999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

植物NLP轉錄因子研究進展

2022-07-16 11:47:23何炫頤王可欣董月華習向銀楊懷玉
江蘇農業學報 2022年3期

何炫頤 王可欣 董月華 習向銀 楊懷玉

摘要: 轉錄因子NLP (NIN-like protein)是近年來發現的具有調控養分吸收和植物生長發育、響應外界環境脅迫等功能的植物特異性轉錄因子。本文對近年來有關NLP家族的最新研究成果進行了總結,綜述了植物NLP家族的結構和分類、對氮磷養分信號通路的調控、參與植物生長發育過程以及脅迫應答方面的研究進展,并展望了NLP的可能研究熱點和領域,以期為后續研究提供參考。

關鍵詞: NLP轉錄因子; 氮磷養分; 植物生長發育; 脅迫應答

中圖分類號: Q74?? 文獻標識碼: A?? 文章編號: 1000-4440(2022)03-0830-07

Research progress on plant NLP transcription factors

HE Xuan-yi 1 , WANG Ke-xin 1 , DONG Yue-hua 1 , XI Xiang-yin 1 , YANG Huai-yu 1,2

(1.College of Resources and Environment, Southwest University,Chongqing 400716,China; 2.Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University,Chongqing 400716,China)

Abstract: Transcription factor NLP (NIN-like protein) is a plant-specific transcription factor identified in recent years, which has multiple functions in regulating nutrient uptake, growth and development, as well as response to external environmental stresses of plants. In this review, we summarized the latest research achievements on plant NLP family, including research progresses on the structure and classification, regulation of nitrogen and phosphorus nutrients signal pathways, participation in plant growth and development, and stress response in recent years. Meanwhile, possible hot research topics and fields of NLP were proposed, which may provide reference for further researches.

Key words: NLP transcription factor; nitrogen and phosphorus nutrients; growth and development of plants; stress response

轉錄因子是可以與真核基因上游特定序列進行專一性結合,并在特定的時空維度上調控目標基因表達水平的蛋白質分子 [1] 。NLP (Nin-like protein)是1個具有3個主要保守結構域的植物特異性家族,在多種植物中均有發現 [2-5] 。關于NLP家族的研究最早可追溯到其同源基因結瘤起始基因(Nodule inception, NIN ) [6] 。第一個 NIN 基因是從豆科植物百脈根( Lotus corniculatus ?)中發現的,是豆科植物和放線菌結瘤植物所必需的基因 [6] 。后續研究發現,在非豆科植物中也存在該類基因,并命名為 NLP 基因 [6] 。進一步的基因功能分析結果表明, NLP 具有感知硝酸鹽信號的能力,參與硝酸鹽信號通路,可激活下游靶基因,從而調控植物對硝酸鹽的吸收與同化以及協調氮磷的相互作用 [5,7-9] 。硝酸鹽除了是植物生長過程中需求量最大的礦質元素之外,在植物中還能作為信號分子,調節相關基因的表達,進而影響植物生長發育以及脅迫應答等 [10] 。本研究主要從NLP轉錄因子的結構和分類、參與植物中氮磷養分信號通路以及對植物生長發育和脅迫應答的影響進行綜述,提出目前存在的問題并對今后研究方向進行展望。

1 NLP轉錄因子結構和數量

最新研究發現,典型的NLP蛋白結構包括3個主要結構域:RWP-RK、PB1和NRD [5] 。RWP-RK是由約60個氨基酸殘基包含RWPXRK基序組成的DNA結合結構域,可以特異性結合靶基因啟動子區域的硝酸鹽響應的順式作用元件(Nitrate-responsive elements,NREs) [6,11-13] 。PB1是1個位于C端的結構域,由約80個氨基酸殘基組成,包含2個 α 螺旋、1個混合的五鏈 β 折疊和1個酸性OPCA基序,參與硝酸鹽誘導的蛋白質-蛋白質相互作用 [13-16] 。NRD(nitrate-responsive domain)是硝酸鹽響應結構域,是NLPs的N端保守結構域,其中S205位點是NLP核保留過程中必不可少的磷酸化位點 [5,17] 。

