鄭素佩,趙青宇,封建湖
(長安大學理學院,陜西西安 710064)
基于WENO重構保號的四階熵穩定格式
鄭素佩,趙青宇*,封建湖
(長安大學理學院,陜西西安 710064)
為提高一維雙曲守恒律方程數值求解格式的分辨率和精度,提出了一種基于加權本質非振蕩(weighted essentially non-oscillatory,WENO)重構保號的四階熵穩定格式。該格式主要包含高階熵守恒通量和數值耗散項,通過在單元交界面處用拉格朗日多項式對熵變量進行有限差分WENO重構,證明了重構前后跳躍值滿足保號性,論證了所構造格式的熵穩定性。在數值算例中,將空間半離散格式與四階Runge-Kutta格式相結合,并將該格式與熵穩定格式進行了比較,結果表明,該格式具有四階精度、較高的分辨率和魯棒性,且不產生非物理振蕩。
雙曲守恒律方程;WENO重構;保號性;四階;熵穩定
雙曲守恒律方程的數值計算在空氣動力學、物理學和海洋學等領域[1-3]有重要應用,可構造既能銳利地捕捉激波又可避免數值解在激波等間斷區域出現偽振蕩的高精度格式,一直廣受關注。TADMOR等[4]定義了一類滿足離散熵等式且具有二階精度的熵守恒格式。該格式在光滑區域保持總熵不變,在間斷區域需添加適當的數值黏性項,以避免出現偽振蕩,即熵穩定格式。ISMAIL等[5]提出了一種既能捕捉激波又能滿足熵不等式的熵穩定格式,但該格式僅具有一階精度。LEFLOCH等[6]用二階熵守恒通量通過線性組合的方式構造了高階熵守恒格式。為得到高精度、高分辨率的熵穩定格式,需構造高階的數值耗散項。FJORDHOLM等[7]提出了一種將高階熵守恒通量與基于本質非振蕩(essentially non-oscillatory,ENO)[8]重構且滿足符號性質的耗散相結合的高階熵穩定格式,然而ENO重構僅從眾多模板中選取一個最優模板,浪費了其他模板的信息。加權本質非振蕩(weighted essentially non-oscillatory,WENO)[9]重構解決了ENO重構存在的問題,廣受學者關注。馮娟娟等[10]用WENO-Z+重構的熵穩定格式求解交通流模型。鄭素佩等[11]提出,在單元交界面對守恒變量進行三階WENO-Z 重構。這些重構均基于經典的WENO重構,而SHU[12]的有限差分WENO重構更為靈活。基于有限差分WENO重構,FJORDHOLM等[13]提出了一種三階信號保持加權本質非振蕩(sign preserving weighted essentially non-oscillatory,SP-WENO)重構方法,使權重滿足保號性。BISWAS等[14]提出了基于三階WENO和總變異遞減(total variation diminishing,TVD)[15]重構的低耗散熵穩定格式。遺憾的是,這些格式的精度和分辨率均較低。
本文基于WENO重構的保號性,在單元交界面處對熵變量進行五階重構,并結合高階熵守恒格式,提出求解一維雙曲守恒律方程的四階熵穩定格式。數值結果表明,所構造格式的分辨率有一定提高,且無偽振蕩。
考慮一維雙曲守恒律方程
則該格式熵守恒,且具有二階精度,其數值熵通量為
LEFLOCH等[6]通過線性組合二階熵守恒格式構造了任意偶數階熵守恒格式,其中四階和六階熵守恒格式分別為
考慮熵守恒通量在光滑區域表現良好、在激波等間斷區域存在非物理振蕩現象,適當增加耗散項,以獲得熵穩定的數值通量。
數值算例中的耗散算子詳見文獻[5,7]。
則格式(6)熵穩定(詳見文獻[7])。
因此格式(6)熵穩定。對于標量守恒律方程,在單元交界面處需滿足
對于守恒律方程組,在單元交界面處需滿足
基于上述數值通量知識,需尋找滿足保號性質的重構,以得到高階熵穩定通量。
在單元交界面處,對熵變量進行五階有限差分WENO重構。考慮單元交界面左側處的重構包含,,3個模板,用拉格朗日插值構造插值多項式,基于不同模板上插值多項式的凸組合所得的重構值為

