袁玉 馬希珍 宋寧 謝俊霞


[摘要] 目的 探討鼻內滴注脂多糖(LPS)對小鼠嗅覺和嗅球及內側前額葉皮質中輕鏈鐵蛋白表達的影響。
方法 8周齡雄性C57BL/6小鼠16只,隨機分為對照組和LPS組,每組8只。LPS組雙側鼻孔交替滴注1 g/L的LPS(每只10 μL),對照組給予等體積的生理鹽水,隔天1次,給藥時長為3周。3周后測試兩組小鼠的嗅覺功能,采用免疫印跡法檢測嗅球中酪氨酸羥化酶(TH)的表達,并檢測嗅球及內側前額葉皮質中輕鏈鐵蛋白的表達。
結果 與對照組相比,LPS組小鼠沒有明顯的嗅覺障礙;嗅球中TH表達無明顯變化;嗅球中輕鏈鐵蛋白表達升高87%,差異有統計學意義(t=4.486,P<0.05);內側前額葉皮質中輕鏈鐵蛋白水平升高84%,差異有統計學意義(t=2.391,P<0.05)。
結論 經鼻給LPS能夠引起嗅球及內側前額葉皮質中鐵含量上升,但沒有造成明顯的嗅覺障礙及嗅球內多巴胺能神經元損傷。
[關鍵詞]脫輔鐵蛋白質類;脂多糖類;多巴胺能神經元;嗅球;額葉前皮質;小鼠
[中圖分類號]R338.2 [文獻標志碼]A [文章編號]2096-5532(2022)03-0317-04
EFFECT OF INTRANASAL ADMINISTRATION OF LIPOPOLYSACCHARIDE ON THE OLFACTORY SENSATION AND THE EXPRESSION OF L-FERRITIN IN THE OLFACTORY BULB AND MEDIAL PREFRONTAL CORTEX OF MICE
YUAN Yu, MA Xizhen, SONG Ning, XIE Junxia
(Institute of Brain Science and Diseases, Qingdao University, Qingdao 266071, China)
[ABSTRACT]Objective To investigate the effect of intranasal instillation of lipopolysaccharide (LPS) on the olfactory sensation and the expression of L-ferritin in the olfactory bulb (OB) and medial prefrontal cortex (mPFC) of mice.Methods Sixteen male C57BL/6 mice aged 8 weeks were randomly divided into control group and LPS group, with 8 mice in each group. The LPS group was instilled with 1 g/L LPS alternately to bilateral nostrils at 10 μL/animal, once every other day for 3 weeks, and the control group was instilled with the same volume of normal saline. Three weeks later, the olfactory function of mice in the two groups was tested, and the expression level of tyrosine hydroxylase (TH) in the OB and the expression level of L-ferritin in the OB and mPFC were detected by Western blot. Results Compared with the control group, the LPS group had no obvious olfactory disorder, no significant change in the expression level of TH in the OB, an increase of 87% in the expression level of L-ferritin in the OB (t=4.486,P<0.05), and an increase of 84% in the expression level of L-ferritin in the mPFC (t=2.391,P<0.05).Conclusion Intranasal administration of LPS can increase the iron content in the OB and mPFC, but does not cause obvious olfactory disorder and dopaminergic neuron damage in the OB.