研究發現,擬南芥( Arabidopsis thaliana )、玉米( Zea mays )、藜麥( Chenopodium quinoa ?)中均有9個 NLP 基因,水稻( Oryza sativa )、蘋果( Malus domestica )和番茄( Lycopersicon esculentum )中均有6個 NLP 基因,蒺藜苜蓿( Medicago truncatula )中有5個 NLP 基因,毛果楊( Populus trichocarpa )中有14個 NLP 基因,甘藍型油菜( Brassica napus ?)中有31個 NLP 基因,小麥( Triticum aestivum )中有37個 NLP 基因 [2-4,6, 18-22] 。表明,不同物種中 NLP 基因數量存在差異。

2 NLP參與氮磷養分信號通路調控

2.1 NLP參與硝酸鹽反應信號通路

NLP是調控氮響應的核心轉錄因子,大多數位于低硝酸鹽濃度的細胞質中,當感測到高硝酸鹽濃度時,它們被轉運至細胞核,激活數百個與硝酸鹽運輸和代謝有關的基因 [23-25] 。研究發現,硝酸鹽- Ca 2 + ?-NLP級聯反應是主要的硝酸鹽反應信號通路 [26-27] 。外源硝酸鹽濃度信號通過硝態氮轉運蛋白NPF6.3(ptr family6.3/protein nrt1.1)使細胞質中Ca 2+ 濃度發生變化;隨后,硝酸鹽觸發的Ca 2+ 信號被傳輸到3個下游鈣離子傳感器蛋白質激酶(Ca 2+ -sensor protein kinases, CPKs ),包括CPK10、CPK30和CPK32 [26,28-29] 。NLP6、NLP7感知到 CPKs 信號,使其保守的絲氨酸205(Ser205)磷酸化從而保留在細胞核中,進而與硝酸鹽響應過程中的順式作用元件結合來激活初級硝酸鹽反應基因 [26] 。此外,還有研究結果表明,水稻中硝酸鹽-OsNRT1.1B-OsSPX4-OsNLP3級聯反應,也是硝酸鹽信號通路一個關鍵部分 [9] 。硝酸鹽信號被NRT1.1B感知并促進磷感知蛋白質SPX4的降解,使得NLP3釋放到細胞核中從而激活硝酸鹽響應基因的表達 [9] 。此外,OsNLP4也能夠通過影響硝酸還原酶( NR )活性調節植物氮響應 [30] 。這是因為OsNLP4可以調控 NR 所必需的元素(鐵和鉬)的濃度來影響 NR 活性,進而調節硝酸鹽信號通路中的基因表達 [30] 。

2.2 NLP參與缺磷響應信號通路

磷酸鹽信號通常由磷酸鹽虧缺激活,誘導磷酸鹽饑餓誘導基因(Phosphate starvation–induced genes, PSI )的表達 [9] 。在擬南芥活體中進行的熒光素酶成像結果顯示,氮源是激活磷酸鹽饑餓反應的先決條件 [31] 。在硝酸鹽存在的條件下,磷饑餓反應可以通過NLP-NIGT1-SPX-PHR信號傳導激活 [32] 。因為磷酸鹽饑餓反應(Phosphate starvation response, PHR) 轉錄因子在磷信號通路中起核心調控作用,其中AtPHR1(在擬南芥中)和 OsPHR2(在水稻中)作為中樞調節因子來激活 PSI 基因的表達 [33-35] 。磷感知蛋白質SPX (SYG1/Pho81/XPR1)是細胞中感應磷素有效性的蛋白質 [33-36] 。在磷充足的條件下,PHR轉錄因子與SPX蛋白家族成員形成SPX-PHR復合物并保持非活性狀態;在缺磷條件下,PHR轉錄因子從SPX-PHR復合物中釋放出來,誘導 PSI 基因表達,從而啟動磷饑餓反應 [9, 37-38] ?;谠|體的瞬時表達測定和染色質免疫沉淀測定的結果表明,由硝酸鹽誘導基因編碼的NIGT1(Nitrate-inducible、garp-type transcriptional repressor1)轉錄抑制因子能被NLP誘導激活,然后抑制 SPX 基因的啟動子活性,從而影響磷饑餓反應的SPX-PHR調節系統 [39-40] 。因此,氮信號通過激活NLP上調NIGT1的表達來抑制 SPX 的表達,使PHR蛋白從SPX-PHR復合體中釋放,進而啟動磷饑餓反應 [32] 。

