999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

R2n 中P 循環對稱緊星型超曲面上P 循環對稱閉特征的多重性

2022-07-01 23:37:02李洋洋劉會
數學理論與應用 2022年2期

李洋洋 劉會

(1.四川大學附屬中學,成都,610044?2.武漢大學數學與統計學院,武漢,430072)

1 Introduction

The study on closed characteristics in the global sense started in 1978,when the existence of at least one closed characteristic was first established on any Σ∈Hst(2n)by Rabinowitz in[32]and on any Σ∈Hcon(2n)by Weinstein in[38]independently. Since then the existence of multiple closed characteristics on Σ∈Hcon(2n) has been deeply studied by many mathematicians, for example, studies in [10, 11,18,20,29,30,31,35,37,39]for convex hypersurfaces. For star shaped hypersurfaces, in[4]and[16],#T(Σ)≥nfor Σ∈Hst(2n) was proved under some pinching conditions. In [36], Viterbo proved a generic existence result for infinitely many closed characteristics on star shaped hypersurfaces. In [17],Hu and Long proved that#T(Σ)≥2 for Σ∈Hst(2n)on which all the closed characteristics and their iterates are non degenerate. In [19], Hofer, Wysocki, and Zehnder proved any non degenerate compact star shaped hypersurface has either two or infinitely closed characteristics, provided that all stable and unstable manifolds of the hyperbolic closed characteristics intersect transversally. In 2016,#T(Σ)≥2 was first proved for every Σ∈Hst(4)by Cristofaro Gardiner and Hutchings in[5]without any pinching or non degeneracy conditions. Different proofs of this result can also be found in[12],[15]and[22]. For the recent progresses on closed characteristics on compact star shaped hypersurfaces,one can also refer to[8,9,13,14,23,24]and the references therein.

It is very interesting to consider closed characteristics on hypersurfaces with special symmetries.Note that there are many studies about closed characteristics on compact convexPcyclic symmetric hypersurfaces,one can refer to[6,7,21,26,27,40]. In this paper,we study the multiplicity ofPcyclic symmetric closed characteristics on compact star shapedPcyclic symmetric hypersurfaces under a pinching condition. Letk ≥2 be a positive integer andP=, where

Theorem 1.1There holds#TP(Σ)≥1 for any Σ∈(2n).

Letn(y)be the unit outward normal vector of Σ atyandd(y):=n(y)·y,i.e.,the distance between the origin of R2nand the tangent hyperplane to Σ aty. Thend(y)> 0 for ally ∈Σ since Σ is strictly star shaped. Letd=min{d(y):y ∈Σ},R=max{|y|:y ∈Σ}andr=min{|y|:y ∈Σ}.

Theorem 1.2AssumeR2< (k+ 1)rdfor some Σ∈(2n). Then there exist at leastngeometrically distinctPcyclic symmetric closed characteristics on Σ.

Remark 1.1LetP=?I2nandk= 2,then Theorems 1.1–1.2 are the main results of[16]. Thus our results are slightly extensions of those of[16]. We should emphasize that we follow the ideas of[16].Compared with[11]and[26],the pinching condition of Theorem 1.2 is slightly broader,and it’s used to guarantee the closed characteristics we obtained are prime and geometrically distinct. The topic aboutPcyclic symmetric closed characteristics on compact star shapedPcyclic symmetric hypersurfaces are interesting, one can also refer to [1], [25]and [28]for the recent studies on convexPcyclic symmetric hypersurfaces. Note that our Theorem 1.2 extends Theorem 1.21 of [1] to the star shaped case. Our Theorem 1.2 also has potential applications to celestial mechanics,for example in[34],the H′enon Heiles Hamiltonian energy level presents Z3symmetry and the Hamiltonian energy level presents Z4symmetry in Hill’s lunar problem.

2 Proof of Theorem 1.2

We shall prove Theorem 1.2. Theorem 1.1 will be an easy consequence.

LetH(x)=j2(x),?x ∈R2n,wherej:R2n →R is the gauge function of Σ,that is,j(λx)=λforx ∈Σ andλ ≥0. Then Σ=H?1(1)andH(Px)=H(x)since Σ∈(2n). In the following,we will find distinct solutions of the Hamiltonian system

lying on Σ satisfying thatz(t+τ)=Pz(t)for someτ>0.

