與壓力的密閉反應器中,采用水溶液作為反應體系,調節反應物配比,在紡織品上沉積尺寸可控的微納米顆粒,從而在其表面形成微突起結構,該結構可以捕獲空氣,減少液體與織物的接觸面積。在設計多級層次結構的表面粗糙度過程中,需格外關注制備過程中涉及的參數(如溶液濃度、反應物配比、溫度和反應時間),這會對形態的調控產生重要的影響。Li等[29]采用水熱法,在棉織物上原位生長了多級層次結構的TiO2微納米顆粒(TiO2@Cotton),隨后以1H, 1H, 2H, 2H全氟辛基三乙氧基硅烷改性TiO2@Cotton。由于TiO2本身的親水性,水滴滴落在未經改性的織物上會快速擴散和吸收。而改性的TiO2@cotton具有良好的超疏水性和自清潔性能,水的接觸角可以達到157.2°,滑動角小于5°。具有特殊潤濕性的TiO2@cotton因其在各種條件下對油和水的潤濕能力反差大,從而在油水分離領域具備良好的應用前景。此外,這種制備方法簡單快捷并且可以擴展到多種基材上(聚酯和氨綸織物),具有規模化生產的潛力。

1.3表面蝕刻法

對于增加表面粗糙度以實現超疏水性能,除引入納米材料外,還可以通過化學預處理和等離子體預處理等方法對纖維表面蝕刻來獲得所需的粗糙結構。如Xue等[30]用NaOH處理聚對苯二甲酸乙二醇酯織物(Polyethylene Terephthalate, PET),使得PET纖維表面形成納米級凹坑的同時,還產生了大量的羥基,從而進一步提高了纖維對巰基硅烷的親和力。添加的3巰基丙基三乙氧基硅烷與PET纖維表面羥基反應形成活性硫醇層,隨后加入的十二氟甲基丙烯酸七苯甲酯與纖維上存在的巰基反應,明顯降低了織物的表面能,使織物具備超疏水/超親油特性。該功能織物具有優異的超疏水性,水接觸角為160°,且改性的織物浸漬在不同pH溶液中(pH為1~13)72 h后,織物表面的接觸角幾乎沒有發生變化,表明纖維與低表面能材料之間的共價鍵顯著增強了超疏水涂層的耐受性。

1.4接枝法

接枝法即與纖維表面的活性基團進行共價鍵結合從而獲得牢固的超疏水表面。Wang等[31]利用工業廢氣中煤灰粉(Fly ash, FA)與TiO2殼層,通過電荷吸附制備了FA包覆的TiO2核殼結構(FATiO2),然后將PDMS分子以共價鍵的形式接枝到FATiO2,形成FATiO2PDMS分散液,將該分散液噴涂到聚酯織物表面,可賦予織物超疏水、自清潔、光催化等多種功能。水滴在FATiO2PDMS整理的織物表面呈球狀,接觸角達到158°,而水滴在FA和FATiO2分別修飾的織物表面則呈坍塌狀,說明PDMS的引入可有效降低織物面料的表面能,賦予織物優異的超疏水特性。同時PDMS還是一種很好的黏合劑,整理的織物即使經等離子體反復處理或浸泡在強堿/酸溶液中8 h,經過熱處理后,織物可以恢復超疏水性,從而表現出良好的超疏水自愈性。He等[32]將甲基丙烯酸十二氟庚酯和二乙烯基苯發生自由沉淀聚合,以共價鍵的形式接枝聚酯織物表面,借助PDMS黏合劑形成穩定涂層。在聚酯織物上獲得了直徑可控的納米顆粒,成功設計了類似四川花椒多級層次結構的超疏水表面,并表現出優異的超疏水和超疏水穩定性。Bai等[33]以腰果酚和聚甲醛化合物為原料并結合3氨基丙基三乙氧基硅烷偶聯劑合成了一種新型苯并惡嗪(CardanolKH550 Benzoxazine, CKBO)。CKBO的長脂肪族鏈以共價鍵的形式接枝到棉織物表面,成功制備了CKBO改性的超疏水棉織物(CKBO@cotton)。該研究發現,CKBO@cotton表現出優異的耐高溫、抗紫外性能,以及較高的油水分離效率。