3 NLP調控植物生長發育

3.1 NLP調控植物種子萌發

脫落酸(ABA)在許多植物發育過程中誘導和維持種子的休眠。因此,種子萌發往往受到ABA的負調控 [41] 。在低氮的不利條件下,讓種子保持休眠狀態,有利于提高植物在自然界的存活率 [10] 。與之相反,硝酸鹽可以通過降低ABA濃度來促使種子萌發 [10, 42] 。研究結果表明,AtNLP8是硝酸鹽促進種子萌發所必需的 [43] ,因為在硝酸鹽存在的情況下,AtNLP8除了主要激活硝酸鹽誘導的轉錄因子和氮代謝酶的表達,還以硝酸鹽依賴的方式直接結合ABA水解酶的CYP707A2基因的啟動子,上調其表達水平,使ABA積累減少,從而促進種子萌發 [43-45] 。吳翔宇等 [22] 也證實了在毛果楊種子中, NLPs 表達情況在不同萌發條件下有差異:在有光的萌發條件下PtrNLP1、PtrNLP6、PtrNLP7、PtrNLP12、PtrNLP13 5個基因被檢測到,在黑暗中萌發的種子中則檢測到PtrNLP1、PtrNLP8、PtrNLP12、PtrNLP14? 4個基因的表達。這可能是因為光照影響了種子對硝酸鹽的敏感性 [46] ,而NLP可能參與了光信號調控種子萌發的過程。

3.2 NLP調控植物根系生長發育

植物根系是植物吸收水分和養分的主要器官,而硝酸鹽作為信號和養分可以調節根系生長發育相關基因的表達,以及通過改變根系構型和調節氮素吸收來適應環境的變化 [47-49] 。Takeo等 [50] 研究發現擬南芥中同時敲除BTB和TAZ結構域蛋白質(BTB and TAZ domain protein,BT)基因家族的BT1和BT2會影響依賴硝酸鹽調節的側根發育,因為BT1和BT2的表達水平直接受轉錄因子NLP7的調控。Guan等 [51] 也發現擬南芥中NLP6/7與TCP20相互作用可以促進氮饑餓條件下根分生組織的生長;同時nlp6/7突變體表現出顯著的根生長遲緩以及根分生組織和分生組織細胞數量的減少。有更直接的研究結果表明,AtNLP7過表達的植株根系比野生型具有更長的初生根和更多的側根 [52] 。這是因為TCP20和NLP6/7 相互作用是G2/M細胞周期進展基因CYCB1;1 表達和氮饑餓下根分生組織生長所必需的 [51] 。TCP20通過直接與 NRT1.1、NRT2.1、NIA1的啟動子結合來調節側根生長以及通過結合CYCB1;1啟動子中的GCCCR基序來調節初生根生長 [51,53-54] 。此外,生長素是調節植物根系生長發育的關鍵影響因子。吲哚-3-丙酮酸 (IPyA) 途徑是生長素合成的主要途徑,其中色氨酸轉氨酶相關酶2(Tryptophan aminotransferase related 2,TAR2)在此途徑中起重要作用 [55-57] 。低氮條件下,TAR2是側根原基中生長素合成和積累所必需的 [57] 。最新研究發現,AtNLP7通過直接與TAR2的啟動子結合上調其表達,然后維持側根原基中的生長素信號,從而促進硝酸鹽介導的側根發育 [58] 。

其他作物中,NLP轉錄因子對根的生長發育也有顯著影響。例如,玉米在低氮條件下,zmnlp5突變體植株根長顯著短于野生型 [59] 。這是由于ZmNLP5功能喪失,導致其根部ZmNIR1.1表達量顯著降低,使得亞硝酸鹽在根尖過度積累產生毒害,進而抑制根生長伸長 [14,59-60] 。說明NLP5在玉米植株響應低氮環境根部伸長生長中發揮重要功能。毛果楊中,除PtrNLP1 、PtrNLP14外,其余12個基因在根中都有較高的表達豐度, PtrNLP1、PtrNLP2、PtrNLP5、PtrNLP8、PtrNLP9在木質部中有表達 [22] 。說明毛果楊NLP基因在吸收組織和運輸組織中具有較高的表達量 [22] 。水稻中,osnlp1突變體與野生型相比其根長顯著縮短,而OsNLP1過表達株系則顯著改善了根的生長,說明OsNLP1正調控水稻根長 [61] 。