SetE=(R/(kπ)Z,R2n). Foranysmoothu∈E,we consider theactionintegralf(u) =uJu˙.Here we notethatJisminusof thatin[16].Then wehavef ∈C1(E,R).Define the bounded self adjoint linear operatorL:E →Eby:=f′(u)v,?u,v ∈E,where<·,·>is the scalar product inE. By direct calculation,we have

Noticing that

and

we obtain

Lemma 2.1Ifu ∈Sis a critical point off|S,withf(u)>0,then there exists aλ>0,such that

Obviously,there exists aλ,such that ˙u=λJH(u). The positivity ofλeasily follows(see(2.5)). In the following we shall show that=H′(u)w, ?w ∈E.

Note thatH(Pu) =H(u). Differentiatinguon the two sides,we haveH(Pu) =PH(u). ThenH′(un(t+π))=H′(Pun(t))=PH′(un(t)),sinceun ∈E1. ThenH′(un)∈E1,which implies

From(2.2)and(2.3),=H′(u)w,?w ∈E. The Lemma is proved.

Ifusatisfies(2.1),thenu?(t)≡u()is a solution ofu˙ =JH′(u)of periodkπλ,andu?(t+λπ) =P?u(t). Ifuhas minimal periodkπ,then ?u(t)has minimal periodkπλ.

It is easy to know that the existence ofngeometrically distinctPcyclic symmetric closed characteristics on Σ is equivalent to the existence ofncritical points off|S, say,u1,u2,··· ,un,such thatf(ui)>0,ui(t)?=uj(t+θ)fori ?=j,θ ∈R/(kπZ)anduihas minimal periodkπ.

LetZ={u ∈S|f′|S(u)= 0,f(u)> 0}. If we consider the functionfand the manifoldSin the spaceE,then we have:

Lemma 2.2Ifu ∈Z,thenf(u)≥.

Recall thatH(αz)=α2H(z),by differentiatingαon the two sides,then we have

Ifu ∈Z,we can know there exists aλ>0,such that ˙u=λJH′(u)from lemma 2.1. Then

Hence,from(2.5),we have

The Lemma is proved.

If we consider the functionfand the manifoldSin the spaceE1,then we have a stronger result:

Lemma 2.3Ifu ∈Z,thenf(u)≥.

The Lemma is proved.

The following lemma is a consequence of Lemma 2.3.

Lemma 2.4Ifu ∈Zandf(u)<πdr, thenucan not be any multiple iteration of someu1∈Z,which implies thatuhas minimal periodkπ.

If 2≤m ≤k, we can multiply the left and right sides of (2.6) byPk?m. Then we getu1(t) =Pk?m+1u1(t)by usingPk=I2n. Thus,there exists anl ∈N such thatk ?m+1 =lk. However,if 2≤m ≤k,we have 1≤lk ≤k ?1,which is impossible.

Ifm ≥k+1,we have

It is impossible, becausef(u1)>by Lemma 2.3. Souhas minimal periodkπ. The Lemma is proved.

Now, we define a pseudo index (see [2], [3]) and make use of the invariance offandSthrough theS1actionS1×E1→E1: (θ,u(t))→u(t+θ),u ∈E1,θ ∈S1, whereS1= R/(kπ)Z. Letφm= ek2mtJam+ek2(?m+2?k)tJa?m+2?k, whereal ∈R2nforl=m,?m+2?k,σm=f(φm),m ∈N,m ≡1(modk). Let

Obviously,E1=is the orthogonal decomposition ofE1with regard to the functionalf(see[33]). LetGbe aC1manifold ofE1,radially diffeomorphic to the unit sphere ofE1,invariant under theS1action. LetU:E1→E1be a self adjoint linear equivariant isomorphism such thatU()?.Denote by∪the set of these isomorphisms. Leth:G →Gbe an equivariant homeomorphism satisfying that there exist a continuous mapg:G →R+and aU ∈∪such thath ?gU|Gis compact. Denote by ΓGthe family of all suchh,which is a group. LetVbe the family of closed,S1invariant subsets ofE1.ForA ?G,A ∈V,the pseudo index is defined as

whereiis theS1index introduced by Benci[3]. Recall the following results:

Proposition 2.1AssumeG1andG2areC1manifolds radially diffeomorphic to a sphere ofE1and invariant under theS1action. Letp:G1→G2be the radical projection fromG1toG2. Then

Proposition 2.2LetHh ?E1be a 2hdimensional invariant subspace andHh ⊕W=E1. Then forA ?G,A ∈V,

Supposef|Gsatisfies the Palais Smale condition. LetZc={u ∈G|f′|G(u) = 0,f(u) =c}. We define

Thenckis a critical value off|G. Moreover ifc=ck+1=···=ck+p,theni(Zc)≥p. It is the famous Minimax principle. And it is known thatf|Ssatisfies the Palais Smale condition,see[4]and[16].