1.5其他方法

Elzaabalawy等[34]提出以功能化的SiO2納米顆粒修飾環氧樹脂制備復合納米材料,將該復合材料以噴涂的方式分別涂覆到金屬、木材、玻璃、紡織品等基底表面,制備的涂層均展現出良好的超疏水性和適用性。值得注意的是,功能化的SiO2納米顆粒負載量的調控是構造基材表面粗糙結構和實現超疏水性能的重要因素。Zhao等[35]以十六烷基三甲氧基硅烷、SiO2納米顆粒和四乙氧基硅烷為原料,在HCl的作用下發生水解縮聚反應,得到十六烷基聚硅氧烷改性SiO2的混合液(SiO2@HDPOS),隨后依次將聚氨酯和SiO2@HDPOS的混合液噴涂在聚酯織物上,成功制備出具有超疏水和超親油的織物。超疏水聚酯物表現出很高的油水分離效率,即使重復10次循環后,分離效率依然保持在99%以上。Kamegawa等[36]采用共沉積技術以光催化劑TiO2和疏水性聚四氟乙烯設計出具有光催化自潔性能的超疏水表面,解決了實際應用過程中油漬黏附引起的疏水性能降低的問題。

2超疏水表面的機理

具有自清潔特性的超疏水表面是基于增加表面的粗糙度以及降低表面能,達到憎水性,使水滴在表面形成近乎球狀,產生滾動并帶走表面灰塵,如圖1(a)所示[37]。超疏水表面應滿足水靜態接觸角大于150°,滑動角或接觸角滯后(CAH)小于10°[38]。靜態接觸角(θCA)為液滴在理想平面上的切角,如圖1(b)所示。該角度由Young方程來計算[39]:

式中:γsv、γsl和γlv分別代表固/氣、固/液、液/氣界面的界面張力,θ為氣、液、固三相平衡時的接觸角。其他參數,如前進角和后退角在材料表面潤濕性中也發揮著重要作用,兩者之間的差異定義為CAH。從圖1(c)中可以看出,固體基材上CAH需足夠小,液滴才能滾動,且液滴表面的黏附強度取決于材料表面的形態和化學成分[40]。

上述超疏水性能的機理可以通過兩種不同的模型來解釋:Wenzel模型[41]的潤濕性能在于表面的粗糙度,取決于表面引入的化學物質所構造的幾何結構;Cassiebaxter模型[42]認為在液滴和表面的粗糙間隙中存在穩定的空氣層,形成復合液氣體固體界面,得到抗潤濕表面。Wenzel和Cassiebaxter模型分別依據方程(2)和方程(3)[43]:cosθCA=R cosθflat(2)cosθCA=-1 + fs(1+cosθflat)(3)式中:R為表面粗糙系數,即粗糙表面的實際表面積與直觀表面積之比[44],θflat為理想平面接觸角;fs為粗糙面與液體接觸的比例。因此,要想獲得超疏水表面,需設計合適的微納尺寸的粗糙表面,以擴大液體和空氣的接觸面積。