3.3 NLP調控植物根系結瘤

氮饑餓是植物根瘤形成和發育的先決條件,因此,硝酸鹽可以抑制結瘤 [62] 。轉錄因子NIN在根瘤的形成過程中發揮著不可或缺的作用:通過與靶基因的啟動子結合來介導根瘤菌侵染和根瘤的形成 [11,24,63-64] 。蒺藜苜蓿中,硝酸鹽抑制根瘤菌感染、結瘤和固氮的前提條件是響應硝酸鹽信號的MtNLP1在細胞核中積累 [20] 。MtNLP1的過表達會導致植株抑制硝酸鹽結瘤的超敏反應,而mtnlp1突變體則因為MtNLP1的缺失而阻礙了硝酸鹽信號的傳導,顯著減少了對NIR1和NRT2.1的誘導,并表現出缺氮的表型,因此降低了硝酸鹽對結瘤形成的抑制作用 [20] 。進一步研究發現,MtNLP1與MtNIN可以發生蛋白質相互作用,調節硝酸鹽響應基因的表達和硝酸鹽抑制結瘤 [20] 。這可能是因為硝酸鹽使MtNLP1在細胞核內積累與細胞核中MtNIN相互作用從而抑制與結瘤有關的基因CRE1和NF-YA1的表達;或者因為MtNLP1與MtNIN競爭直接結合CRE1和NF-YA1啟動子,從而阻斷MtNIN激活結瘤相關基因表達的能力 [20] 。還有研究發現,NLP1-CLE35-SUNN是硝酸鹽抑制結瘤通路,在硝酸鹽存在的情況下,硝酸鹽信號使NLP1穿梭到細胞核,激活可以響應硝酸鹽信號和根瘤菌的CLE35表達,然后將其產物運輸到地上部激活SUNN表達,從而抑制蒺藜苜蓿根系結瘤 [65-67] 。Nishida等 [68] 在百脈根中也發現LjNLP4轉錄因子介導硝酸鹽抑制結瘤過程。因為LjNLP4響應硝酸鹽脅迫并直接調節硝酸鹽誘導型共生基因CLE-RS2的表達,從而觸發結瘤數的負調節 [68] 。

3.4 NLP調控植物開花結果發育進程與氮素利用率

植物的開花結果受到內外因素的影響,是植物產量的重要影響因素之一。研究發現,水稻中,OsNLP1過表達可以在不同氮肥條件下提高籽粒產量以及氮素利用率(NUE),而在低氮條件下,敲除OsNLP1則降低NUE和作物產量 [61] 。這是因為OsNLP1直接調節水稻氮素利用的關鍵調控因子OsNRT1.1A、OsNRT1.1B和OsGRF4的表達,從而間接地調節氮肥利用率來提高作物籽粒產量 [61,69] 。因此,OsNLP1是在低氮條件下,培育高產量和氮肥利用率高的品種的重要研究對象。轉錄組分析結果表明,OsNLP4通過直接結合硝酸鹽響應順式元件,調控大多數已知氮吸收、同化和信號傳遞基因的表達 [61] 。OsNLP4過表達株系與野生型相比產量顯著提高30%,NUE顯著提高47% [70] 。最新研究結果表明,OsNLP4通過將OsNIR啟動子中的NRE基序增加4倍來增強NUE中的氮同化,增強了OsNLP4-OsNIR級聯反應,從而增加了水稻分蘗數量和產量 [71] 。

其他作物中NLP對植物的開花結果也存在類似影響。番茄中SlNLP4、SlNLP6在地上部組織中優先表達,其轉錄豐度在開花過程中顯著上調,表明它們可能通過調控氮的轉運和同化來支持花和果實的發育 [3] 。研究結果表明,玉米中ZmNLP6、ZmNLP8在低硝酸鹽和高硝酸鹽條件下均可促進植物生長,并在低硝酸鹽條件下提高種子產量 [72] 。因為ZmNLP6 和ZmNLP8在營養生長階段13(V13)的葉片和生殖生長階段1(R1)的根系中表達水平最高,在根、雄穗和籽粒中的表達量較高 [72] 。V13是抽雄時期,R1是灌漿階段,這2個階段對于玉米生產都是必不可少的。這意味著ZmNLP6和ZmNLP8在這些階段的表達調控,可能對于最大限度地提高玉米產量具有極其重要的作用。