[KEY WORDS]apoferritins; lipopolysaccharides; dopaminergic neurons; olfactory bulb; prefrontal cortex; mice
帕金森病(PD)是第二大常見的神經退行性疾病,據統計,2016年我國60歲以上人群中PD患病率為1.37%[1]。PD的臨床表現除肌僵直、運動遲緩、靜止性震顫等運動癥狀外,還伴隨有嗅覺障礙、快速眼動睡眠障礙、便秘、抑郁等非運動癥狀。其主要病理特征為黑質致密部多巴胺能神經元的退行性病變及黑質腦區存在特異性的異常鐵沉積[2-6]。研究表明,75%~90%的PD病人早期嗅覺功能減退,因此嗅覺障礙被認為是PD發病早期的一個重要標志[7-10]。鼻腔上皮的嗅覺感知神經元能夠檢測環境中的氣味信息,并通過嗅神經傳遞到嗅覺相關的大腦皮質,最終形成嗅覺[11]。嗅覺感知神經元容易受到環境毒素如細菌、病毒、灰塵、花粉等的影響,繼而引發神經炎癥,導致嗅覺系統出現損傷[12]。有研究顯示,C57BL/6小鼠鼻內滴注脂多糖(LPS)6周后出現明顯的嗅覺障礙及PD樣行為學變化;經鼻給予α-突觸核蛋白的預制纖維,獼猴黑質和蒼白球腦區內出現明顯鐵沉積[13-14]。但在發生上述病變之前其他腦區是否存在鐵沉積尚不清楚。有研究結果證實,黑質到嗅球和內側前額葉皮質存在直接的神經投射通路[15-16]。本研究旨在探討經鼻給LPS對小鼠嗅覺和嗅球及內側前額葉皮質中輕鏈鐵蛋白表達的影響。現將結果報告如下。
1材料和方法
1.1實驗動物及主要試劑
SPF級雄性C57BL/6小鼠,7周齡,體質量為(19±1) g,購自北京維通利華公司,飼養在可自由飲水攝食、室溫25 ℃、濕度(50±5)%、12 h晝夜循環光照的SPF級清潔環境中,適應環境1周后開始實驗。LPS購于美國Sigma公司;酪氨酸羥化酶(TH)抗體購于美國Millipore公司,輕鏈鐵蛋白抗體購于美國abcam公司,Rabbit Anti-GAPDH和HRP-IgG標記的二抗購于中國愛必信公司;PVDF膜、ECL發光液購于美國Millipore公司;其他試劑均為國產分析純。
1.2動物分組與處理
將16只小鼠隨機分為對照組和LPS組,每組8只。LPS組雙側鼻孔交替給藥(LPS用生理鹽水配制的工作濃度為1 g/L),每只10 μL;對照組給予等體積的生理鹽水。小鼠異戊烷麻醉后,采用文獻報道的方法進行鼻內滴注,隔天1次[17]。給藥時間為3周,3周后立即進行嗅覺檢測。
1.3嗅覺功能檢測
檢測采用透明的亞克力盒(30 cm×20 cm×20 cm),盒子中間有可拆卸的透明隔板,隔板底部中間有可供小鼠自由穿梭的拱形通道。將小鼠置于盒子底部通道處,盒子一側鋪放適量新墊料,另一側鋪放等量的小鼠籠內的舊墊料(籠內已生活過3~5 d)。小鼠適應1 min后,應用Ethvision XT7系統分別采集兩組小鼠自由活動5 min內在新墊料中的總逗留時長,若時長存在統計學差異則反映LPS組有嗅覺障礙;反之,則不存在嗅覺障礙。
1.4免疫印跡法檢測TH和輕鏈鐵蛋白表達
嗅覺功能檢測結束后,處死小鼠,取新鮮的嗅球及內側前額葉皮質組織并稱質量。按每毫克25 μL的比例向組織樣本中加入RIPA蛋白裂解液,用機器充分研磨后,于冰上靜置30 min充分裂解,以12 000 r/min離心25 min,取上清,用BCA蛋白定量試劑盒檢測蛋白濃度,加入1/4體積的Loading Buffer后95 ℃金屬浴5 min。行十二烷基硫酸鈉-聚丙烯酰胺凝膠(SDS-PAGE)電泳(80 V、40 min,120 V、90 min),然后應用濕轉法轉至0.45 μm的PVDF膜上(300 mA、90 min)。用50 g/L脫脂奶粉室溫封閉2 h,分別加入TH(1∶3 000)、輕鏈鐵蛋白(1∶1 000)、GAPDH(1∶20 000)一抗于4 ℃搖床孵育過夜;以TBST溶液洗3次,每次10 min;加入山羊抗兔的HRP-IgG二抗(1∶10 000)室溫孵育1 h;以TBST溶液洗3次,每次10 min;使用ECL發光液顯影。應用Image J軟件進行分析,TH和輕鏈鐵蛋白表達水平以目的蛋白和內參照蛋白(GAPDH)的比值表示。