3超疏水表面的應用

材料超疏水表面由于其獨特的性能已廣泛應用于各個領域[4547],包括自清潔、油水分離、阻燃、耐腐蝕、防冰及抗污等,如圖2所示。

3.1自清潔

劉亞東等[48]采用水熱法制備了CuS/還原氧化石墨烯(Reduced Graphene Oxide, RGO)復合材料,與PDMS通過浸軋工藝同步整理到棉織物上,得到CuS/RGO@PDMS棉織物。該研究結果表明,當CuS/RGO和PDMS的用量為2%時,棉織物粗糙度明顯增加,疏水性達到最優狀態,水接觸角為158.4°,展現出優異的超疏水性能。另外,得益于其優異的疏水性,沾污在功能織物表面的粉末在水滴滾動的過程中可以被去除,表現出荷葉般的自清潔性。Jiang等[49]采用溶膠凝膠法使用TiO2修飾棉織物制備了TiO2@fabric,接著使用3巰基丙基三甲氧基硅烷(3Mercaptopropyl trimethoxysilane, MTS)對其進行進一步改性,得到MTSTiO2@fabric,其與甲基丙烯酸全氟辛酯在紫外光輻射下發生巰基烯烴點擊反應,從而獲得MTSTiO2@fabric穩定的超疏水表面。超疏水織物具有非常低的CAH,多種液滴(水、果汁、紅茶等)滴落到織物上時,不會發生沾污,水滴在表面滾動同時帶走表面灰塵,表現出優秀的超疏水自清潔性。此外,由于引入了TiO2納米顆粒,超疏水織物還具備光催化性能,在紫外光照射6 h后,織物表面浸染的油紅O被完全降解。同時織物在紫外光下,表面化學物質受到破壞,超疏水性能降低,但經過簡單的熱處理可恢復光催化自清潔能力。

3.2油水分離

Guo等[50]制備了一種具有穩定超疏水性能的聚多巴胺(Polydopamine,PDA)/SiO2包覆的棉織物(PDA/SiO2@cotton)。這種PDA/SiO2@cotton可以實現水和油的高效分離,分離效率約達100%,收集油的流量約達4000 L/(m2·h)。此外,PDA/SiO2@cotton經20次油水分離循環后,收集油的純度維持在99.9%以上,通量在4000 L/(m2·h)左右,且織物表面接觸角較最初幾乎沒有發生變化,表明PDA/SiO2@cotton具有穩定的超疏水性。李維斌等[51]采用浸涂工藝將十八胺和十二烷基三甲氧基硅烷共同改性的SiO2顆粒與PDMS的混合溶液整理到棉織物上,制備得到耐久性較好的改性棉織物,其接觸角可達到164.5°,因此具有良好的超疏水性能。將制備得到的改性棉織物對5種油水混合物進行分離,分離效率均可達到90%以上,且經10次循環分離后,分離效率依然保持穩定,表明所制備的超疏水棉織物具有穩定的油水分離性和可重復性。Ren等[52]將棉織物浸漬在含有TiO2、殼聚糖(Chitosan, CS)和硬脂酸(Stearic Acid, SA)的乙醇溶液中,制備出具有pH響應性以實現潤濕性能轉換的TiO2@SA/CS棉織物,可用來分離油/水/油三相混合物和不同的表面活性劑穩定乳液。

3.3阻燃

Lin等[53]將氧等離子活化的棉織物浸漬在含有四乙氧基硅烷、端羥基聚二甲基硅氧烷和聚磷酸銨(Ammonium Polyphosphate,APP)的乙醇溶膠凝膠液中,在棉織物上制備了超疏水阻燃涂層(SFR)。在浸漬工藝中,APP和纖維素之間的氫鍵作用促使其黏附在棉纖維上,而在氨水的催化作用下四乙氧基硅烷和端羥基聚二甲基硅氧烷發生原位溶膠凝膠反應,在棉織物上沉積PDMSSiO2混合物,由此在棉織物表面構建了微納結構復合涂層。SFR與水的接觸角高于160°,具有優異的自清潔性能。在垂直燃燒測試中,處理的棉織物能夠迅速自熄滅,僅損失8.5 cm的碳長度。這主要是由于隨著溫度的升高APP分解,在纖維表面形成炭層,同時PDMSSiO2生成耐高溫的無機SiO2和硅碳化合物,進一步在棉纖維表面轉化為石墨或玻璃炭,增強了SFR表面的泡沫炭層。泡沫炭層可以在纖維表面形成致密的膨脹屏障層,通過阻礙熱傳遞、稀釋氧氣和隔離可燃物,有效降低了織物燃燒的可能性。Liu等[54]采用兩步工藝法制備了阻燃和超疏水性能的棉織物,首先以層層自組裝法將烯亞胺/三聚氰胺和植酸(Phytic acid,PA)整理到棉織物上,提高其阻燃性能。將整理的棉織物浸漬在PDMS溶液中,可以獲得疏水性能。在垂直燃燒測試中,當棉織物上層層自組裝4層聚乙烯亞胺/三聚氰胺PA(Cotton4BL)時,Cotton4BLPDMS表現出很好的阻燃性。