4 NLP與非生物逆境脅迫

4.1 NLP與干旱脅迫

干旱作為一種非生物脅迫,輕則使作物減產,重則使作物永久萎蔫甚至絕產。擬南芥中,AtNLP7可能在植物氣孔運動和抗旱性方面發揮作用 [8] 。與野生型相比,atnlp7突變體在葉片上的失水速度更慢,遭受干旱脅迫后表現出更少的損傷,并且補充水分后能夠恢復健康,而野生型則不能 [8] 。因此,擬南芥缺失NLP7后,比野生型具有更強的抗旱能力,說明植物中NLP7的表達與植物抗旱性有關。果樹枳中NLP的表達在不同水分條件下有所不同 [73] 。枳葉片NLP的表達水平在干旱脅迫前期、中期上調,后期下調;枳根中NLP的表達水平在干旱脅迫下持續下調,其中PtNLP2、PtNLP7的表達量在枳根響應干旱脅迫的過程中變化較大 [73] 。與枳葉片NLP表達模式相似,隨著干旱脅迫的持續,蘋果中MdNLP2、MdNLP3、MdNLP5的表達情況均呈現出先升高后降低的趨勢,說明蘋果中NLP也參與干旱脅迫過程 [19] 。

4.2 NLP與氮素脅迫

植物缺氮是作物生長發育和產量提高最常見的限制因子之一 [74] 。缺氮條件下,藜麥中CqNLP2、CqNLP3、CqNLP5、CqNLP8表達受抑制,低氮下則被誘導表達;低氮處理后期,CqNLP9的表達量急劇增加 [21] 。番茄進行氮饑餓處理后,SlNLP1、SlNLP2、SlNLP4、SlNLP6的表達量均上調 [3] 。與番茄中NLP表達模式不同,蘋果在氮饑餓處理后 NLP 表達量呈現先升高后降低的趨勢 [19] 。在氮饑餓條件下,水稻中OsNLP1表達量迅速增加 [61] 。這主要是因為OsNLP1蛋白定位于細胞核,對氮饑餓反應敏感,通過與NRE基序結合調控硝態氮/銨吸收和同化相關基因的表達 [61] 。

5 展 望

提高作物氮素利用率是作物施肥和實現農業可持續發展的重要目標。研究植物本身的氮素吸收、同化和轉運的機制是提高植物氮素利用率的關鍵依據。NLP參與調控氮磷養分信號通路,在植物生長發育過程中以及脅迫應答中發揮重要作用。通過總結近年來NLP家族研究進展發現,不同植物中NLP轉錄因子家族的數量和結構存在較大差異,其功能還需進一步研究。目前對NLP功能的研究主要集中于擬南芥和豆科植物,而對于禾本科作物和木本植物NLP功能的研究仍然相對較少。因此,我們目前對 NLP 基因功能的認識仍然具有局限性,未來需要更多的研究來闡明其更詳細的特征。例如, NLP 對非生物脅迫響應后是通過什么調節機制來增強植物的抗脅迫能力? NLP 如何應答與調控生物脅迫? NLP 如何在各種植物器官和各類細胞中發揮作用?通過解決這些問題,完善NLP在植物中的功能作用,將有助于更全面地理解氮素的吸收和同化過程,并為作物生產中提高氮肥利用率制定有效的策略。

參考文獻:

[1] LIU L, WHITE M J, MACRAE T H. Transcription factors and their genes in higher plants functional domains, evolution and regulation[J]. European Journal of Biochemistry, 1999, 262(2): 247-257.

[2] LIU M, CHANG W, FAN Y H, et al. Genome-wide identification and characterization of NODULE-INCEPTION-Like protein (NLP) family genes in ?Brassica napus [J]. International Journal of Molecular Sciences, 2018, 19(8): 2270.

[3] LIU M Y, ZHI X N, WANG Y, et al. Genome-wide survey and expression analysis of NIN-like protein (NLP) genes reveals its potential roles in the response to nitrate signaling in tomato[J]. BMC Plant Biology, 2021, 21(1): 347.

[4] KUMAR A, BATRA R, GAHLAUT V, et al. Genome-wide identification and characterization of gene family for RWP-RK transcription factors in wheat ( Triticum aestivum ?L.)[J]. PLoS One, 2018, 13(12): e208409.

[5] MU X H, LUO J. Evolutionary analyses of NIN-like proteins in plants and their roles in nitrate signaling[J]. Cellular and Molecular Life Sciences, 2019, 76(19): 3753-3764.

[6] SCHAUSER L, WIELOCH W, STOUGAARD J. Evolution of NIN-Like proteins in ?Arabidopsis , rice, and ?Lotus japonicus [J]. Journal of Molecular Evolution, 2005, 60(2): 229-237.

[7] KONISHI M, YANAGISAWA S. ?Arabidopsis ?NIN-like transcription factors have a central role in nitrate signalling[J]. Nature Communications, 2013, 4(1): 783-798.