1.5統計學處理
應用Prism 6軟件進行統計學處理,以x±s表示計量資料結果,兩組間均數的比較采用t檢驗。P<0.05表示差異有統計學意義。
2結果
2.1經鼻給LPS對嗅覺功能的影響
兩組小鼠在新墊料中的總逗留時長的差值為(9.95±15.38)s,差異無統計學意義(P>0.05)。
2.2經鼻給LPS對嗅球TH和輕鏈鐵蛋白表達的影響
與對照組相比較,LPS組小鼠嗅球內TH蛋白表達無明顯變化(P>0.05);輕鏈鐵蛋白表達明顯上升,差異具有統計學意義(t=4.486,P<0.05)。見圖1和表1。
2.3經鼻給LPS對內側前額葉皮質中輕鏈鐵蛋白表達的影響
與對照組相比,LPS組輕鏈鐵蛋白表達明顯上調,差異有統計學意義(t=2.391,P<0.05)。見圖1和表1。
3討論
Braak分級學說認為,PD病理過程始于嗅球并逐漸累及延髓等低位腦干,進而中腦黑質等腦區發生損傷,出現運動癥狀[18-20]。有研究表明,經鼻給予LPS 6周,嗅球中小膠質細胞激活,導致黑質區多巴胺能神經元損傷,紋狀體內多巴胺減少,這一過程與炎癥因子受體介導有關[13]。本研究探討經鼻給予LPS 3周能否引發嗅覺損傷,結果顯示,LPS處理后小鼠沒有明顯的嗅覺障礙。這可能是由于LPS介導的炎癥反應在3周時不足以引起嗅覺系統損傷。普遍認為嗅覺障礙可能與嗅球內多巴胺能神經元有關[17]。PD病人尸檢研究顯示,嗅球內TH陽性神經元數目增多;另有臨床研究顯示,PD病人給予多巴胺制劑,不能改善其嗅覺障礙[7,21]。這兩項研究表明嗅球中的多巴胺能神經元似乎與嗅覺障礙并無直接關系。本研究亦未觀察到嗅球內多巴胺能神經元出現明顯損傷。
在腦內神經元生長代謝過程中,金屬元素鐵發揮著重要的生理作用,如參與線粒體中能量產生、合成血紅蛋白參與氧轉運、髓鞘形成、神經遞質的合成與代謝等。然而,腦內過多的鐵能通過Fenton反應產生羥自由基等活性氧,造成氧化應激;過多的鐵也可能通過鐵死亡方式誘導脂質過氧化物積累,造成細胞死亡[6,22-24]。研究表明,PD病人腦鐵代謝存在異常[25-26]。本文研究結果顯示,鼻內滴注LPS 3周能夠引起嗅球和內側前額葉皮質內輕鏈鐵蛋白表達上調,提示嗅球和內側前額葉皮質內可能存在鐵沉積。有文獻報道,經鼻給LPS通過白細胞介素1β及其受體途徑介導嗅球小膠質細胞激活和α-突觸核蛋白聚集[13]。嗅覺系統具有極其復雜的神經網絡,在腦內與多個腦區存在直接或間接的聯系[27]。聚集形式的α-突觸核蛋白可經相互聯系的神經通路從嗅球傳播至黑質和紋狀體并造成多巴胺能神經元損傷[13]。因此我們推測,LPS誘導的嗅球α-突觸核蛋白聚集體也可能傳播至內側前額葉皮質或其他腦區,并進一步誘導這些腦區小膠質細胞激活。本實驗室的研究結果和有關文獻報道結果均表明,小膠質細胞介導的神經炎癥可以促進腦區鐵沉積的發生[14,28-34],但鐵沉積是否能夠引發神經炎癥尚無定論[35]。因此,LPS能夠引起內側前額葉皮質等不同腦區的鐵含量增加,且可能與LPS導致的α-突觸核蛋白聚集體的傳播和神經炎癥有關。鑒于黑質與嗅球和內側前額葉皮質存在直接的神經投射通路,這兩個腦區的鐵沉積也可能通過跨腦區鐵轉運導致黑質等PD相關腦區鐵沉積,但這還需要進一步的實驗研究證實。
綜上所述,經鼻給LPS 3周后,小鼠嗅覺功能沒有發生顯著變化,而且嗅球內多巴胺能神經元沒有明顯損傷,嗅球和內側前額葉皮質內的鐵含量顯著上升。在本研究基礎上,我們將繼續探討鐵與炎癥是否具有協同作用,以及經鼻給LPS能否引起黑質等PD相關腦區的鐵含量上升。本文結果為研究經鼻給藥對腦內鐵代謝的影響提供了新的實驗依據及理論基礎。
[參考文獻]
[1]QI S G, YIN P, WANG L H, et al. Prevalence of Parkin-sons disease: a community-based study in China[J].? Movement Disorders, 2021,36(12):2940-2944.