3.4其他

徐林等[55]采用溶膠水熱法在滌綸織物上原位生長納米TiO2,經氟硅烷改性后,成功制備出拒水、拒油、抗紫外線功能的滌綸織物。此功能織物對5種碳氫化合物的抗潤濕性能顯著增強,拒油等級為6級,表面改性滌綸織物具有良好的拒油性能。納米TiO2氟硅烷整理的滌綸織物具有較強的紫外線屏蔽功能,分別對紫外線A和B段的透光率是0.37%和0.01%,且UPF值提高到43.9。Wang等[56]把SiO2納米顆粒嵌入商用聚酰胺網的微型織物中,并研究了接觸面積分數對冰黏附強度的影響。研究發現,負載在織物表面的SiO2與織物的應力結合共同降低了冰的黏附強度,最小冰黏附強度低至1.9 kPa,凍結時間可延長到1048 s。Zhou等[57]使用PDMS填充氟化烷基硅烷修飾織物,制備了耐久性好的超疏水織物。研究結果表明,制備的織物表面水接觸角達到171°,且表面液滴可以長時間保持球形而不坍塌,表明制備的超疏水涂層具有優異的穩定性。除此之外,該超疏水織物經過強酸、強堿浸泡24 h后,水滴在其表面仍然保持球形,測量接觸角變化分別為168.5±3.0°和168±4.0°。因此,所制備的超疏水涂層能夠抵抗強酸強堿的腐蝕,具有多功能防護作用。Ge等[58]設計了一種新的方案,將PDMS分散在水中,形成“PDMSinwater”溶液,并進一步整理到棉織物表面,在纖維表面構造了粗糙結構的同時也引入了低表面能材料,制備了具有自愈性和穩定的超疏水PDMS@cotton涂層。PDMS@cotton織物表現出良好的超疏水性,水接觸角為155°,明顯優于所有基于PDMS的有機溶劑。PDMS@cotton織物經過洗滌與磨損循環(100次)后,表面損壞部分可自愈恢復超疏水性,這得益于PDMS分子從棉纖維內部向外表面的自擴散過程,使表面自由能最小化。

4結語

通過引入各種材料構建出表面超疏水結構的設計和超疏水機理的分析,系統闡述了多功能超疏水紡織品的制備方法和應用領域。隨著人們對織物表面浸潤性調控研究的深入,具有超疏水性的多功能紡織品已經應用于人們的實際生產和生活中,如自清潔、阻燃、靜電屏蔽等功能性紡織品。然而,多功能紡織品在實際應用過程中仍然存在不可忽略的缺陷,如賦予織物表面粗糙度的微納材料在使用過程中,由于來自機械摩擦及外界環境的損傷,其耐久性可能不會很好;作為低表面能修飾材料的含氟類硅烷具有一定的毒性,易造成環境污染。鑒于此,超疏水涂層與織物表面的結合牢度是今后開發超疏水紡織品應考慮的關鍵。此外,對于低表面能材料的使用方面,應選擇環境友好型的無氟硅烷作為超疏水涂層的主要整理劑。最后,為了構建穩定性較好的超疏水表面,更應該關注材料表面微納結構幾何形狀的設計,合理的幾何形狀可賦予材料表面充分的粗糙度,使得微納結構能夠儲存一定量的空氣,以減少液體與基材表面的接觸面積,從而獲得優異的超疏水表面。

參考文獻:

[1]AUTUMN K, LIANG Y A, HSIEH S T, et al. Adhesive force of a single gecko foothair[J]. Nature, 2000, 405(6787): 681685.

[2]張紅陽,任煜,徐林,等.仿生超疏水織物的研究進展[J].紡織導報,2017(9):5559.

ZHANG Hongyang, REN Yu, XU Lin, et al.Research progress of bionic superhydrophobic textiles[J]. China Textile Leader, 2017(9): 5559.

[3]WANG J, CHEN H, SUI T, et al. Investigation on hydrophobicity of lotus leaf: Experiment and theory[J]. Plant Science, 2009, 176(5): 687695.