[8] CASTAINGS L, CAMARGO A, POCHOLLE D, et al. The nodule inception-like protein 7 modulates nitrate sensing and metabolism in ?Arabidopsis [J]. Plant Journal, 2009, 57(3): 426-435.

[9] HU B, JIANG Z, WANG W, et al. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants[J]. Nature Plants, 2019, 5(4): 401-413.

[10] ISABEL F, SEBASTIAN M, FRANCISCA P D, et al. Nitrate signaling and the control of ?Arabidopsis ?growth and development[J]. Current Opinion in Plant Biology, 2019, 47: 112-118.

[11] SCHAUSER L, ROUSSIS A, STILLER J, et al. A plant regulator controlling development of symbiotic root nodules[J]. Nature, 1999, 402(6758): 191-195.

[12] SOYANO T, SHIMODA Y, HAYASHI M. Nodule inception antagonistically regulates gene expression with nitrate in ?Lotus japonicus [J]. Plant and Cell Physiology, 2015, 56(2): 368-376.

[13] CHARDIN C, GIRIN T, ROUDIER F, et al. The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development[J]. Journal of Experimental Botany, 2014, 65(19): 5577-5587.

[14] GE M, WANG Y C, LIU Y H, et al. The NIN-like protein 5 (ZmNLP5) transcription factor is involved in modulating the nitrogen response in maize[J]. Plant Journal, 2020, 102(2): 353-368.

[15] KONISHI M, YANAGISAWA S. The role of protein-protein interactions mediated by the PB1 domain of NLP transcription factors in nitrate-inducible gene expression[J]. BMC Plant Biology, 2019, 19(1): 90.

[16] SUMIMOTO H, KAMAKURA S, ITO T. Structure and function of the PB1 domain, a protein interaction module conserved in animals, fungi, amoebas, and plants[J]. Science′s STKE: Signal Transduction Knowledge Environment, 2007, 401:re6.

[17] KONISHI M, YANAGISAWA S. Emergence of a new step towards understanding the molecular mechanisms underlying nitrate-regulated gene expression[J]. Journal of Experimental Botany, 2014, 65(19): 5589-5600.

[18] GE M, LIU Y H, JIANG L, et al. Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response[J]. Plant Growth Regulation, 2018, 84(1): 95-105.

[19] 王 尋,陳西霞,李宏亮,等. 蘋果NLP(Nin-Like Protein)轉錄因子基因家族全基因組鑒定及表達模式分析[J]. 中國農業科學,2019, 52(23): 4333-4349.

[20] LIN J S, LI X L, LUO Z P, et al. NIN interacts with NLPs to mediate nitrate inhibition of nodulation in ?Medicago truncatula [J]. Nature Plants, 2018, 4(11): 942.

[21] 朱滿喜,張玉榮,楊雅舒,等. 藜麥NLP轉錄因子家族的鑒定及表達分析[J]. 華北農學報, 2021, 36(4): 37-46.

[22] 吳翔宇,許志茹,曲春浦,等. 毛果楊 NLP 基因家族生物信息學分析與鑒定[J]. 植物研究, 2014, 34(1): 37-43.

[23] 李晨陽,孔祥強,董合忠. 植物吸收轉運硝態氮及其信號調控研究進展[J]. 核農學報, 2020, 34(5): 982-993.

[24] LIU J Y, BISSELING T. Evolution of NIN and NIN-like genes in relation to nodule symbiosis[J]. Genes, 2020, 11(7): 777.

[25] CHLOE M, FTAN O R, Loren C, et al. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants[J]. Nature Communications, 2013, 4(1): 859-868.

[26] LIU K H, NIU Y J, KONISHI M, et al. Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks[J]. Nature, 2017, 545(7654): 311-316.

[27] KROUK G. Nitrate signalling: calcium bridges the nitrate gap[J]. Nat Plants, 2017, 3: 17095.

[28] RIVERAS E, ALVAREZ J M, VIDAL E A, et al. The calcium ion is a second messenger in the nitrate signaling pathway of ?Arabidopsis [J]. Plant Physiol, 2015, 169(2): 1397-1404.

[29] HO C H, LIN S H, HU H C, et al. CHL1 functions as a nitrate sensor in plants[J]. Cell, 2009, 138(6): 1184-1194.

[30] WANG M Y, HASEGAWA T, BEIER M, et al. Growth and nitrate reductase activity are impaired in rice osnlp4 mutantssupplied with nitrate[J]. Plant Cell Physiol, 2021, 62(7):1156-1167.