[2]LEAK R K. Conditioning against the pathology of Parkinsons disease[J].? Conditioning Medicine, 2018,1(3):143-162.
[3]SUN J Y, LAI Z Y, MA J H, et al. Quantitative evaluation of iron content in idiopathic rapid eye movement sleep behavior disorder[J].? Movement Disorders, 2020,35(3):478-485.
[4]JIANG H, WANG J, ROGERS J, et al. Brain iron metabolism dysfunction in Parkinsons disease[J].? Molecular Neurobiology, 2017,54(4):3078-3101.
[5]BARBOSA J H, SANTOS A C, TUMAS V, et al. Quanti-fying brain iron deposition in patients with Parkinsons disease using quantitative susceptibility mapping, R2 and R2[J].? Magnetic Resonance Imaging, 2015,33(5):559-565.
[6]ZUCCA F A, SEGURA-AGUILAR J, FERRARI E, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinsons disease[J].? Progress in Neurobio-logy, 2017,155:96-119.
[7]DOTY R L. Olfaction in Parkinsons disease and related disorders[J].? Neurobiology of Disease, 2012,46(3):527-552.
[8]DOTY R L. Olfactory dysfunction in Parkinson disease[J].? Nature Reviews Neurology, 2012,8(6):329-339.
[9]BOESVELDT S, VERBAAN D, KNOL D L, et al. A comparative study of odor identification and odor discrimination deficits in Parkinsons disease[J].? Movement Disorders: Official Journal of the Movement Disorder Society, 2008,23(14):1984-1990.
[10]FULLARD M E, MORLEY J F, DUDA J E. Olfactory dysfunction as an early biomarker in Parkinsons disease[J].? Neuroscience Bulletin, 2017,33(5):515-525.
[11]WILSON D A, KADOHISA M, FLETCHER M L. Cortical contributions to olfaction: Plasticity and perception[J].? Seminars in Cell & Developmental Biology, 2006,17(4):462-470.
[12]CONNOR E E, ZHOU Y, LIU G E. The essence of appetite:does olfactory receptor variation play a role[J]? Journal of Animal Science, 2018,96(4):1551-1558.
[13]NIU H C, WANG Q, ZHAO W G, et al. IL-1β/IL-1R1 signaling induced by intranasal lipopolysaccharide infusion regulates alpha-Synuclein pathology in the olfactory bulb, substantia nigra and striatum[J].? Brain Pathology (Zurich, Switzerland), 2020,30(6):1102-1118.
[14]GUO J J, YUE F, SONG D Y, et al. Intranasal administration of α-synuclein preformed fibrils triggers microglial iron deposition in the substantia nigra of Macaca fascicularis[J].? Cell Death & Disease, 2021,12(1):81.
[15]H?GLINGER G U, ALVAREZ-FISCHER D, ARIAS-CARRI?N O, et al. A new dopaminergic nigro-olfactory projection[J].? Acta Neuropathologica, 2015,130(3):333-348.
[16]WANG Z, ZENG Y N, YANG P, et al. Axonal iron transport in the brain modulates anxiety-related behaviors[J].? Nature Chemical Biology, 2019,15(12):1214-1222.