[4]ROACH P, SHIRTCLIFFE N J, NEWTON M I. Progess in superhydrophobic surface development[J]. Soft Matter, 2008, 4(2): 224240.

[5]楊靖.常壓等離子體射流制備超疏水棉織物及其油水分離應用研究[D].青島:青島大學,2019.

YANG Jing. Superhydrophobic Cotton Fabrics through Atmospheric Plasma Treatment for Applications in Oilwater Separation[D]. Qingdao: Qingdao University, 2019.

[6]WANG H, YAO Q, WANG C, et al. A simple, onestep hydrothermal approach to durable and robust superparamagnetic, superhydrophobic and electromagnetic waveabsorbing wood[J]. Scientific Reports, 2016, 6(1): 110.

[7]XUE C H, DU M M, GUO X J, et al. Fabrication of superhydrophobic photothermal conversion fabric via layerbylayer assembly of carbon nanotubes[J]. Cellulose, 2021, 28(8): 51075121.

[8]楊可成.基于CuS/SiO2氣凝膠復合材料制備超雙疏紡織品[D].上海:上海工程技術大學,2020.

YANG Kecheng. Preparation of Superamphiphobic Textiles Based on CuS/SiO2Aerogel Composites[D]. Shanghai: Shanghai University of Engineering Science, 2020.

[9]LI S H, HUANG J Y, GE M Z, et al. Controlled grafting superhydrophobic cellulose surface with environmentallyfriendly short fluoroalkyl chains by ATRP[J]. Materials & Design, 2015, 85: 815822.

[10]SUN X, BAI L, LI J, et al. Robust preparation of flexibly superhydrophobic carbon fiber membrane by electrospinning for efficient oilwater separation in harsh environments[J]. Carbon, 2021, 182: 1122.

[11]BAE G Y, MIN B G, JEONG Y G, et al. Superhydrophobicity of cotton fabrics treated with silica nanoparticles and waterrepellent agent[J]. Journal of Colloid and Interface Science, 2009, 337(1): 170175.

[12]DONG X, GU Z, HANG C, et al. Study on the saltfree lowalkaline reactive cotton dyeing in high concentration of ethanol in volume[J]. Journal of Cleaner Production, 2019, 226: 316323.

[13]LU X, LI Z, LIU Y, et al. Titanium dioxide coated carbon foam as microreactor for improved sunlight driven treatment of cotton dyeing wastewater[J]. Journal of Cleaner Production, 2020, 246: 118949.

[14]陳淑嬪,李紅強,賴學軍,等.超疏水阻燃織物的研究進展[J].涂料工業,2020,50(12):8388.

CHEN Shupin, LI Hongqiang, LAI Xuejun, et al. Research progress of superhydrophobic and flameretardant fabrics[J]. Paint & Coatings Industry, 2020, 50(12): 8388.

[15]陳春暉,許多,李治江,等.疏水親油復合棉織物的制備及其性能[J].現代紡織技術,2021:19.DOI:10.19398/j.att.202107001.

CHEN Chunhui, XU Duo, LI Zhijiang, et al. Preparation and properties of hydrophobicoleophylic composite cotton[J]. Advanced Textile Technology, 2021: 19.DOI:10.19398/j.att.202107001.

[16]石敏,王騊,王晟.快速油水分離用PVDF/PDMS超疏水膜的一步法制備及性能[J].現代紡織技術,2021:17.DOI:10.193981/j.att.202106068.

SHI Min, WANG Tao, WANG Sheng, Properties and preparation of PVDF/PDMS superhydrophobic membrane for rapid oilwater separation by onestep method[J]. Advanced Textile Technology, 2021:17.DOI:10.193981/j.att.202106068.

[17]LI D, GOU X, WU D, et al. A robust and stretchable superhydrophobic PDMS/PVDF@ KNFs membrane for oil/water separation and flame retardancy[J]. Nanoscale, 2018, 10(14): 66956703.

[18]ZHANG W, LIU N, ZHANG Q, et al. Thermodriven controllable emulsion separation by a polymerdecorated membrane with switchable wettability[J]. Angewandte Chemie International Edition, 2018, 57(20): 57405745.