Let us considerSR={u ∈E1||u|2=R2},which is aC1manifold radially deffeomorphic to a sphere ofE1, invariant under theS1action.f|SRverifies the Palais Smale condition. So we can apply the Minimax Principle toSR. Let us denote bya1,a2,··· ,anthe firstncritical values off|SRof minimax type. We have the following lemma.

Lemma 2.5Forf|SRwe havea1=···=an=.

By Proposition 2.6,we havei?(An)=n. We can immediately know that

The Lemma is proved.

Now,we can prove Theorem 1.2.

Let

We know thatc1,c2,··· ,cnare critical values off|S,andcj ≥. For everyu ∈SR,there exists a uniqueλsuch thatλu ∈Sandλ ≤1. ForA ∈S ∩V,we have

wherepis the radical projection fromStoSR. By(2.7),we see that

So

By the assumption thatR2<(k+1)dr,we have

From Lemma 2.4,ifcj=f(uj),then we can easily knowujis a critical point off|Sandujhas minimal periodkπ.

Theorem 1.2 is proved.

主站蜘蛛池模板: 午夜福利在线观看成人| 亚洲欧美日韩久久精品| 国产成熟女人性满足视频| 久久久久久尹人网香蕉| 91尤物国产尤物福利在线| av一区二区三区在线观看| 亚洲AⅤ无码日韩AV无码网站| 看av免费毛片手机播放| 国产精品欧美激情| 欧美中文字幕在线视频| 国产理论最新国产精品视频| 国产在线97| 国产区免费精品视频| 成人精品视频一区二区在线| 57pao国产成视频免费播放| 精品国产污污免费网站| 成人午夜在线播放| 亚洲三级网站| 55夜色66夜色国产精品视频| 五月天天天色| 欧美国产在线一区| 激情六月丁香婷婷四房播| 亚洲中文字幕久久无码精品A| 天天躁狠狠躁| 99热这里只有精品免费| 亚洲国产日韩一区| 片在线无码观看| 四虎影视8848永久精品| 国产精品视频第一专区| 亚洲精品另类| 理论片一区| 婷婷六月综合| 精品欧美视频| 91在线精品麻豆欧美在线| 国产成人精品日本亚洲| 日韩av无码精品专区| 精品久久久久久久久久久| 在线国产91| 欧美精品亚洲日韩a| 久久动漫精品| 亚洲欧美另类色图| 国产福利一区二区在线观看| 国产av无码日韩av无码网站| 乱码国产乱码精品精在线播放 | 中文字幕2区| 免费在线播放毛片| 99视频在线看| 国产成人精品免费视频大全五级| 中文字幕调教一区二区视频| 思思99热精品在线| 波多野结衣无码视频在线观看| 亚洲色婷婷一区二区| 亚洲天堂久久新| 制服丝袜亚洲| 91午夜福利在线观看精品| 本亚洲精品网站| 亚洲中文字幕国产av| 精品一区二区三区视频免费观看| 欧美日韩导航| 不卡无码网| 中文字幕亚洲精品2页| 国产精品思思热在线| 色婷婷在线播放| 精品午夜国产福利观看| 国产新AV天堂| 91在线高清视频| 国产精品网址你懂的| 国产精品视频久| 99久久免费精品特色大片| 国产成人精品男人的天堂下载 | 亚洲天堂久久| AV熟女乱| 亚洲午夜综合网| 国产一区二区福利| 国产鲁鲁视频在线观看| 高潮毛片无遮挡高清视频播放 | 国产H片无码不卡在线视频 | 国产一级二级三级毛片| 亚洲天堂2014| 亚洲有无码中文网| 国产激爽大片在线播放| 国产一线在线|