則

基于熵守恒通量和高階熵穩定通量理論,對熵變量進行WENO重構,因重構前后跳躍值滿足保號性,證明了所構造格式熵的穩定性,其數值通量為
算例1 線性對流方程
算例1的數值結果如表1所示。由表1可知,所構造格式在光滑區域具有四階精度。事實上,耗散項的熵變量采用的是五階WENO重構,表1中的結果由熵守恒項和時間方向的離散項取四階精度得到。

表1 算例1的數值結果Table1 Numerical results of example 1
算例2 無黏Burgers方程
算例3 大型潰壩問題

圖1 算例2的數值結果Fig. 1 Numerical results of example 2

圖2 算例3的數值結果Fig.2 Numerical results of example 3
算例4 Sod激波管問題

圖3 算例4的數值結果Fig.3 Numerical results of example 4
算例5 Lax激波管問題

圖4 算例5的數值結果Fig. 4 Numerical results of example 5
算例6 Shu-Osher問題

圖5 算例6的數值結果Fig. 5 Numerical results of example 6
算例7 低密度流問題

圖6 算例7的數值結果Fig.6 Numerical results of example 7
滿足保號性的高階重構是構造高階熵穩定格式的一種可行選擇。提出了一種求解雙曲守恒律方程的四階熵穩定格式,由拉格朗日插值構造的多項式在單元交界面處對熵變量進行有限差分WENO重構,并由重構前后的跳躍值滿足保號性證明了所構造格式是嚴格熵穩定的。數值算例結果表明,所構造格式不僅精度有所提高,而且可銳利捕捉激波、接觸間斷和稀疏波等間斷區域,并有效改善了抹平現象。
[1]張海軍.求解淺水波方程的熵穩定格式研究[D].西安:長安大學,2018.
ZHANG H J. The Research of Entropy Stable Schemes for Shallow Water Equations[D]. Xiapos;an:Changapos;an University,2018.
[2]王令,鄭素佩. 基于移動網格的熵穩定格式求解淺水波方程[J]. 水動力學研究與進展(A輯),2020,35(2):188-193. DOI:10.16076/j.cnki.cjhd.2020. 02.006
WANG L,ZHENG S P. Solving shallow water wave equation based on moving grid entropy stable scheme[J]. Chinese Journal of Hydrodynamics, 2020,35(2):189-193. DOI:10.16076/j.cnki.cjhd.2020.02.006
[3]賈豆,鄭素佩.求解二維Euler方程的旋轉通量混合格式[J].應用數學和力學,2021,42(2):170-179.DOI:10.21656/1000-0887.410196
JIA D, ZHENG S P. A hybrid schemes of rotational flux for solving 2D Euler equations [J]. Applied Mathematics and Mechanics, 2021,42(2):170-179. DOI:10.21656/1000-0887.410196
[4]TADMOR E. The numerical viscosity of entropy stable schemes for systems of conservation laws I[J]. Mathematics of Computation, 1987,49(179):91-103. DOI:10.2307/2008251
[5]ISMAIL F, ROE P L. Affordable,entropy-consistent Euler flux functions II: Entropy production at shocks[J]. Journal of Computational Physics,2009,228(15):5410-5436. DOI:10.1016/j.jcp. 2009.04.021
[6]LEFLOCH P G, MERCIER J M,ROHDE C. Fully discrete, entropy conservative schemes of arbitrary order[J]. SIAM Journal on Numerical Analysis, 2002,40(5): 1968-1992. DOI:10.1137/s003614290240069x
[7]FJORDHOLM U S, MISHRA S,TADMOR E. Arbitrarily high-order accurate entropy stable essentially non-oscillatory schemes for systems of conservation laws[J]. SIAM Journal on Numerical Analysis, 2012,50(2):544-573. DOI:10.1137/110836961
[8]HARTEN A, ENGQUIST B,OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes III[C]// Upwind and High-Resolution Schemes. Berlin / Heidelberg: Springer,1987: 218-290.
[9]LIU X D, OSHER S,CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994,115(1): 200-212. DOI:10.1006/jcph.1994.1187
[10]馮娟娟. 高分辨率數值格式在交通流方程的應用[D]. 西安:長安大學,2019.
FENG J J. High-Resolution Scheme in Application of Traffic Flow Equations[D]. Xiapos;an:Changapos;an University,2019.
[11]鄭素佩,王苗苗,王令.基于WENO-Z重構的Osher-Solomon格式求解淺水波方程[J].水動力學研究與進展(A輯),2020,35(1):90-99. DOI:10.16076/j.cnki.cjhd.2020.01.014
ZHENG S P,WANG M M,WANG L. Reconstructing Osher-Solomon scheme based on WENO-Z for shallow water equation[J]. Chinese Journal of Hydrodynamics,2020,35(1):90-99. DOI:10.16076/j.cnki.cjhd.2020.01.014