[19]WANG P, ZHANG D, LU Z, et al. Fabrication of slippery lubricantinfused porous surface for inhibition of microbially influenced corrosion[J]. ACS Applied Materials & Interfaces, 2016, 8(2): 11201127.

[20]HUANG J Y, LI S H, GE M Z, et al. Robust superhydrophobic TiO2@ fabrics for UV shielding, selfcleaning and oilwater separation[J]. Journal of Materials Chemistry A, 2015, 3(6): 28252832.

[21]趙一鑒,燕則翔,蘇建民,等.仿生防冰表面研究進展[J].表面技術,2021,50(10):2939.

ZHAO Yijian, YAN Zexiang, SU Jianmin, et al. Research progress of biomimetic antiicing surface[J]. Surface Technology, 2021, 50(10): 2939.

[22]LI X, WANG G, MOITA A S, et al. Fabrication of bioinspired nonfluorinated superhydrophobic surfaces with antiicing property and its wettability transformation analysis[J]. Applied Surface Science, 2020, 505: 144386.

[23]GAO S, HUANG J, LI S, et al. Facile construction of robust fluorinefree superhydrophobic TiO2@ fabrics with excellent antifouling, wateroil separation and UVprotective properties[J]. Materials & Design, 2017, 128: 18.

[24]張春來,王瀟,吳銀濤,等.超疏水表面水下減阻技術研究進展[J].功能材料與器件學報,2021,27(5):445455.

ZHANG Chunlai, WANG Xiao, WU Yintao, et al. Research on underwater drag reduction technology of superhydrophobic surfaces[J]. Journal of Functional Materials and Devices, 2021, 27(5): 445455.

[25]曹頤戩,王聰,王麗琴.仿生超疏水材料及其在文物保護中的應用綜述[J].材料導報,2020,34(3):184190.

CAO Yijian, WANG Cong, WANG Liqin. A review of bioinspired superhydrophobic materials and their applications in heritage conservation[J]. Materials Reports, 2020, 34(3): 184190.

[26]王立新,張琳琳,張碩研,等.豬籠草葉籠滑移區各向異性超疏水潤濕特性表征與機理分析[J].中國農業大學學報,2020,25(8):3542.

WANG Lixin, ZHANG Linbin, ZHANG Shuoyan, et al. Anisotropic superhydrophobic wettability measurement and mechanism analysis of slippery zone in nepenthes pitchers[J]. Journal of China Agricultural University, 2020, 25(8): 3542.

[27]SINGH A K, SINGH J K. Fabrication of durable superhydrophobic coatings on cotton fabrics with photocatalytic activity by fluorinefree chemical modification for dualfunctional water purification[J]. New Journal of Chemistry, 2017, 41(11): 46184628.

[28]REN G, SONG Y, LI X, et al. A simple way to an ultrarobust superhydrophobic fabric with mechanical stability, UV durability, and UV shielding property[J]. Journal of Colloid and Interface Science, 2018, 522: 5762.

[29]LI S, HUANG J, Ge M, et al. Robust flowerlike TiO2@ cotton fabrics with special wettability for effective selfcleaning and versatile oil/water separation[J]. Advanced Materials Interfaces, 2015, 2(14): 1500220.

[30]XUE C H, GUO X J, Zhang M M, et al. Fabrication of robust superhydrophobic surfaces by modification of chemically roughened fibers via thiolene click chemistry[J]. Journal of Materials Chemistry A, 2015, 3(43): 2179721804.

[31]WANG Y, PENG S, SHI X, et al. A fluorinefree method for fabricating multifunctional durable superhydrophobic fabrics[J]. Applied Surface Science, 2020, 505: 144621.

[32]HE T, LIU X, WANG Y, et al. Fabrication of durable hierarchical superhydrophobic fabrics with Sichuan pepperlike structures via graft precipitation polymerization[J]. Applied Surface Science, 2020, 529: 147017.

[33]BAI W, LIN H, ChEN K, et al. Ecofriendly stable cardanolbased benzoxazine modified superhydrophobic cotton fabrics for oilwater separation[J]. Separation and Purification Technology, 2020, 253: 117545.