[31] UEDA Y, KIBA T, YANAGISAWA S. Nitrate-inducible NIGT1 proteins modulate phosphate uptake and starvation signalling via transcriptional regulation of ?SPX ?genes[J]. Plant Journal, 2020, 102(3): 448-466.

[32] HU B, CHU C C. Nitrogen-phosphorus interplay: old story with molecular tale[J]. New Phytologist, 2020, 225(4): 1455-1460.

[33] RUBIO V, LINHARES F, SOLANO R, et al. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae[J]. Genes and Development, 2001, 15(16): 2122-2133.

[34] ZHOU J, JIAO F C, WU Z C, et al. OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants[J]. Plant Physiology, 2008, 146(4): 1673-1686.

[35] BUSTOS R, CASTRILLO G, LINHARES F, et al. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in ?Arabidopsis [J]. PLoS Genetics, 2010, 6(9): e1001102.

[36] DUAN K, YI K K, DANG L, et al. Characterization of a sub-family of ?Arabidopsis ?genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation[J]. Plant Journal, 2008, 54(6): 965-975.

[37] LV Q D, ZHONG Y J, WANG Y G, et al. SPX4 Negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice[J]. Plant Cell, 2014, 26(4): 1586-1597.

[38] PUGA M I, MATEOS I, CHARUKESI R, et al. SPX1 is a phosphate-dependent inhibitor of PHOSPHATE STARVATION RESPONSE 1 in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(41): 14947-14952.

[39] UEDA Y, KIBA T, YANAGISAWA S. Nitrate-inducible NIGT1 proteins modulate phosphate uptake and starvation signalling via transcriptional regulation of ?SPX ?genes[J]. The Plant Journal, 2020, 102(3): 448-466.

[40] MAEDA Y, KONISHI M, KIBA T, et al. A NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in Arabidopsis[J]. Nature Communications, 2018, 9(1): 153-182.

[41] NAMBARA E, OKAMOTO M, TATEMATSU K, et al. Abscisic acid and the control of seed dormancy and germination[J]. Seed Science Research, 2010, 20(2): 55-67.

[42] LISZA D, EHSAN K, DAWEI Y, et al. Regulation of seed dormancy and germination by nitrate[J]. Seed Science Research, 2018, 28(3): 150-157.

[43] YAN D, EASWARAN V, CHAU V, et al. NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in ?Arabidopsis [J]. Nature Communications, 2016, 7(1): 60-78.

[44] DUERMEYER L, KHODAPANAHI E, YAN D, et al. Regulation of seed dormancy and germination by nitrate[J]. Seed Science Research, 2018, 28(S1): 150-157.

[45] OKAMOOTO M, KUWAHARA A, SEO M, et al. CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis[J]. Plant Physiol, 2006, 141(1): 97-107.

[46] FOOTITT S, HUANG Z Y, CLAY H A, et al. Temperature, light and nitrate sensing coordinate ?Arabidopsis ?seed dormancy cycling, resulting in winter and summer annual phenotypes[J]. Plant Journal, 2013, 74(6): 1003-1015.

[47] NISHIDA H, TANAKA S, HANDA Y, et al. A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in ?Lotus japonicus [J]. Nature Communications, 2018, 9(1): 499.

[48] WANG Y Y, HSU P K, TSAY Y F. Uptake, allocation and signaling of nitrate[J]. Trends in Plant Science, 2012, 17(8): 458-467.

[49] Fan X R, NAZ M, Fan X R, et al. Plant nitrate transporters: from gene function to application[J]. Journal of Experimental Botany, 2017, 68(10): 2463-2475.

[50] TAKEO S, SHUGO M, MINEKO K, et al. Direct transcriptional activation of ?BT ?genes by NLP transcription factors is a key component of the nitrate response in ?Arabidopsis [J]. Biochemical and Biophysical Research Communications, 2017, 483(1): 380-386.

[51] GUAN P Z, RIPOLL J J, WANG R H, et al. Interacting TCP and NLP transcription factors control plant responses to nitrate availability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(9): 2419-2424.

[52] YU L H, WU J, TANG H, et al. Overexpression of ?Arabidopsis ?NLP7 improves plant growth under both nitrogen-limiting and-sufficient conditions by enhancing nitrogen and carbon assimilation[J]. Scientific Reports, 2016, 6: 27795.