[17]王冬霞,謝俊霞,宋寧. 經鼻給枸櫞酸鐵銨對小鼠嗅覺、嗅球鐵含量及TH蛋白表達影響[J].? 青島大學學報(醫學版), 2019,55(1):13-16.
[18]BRAAK H, DEL TREDICI K, RB U, et al. Staging of brain pathology related to sporadic Parkinsons disease[J].? Neuro-biology of Aging, 2003,24(2):197-211.
[19]KALIA L V, LANG A E. Parkinsons disease[J].? Lancet (London, England), 2015,386(9996):896-912.
[20]BRAAK H, RB U, DEL TREDICI K. Cognitive decline correlates with neuropathological stage in Parkinsons disease[J].? Journal of the Neurological Sciences, 2006,248(1/2):255-258.
[21]SCHAPIRA A H V, CHAUDHURI K R, JENNER P. Non-motor features of Parkinson disease[J].? Nature Reviews Neuroscience, 2017,18(8):435-450.
[22]ZECCA L, YOUDIM M B H, RIEDERER P, et al. Iron, brain ageing and neurodegenerative disorders[J].? Nature Reviews Neuroscience, 2004,5(11):863-873.
[23]WARD R J, ZUCCA F A, DUYN J H, et al. The role of iron in brain ageing and neurodegenerative disorders[J].? The Lancet Neurology, 2014,13(10):1045-1060.
[24]SNYDER A M, CONNOR J R. Iron, the substantia nigra and related neurological disorders[J].? Biochimica et Biophysica Acta, 2009,1790(7):606-614.
[25]DEXTER D T, WELLS F R, AGID F, et al. Increased nigral iron content in postmortem parkinsonian brain[J].? Lancet (London, England), 1987,2(8569):1219-1220.
[26]AYTON S, LEI P, HARE D J, et al. Parkinsons disease iron deposition caused by nitric oxide-induced loss of β-amyloid precursor protein[J].? The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2015,35(8):3591-3597.
[27]WILSON R S, SCHNEIDER J A, ARNOLD S E, et al. Olfactory identification and incidence of mild cognitive impairment in older age[J].? Archives of General Psychiatry, 2007,64(7):802-808.
[28]URRUTIA P J, MENA N P, N??EZ M T. The interplaybetween iron accumulation, mitochondrial dysfunction, andinflammation during the execution step of neurodegenerativedisorders[J].? Frontiers in Pharmacology, 2014,5:38.
[29]ANDERSEN H H, JOHNSEN K B, MOOS T. Iron deposits in the chronically inflamed central nervous system and contri-butes to neurodegeneration[J].? Cellular and Molecular Life Sciences: CMLS, 2014,71(9):1607-1622.
[30]CHEN L L, HUANG Y, YU X, et al. Corynoxine protects dopaminergic neurons through inducing autophagy and dimi-nishing neuroinflammation in rotenone-induced animal models of Parkinsons disease[J].? Frontiers in Pharmacology, 2021,12:642900.
[31]BADANJAK K, FIXEMER S, SMAJI? S, et al. The contribution of microglia to neuroinflammation in Parkinsonsdisease[J].? International Journal of Molecular Sciences, 2021,22(9):4676.
[32]PAJARES M, I ROJO A, MANDA G, et al. Inflammation in Parkinsons disease: mechanisms and therapeutic implications[J].? Cells, 2020,9(7):E1687.
[33]VAN VLIET E A, NDODE-EKANE X E, LEHTO L J, et al. Long-lasting blood-brain barrier dysfunction and neuroinflammation after traumatic brain injury[J].? Neurobiology ofDisease, 2020,145:105080.
[34]FERN?NDEZ-MENDVIL C, LUENGO E, TRIGO-ALONSO P, et al. Protective role of microglial HO-1 blockade in aging: implication of iron metabolism[J].? Redox Biology, 2021,38:101789.
[35]LIU Z, SHEN H C, LIAN T H, et al. Iron deposition in substantia nigra: abnormal iron metabolism, neuroinflammatory mechanism and clinical relevance[J].? Scientific Reports, 2017,7(1):14973.
(本文編輯馬偉平)