[34]ELZAABALAWY A, MEGUID S A. Development of novel superhydrophobic coatings using siloxanemodified epoxy nanocomposites[J]. Chemical Engineering Journal, 2020, 398: 125403.

[35]ZHAO X, LI Y, LI B, et al. Environmentally benign and durable superhydrophobic coatings based on SiO2 nanoparticles and silanes[J]. Journal of colloid and interface science, 2019, 542: 814.

[36]KAMEGAWA T, SHIMIZU Y, YAMASHITA H. Superhydrophobic surfaces with photocatalytic selfcleaning properties by nanocomposite coating of TiO2 and polytetrafluoroethylene[J]. Advanced Materials, 2012, 24(27): 36973700.

[37]PAKDEL E, WANG J, KASHI S, et al. Advances in photocatalytic selfcleaning, superhydrophobic and electromagnetic interference shielding textile treatments[J]. Advances in Colloid and Interface Science, 2020, 277: 102116.

[38]ELLINAS K, TSEREPI A, GOGOLIDES E. Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: A review[J]. Advances in Colloid and Interface Science, 2017, 250: 132157.

[39]SU B, TIAN Y, JIANG L. Bioinspired interfaces with superwettability: from materials to chemistry[J]. Journal of the American Chemical Society, 2016, 138(6): 17271748.

[40]ZHU H, GUO Z, LIU W. Adhesion behaviors on superhydrophobic surfaces[J]. Chemical Communications, 2014, 50(30): 39003913.

[41]WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988994.

[42]CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546551.

[43]熊迷迷.超疏水/抗紫外功能性織物整理劑的制備與應用研究[D].廣州:華南理工大學,2019.

XIONG Mimi. Preparation and Application of Superhydrophobic and UVresistant Cotton Fabric Finishing Agent [D]. Guangzhou: South China University of Technology, 2019.

[44]LIU C, SUN J, LI J, et al. Longrange spontaneous droplet selfpropulsion on wettability gradient surfaces[J]. Scientific Reports, 2017, 7(1): 18.

[45]BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 18.

[46]WANG S, JIANG L. Definition of superhydrophobic states[J]. Advanced Materials, 2007, 19(21):34233424.

[47]ZAHID M, MAZZON G, ATHANASSIOU A, et al. Environmentally benign nonwettable textile treatments: A review of recent stateoftheart[J]. Advances in Colloid and Interface Science, 2019, 270: 216250.

[48]劉亞東.納米CuS/RGO復合材料的制備及其在超疏水多功能紡織品的應用[D].上海:上海工程技術大學,2019.

LIU Yadong. Preparation of NanoCuS/RGO Composites and Its Application in Superhydrophobic Multifunctional Textiles[D]. Shanghai: Shanghai University of Engineering Science, 2019.

[49]JIANG C, LIU W, YANG M, et al. Robust multifunctional superhydrophobic fabric with UV induced reversible wettability, photocatalytic selfcleaning property, and oilwater separation via thiolene click chemistry[J]. Applied Surface Science, 2019, 463: 3444.

[50]GUO F, WEN Q, PENG Y, et al. Simple onepot approach toward robust and boilingwater resistant superhydrophobic cotton fabric and the application in oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5(41): 2186621874.

[51]李維斌,張程,劉軍.超疏水棉織物制備及其在油水過濾分離中應用[J].紡織學報,2021,42(8):109114.

LI Weibin, ZHANG Cheng, LIU Jun. Preparation of superhydrophobic coated cotton fabrics for oilwater separation[J]. Journal of Textile Research, 2021, 42(8): 109114.

[52]REN J, TAO F, LIU L, et al. A novel TiO2@ stearic acid/chitosan coating with reversible wettability for controllable oil/water and emulsions separation[J]. Carbohydrate Polymers, 2020, 232: 115807.

[53]LIN D, ZENG X, LI H, et al. Onepot fabrication of superhydrophobic and flameretardant coatings on cotton fabrics via solgel reaction[J]. Journal of Colloid and Interface Science, 2019, 533: 198206.