[12]SHU C W. High order weighted essentially non-oscillatory schemes for convection dominated problems[J]. SIAM Review,2009, 51(1):82-126. DOI:10.1137/070679065
[13]FJORDHOLM U S, RAY D. A sign preserving WENO reconstruction method[J]. Journal of Scientific Computing, 2016,68(1): 42-63.
[14]BISWAS B, DUBEY R K. Low dissipative entropy stable schemes using third order WENO and TVD reconstructions[J]. Advances in Computational Mathematics, 2018,44(4): 1153-1181. DOI:10. 1007/s10444-017-9576-2
[15]HARTEN A. On a class of high resolution total-variation-stable finite-difference schemes[J]. SIAM Journal on Numerical Analysis, 1984,21(1): 1-23. DOI:10.2307/2157043
[16]LAX P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation[J]. Communications on Pure and Applied Mathematics, 2005,7(1):198-232. DOI:10.1007/0-387-28148-7_16
[17]LAX P D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves [C]//11th of SIAM Regional Conferences Lectures in Applied Mathematics. Philadelphia:Society for Industrial and Applied Mathematics,1973:1-48.
[18]DAFERMOS C M. Hyperbolic systems of conservation laws[C]// Systems of Nonlinear Partial Differential Equations. Berlin/Dordrecht:Springer, 1983: 25-70. DOI:10.1007/978-94-009-7189-9_2
[19]JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996,126(1): 202-228. DOI:10.1006/jcph.1996.0130
[20]李彬彬. 基于移動網格的高分辨率算法[D].西安:長安大學,2019.
LI B B. High-Resolution Algorithms Based on Adaptive Moving Mesh[D]. Xiapos;an: Changapos;an University,2019.
The fourth order entropy stable scheme based on sign-preserving WENO reconstruction
ZHENG Supei, ZHAO Qingyu, FENG Jianhu
(School of Science,Changapos;an University,Xiapos;an710064,China)
In order to effectively improve the resolution and accuracy of the numerical scheme for solving one dimensional hyperbolic conservation laws, a fourth order entropy stable scheme based on sign-preserving WENO reconstruction is proposed. The scheme mainly contains high order entropy conservation flux and numerical dissipation term, where the dissipation operator is reconstructed by finite difference WENO using Lagrange polynomials on the entropy variable at the cell interface, which proves that the jump on the reconstructed values and the original values satisfy sign-preserving property at the discontinuous position, and the newly constructed scheme is entropy stable. Finally, in several numerical experiments, we combined the spatial semi-discrete scheme with the fourth-order Runge-Kutta method to advance in the time direction, and compared the constructed scheme with the entropy stable scheme, the results demonstrate that the scheme has fourth order accuracy, high resolution and the robust numerical performance, and there is no physical oscillation.
hyperbolic conservation laws; WENO reconstruction; sign-preserving; fourth order; entropy stable
O 241.82;O 354
A
1008?9497(2022)03?329?07
10.3785/j.issn.1008-9497.2022.03.010
2021?06?21.
國家自然科學基金資助項目(11971075);陜西省自然科學基金青年項目(2020JQ-338,2020JQ-342).
鄭素佩(1978—),ORCID:https//orcid.org/0000-0003-2502-6998,女,博士,副教授,主要從事科學與工程中的高性能計算技術研究,E-mail:zsp2008@chd.edu.cn.
通信作者,ORCID:https//orcid.org/0000-0001-7574-6917,E-mail:1214742342@qq.com.