[54]LIU L, HUANG Z, PAN Y, et al. Finishing of cotton fabrics by multilayered coatings to improve their flame retardancy and water repellency[J]. Cellulose, 2018, 25(8): 47914803.

[55]徐林,任煜,張紅陽,等.滌綸織物表面TiO2/氟硅烷超疏水層構筑及其性能[J].紡織學報,2019,40(12):8692.

XU Lin, REN Yu, ZHANG Hongyang, et al. Construction and properties of superhydrophobic layer of titania/fluorosilane on polyester fabric surface[J]. Journal of Textile Research, 2019, 40(12): 8692.

[56]WANG P, LI Z, XIE Q, et al. A passive antiicing strategy based on a superhydrophobic mesh with extremely low ice adhesion strength[J]. Journal of Bionic Engineering, 2021, 18(1): 5564.

[57]ZHOU H, WANG H, NIU H, et al. Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating[J]. Advanced Materials, 2012, 24(18): 24092412.

[58]GE M, CAO C, LIANG F, et al. A "PDMSinwater" emulsion enables mechanochemically robust superhydrophobic surfaces with selfhealing nature[J]. Nanoscale Horizons, 2020, 5(1): 6573.

收稿日期:20220114網絡出版日期:20220309

基金項目:國家自然科學基金項目( 22072089 );新疆生產建設兵團重大科技項目(2019AAA001)

作者簡介:李慧慧(1994-),女,河南周口人,碩士研究生,主要從事多功能紡織品方面的研究。

通信作者:王群,Email:qwang@sues.edu.cn

主站蜘蛛池模板: 亚洲AV人人澡人人双人| 国产黄色片在线看| 久久无码高潮喷水| 欧美视频二区| 精品国产免费观看一区| 波多野结衣第一页| 精品久久777| 亚洲精品第一页不卡| 美女一级免费毛片| 国产精品美女自慰喷水| www.99精品视频在线播放| 日韩欧美91| 久久久久夜色精品波多野结衣| 国产精品成人第一区| 亚洲欧美日韩另类在线一| 国产一在线| 国产大全韩国亚洲一区二区三区| 国产一级在线观看www色 | 国产黑人在线| 国产成人禁片在线观看| 五月天在线网站| 91久久国产综合精品女同我| 国产亚洲高清视频| 无码福利日韩神码福利片| 亚洲成人播放| 99精品一区二区免费视频| 白浆视频在线观看| 日本欧美在线观看| 97视频免费看| 一级香蕉视频在线观看| 色妺妺在线视频喷水| 国产理论一区| 亚洲成人动漫在线| 国产福利拍拍拍| 午夜啪啪福利| 久久亚洲欧美综合| 一区二区三区精品视频在线观看| 亚洲人成网站观看在线观看| 福利国产微拍广场一区视频在线| 国产乱人伦精品一区二区| 国产成人你懂的在线观看| a毛片在线| 久久精品中文字幕少妇| 99性视频| 亚洲国产91人成在线| 中文字幕乱码中文乱码51精品| 亚洲国产精品成人久久综合影院| 国产制服丝袜91在线| 2021国产精品自拍| 成人伊人色一区二区三区| 久久久久久久久18禁秘| 亚洲欧美国产视频| 日日噜噜夜夜狠狠视频| 国产精品第页| 日本午夜精品一本在线观看 | 2022精品国偷自产免费观看| 婷婷六月天激情| 在线精品亚洲国产| 97在线视频免费观看| 91福利片| 色爽网免费视频| 国产精品部在线观看| 天天综合网在线| 毛片久久网站小视频| 天堂网亚洲系列亚洲系列| 国产不卡网| 亚洲人成影视在线观看| 国产成人精品一区二区| 国产性生大片免费观看性欧美| 丁香六月激情综合| 亚洲VA中文字幕| www亚洲天堂| 亚洲无码电影| 国产精品尤物在线| 亚洲首页在线观看| 欧美午夜在线观看| 人妻中文久热无码丝袜| 国产麻豆va精品视频| 亚洲人成影院在线观看| 国产9191精品免费观看| 国产成人久久综合777777麻豆| 国产精品成人一区二区不卡|