[53] GUAN P Z, WANG R C, NACRY P, et al. Nitrate foraging by ?Arabidopsis ?roots is mediated by the transcription factor TCP20 through the systemic signaling pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(42): 15267-15272.

[54] LI C, POTUSCHAK T, COLON-CARMONA A, et al. ?Arabidopsis ?TCP20 links regulation of growth and cell division control pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36): 12978-12983.

[55] RUBIO V, BUSTOS R, IRIGOYEN M L, et al. Plant hormones and nutrient signaling[J]. Plant Molecular Biology, 2009, 69(4): 361-373.

[56] MASHIGUCHI K, TANAKA K, SAKAI T, et al. The main auxin biosynthesis pathway in ?Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(45): 18512-18517.

[57] MA W Y, LI J J, QU B Y, et al. Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in ?Arabidopsis [J]. Plant Journal, 2014, 78(1): 70-79.

[58] ZHANG T T, KANG H, FU L L, et al. NIN-like protein 7 promotes nitrate-mediated lateral root development by activating transcription of TRYPTOPHAN AMINOTRANSFERASE RELATED 2[J]. Plant Science, 2021, 303: 110771.

[59] 葛 敏,王元琮,寧麗華,等. 氮響應轉錄因子Zm NLP5影響玉米根系生長的功能研究[J]. 作物學報, 2021, 47(5): 796-802.

[60] HACHIYA T, UEDA N, KITAGAWAi M, et al. Arabidopsis root-type ferredoxin: NADP(H) Oxidoreductase 2 is involved in detoxification of nitrite in roots[J]. Plant and Cell Physiology, 2016, 57(11): 2440-2450.

[61] ALFATIH A, WU J, ZHANG Z S, et al. Rice NIN-LIKE PROTEIN 1 rapidly responds to nitrogen deficiency and improves yield and nitrogen use efficiency[J]. Journal of Experimental Botany, 2020, 71(19): 6032-6042.

[62] BARBULOVA A, ROGATO A, D′APUZZO E, et al. Differential effects of combined N sources on early steps of the nod factor-dependent transduction pathway in ?Lotus japonicus [J]. Molecular Plant-Microbe Interactions, 2007, 20(8): 994-1003.

[63] MARSH J F, RAKOCEVIC A, MITRA R M, et al. Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase[J]. Plant Physiology, 2007, 144(1): 324-335.

[64] VERNIE T, KIM J, FRANCES L, et al. The NIN transcription factor coordinates diverse nodulation programs in different tissues of the medicago truncatula root[J]. Plant Cell, 2015, 27(12): 3410-3424.

[65] LEBEDEVA M, AZARAKHSH M, YASHENKOVA Y, et al. Nitrate-induced CLE peptide systemically inhibits nodulation in medicago truncatula[J]. Plants-Basel, 2020, 9(11): 1456.

[66] MENS C, HASTWELL A H, SU H, et al. Characterisation of ?Medicago truncatula ?CLE34 and CLE35 in nitrate and rhizobia regulation of nodulation[J]. New Phytologist, 2021, 229(5): 2525-2534.

[67] LUO Z P, LIN J S, ZHU Y L, et al. NLP1 reciprocally regulates nitrate inhibition of nodulation through SUNN-CRA2 signaling in ?Medicago truncatula [J]. Plant Communications, 2021, 2(3): 100183.

[68] NISHIDA H, TANAKA S, HANDA Y, et al. A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in ?Lotus japonicus [J]. Nat Commun, 2018, 9(1): 499.

[69] JAGADHESAN B, SATHEE L, MEENA H S, et al. Genome wide analysis of NLP transcription factors reveals their role in nitrogen stress tolerance of rice[J]. Scientific Reports, 2020, 10(1): 9368.

[70] WU J, ZHANG Z S, XIA J Q, et al. Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency[J]. Plant Biotechnology Journal, 2021, 19(3): 448-461.

[71] YU J, XUAN W, TIAN Y L, et al. Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice[J]. Plant Biotechnology Journal, 2021, 19(1): 167-176.

[72] CAO H R, QI S D, SUN M W, et al. Overexpression of the maize ZmNLP6 and ZmNLP8 can complement the ?Arabidopsis ?nitrate regulatory mutant nlp7 by restoring nitrate signaling and assimilation[J]. Frontiers in Plant Science, 2017, 8: 1703.

[73] 曹雄軍,盧曉鵬,熊 江,等. 枳NLP轉錄因子克隆及其在不同水分條件下的表達[J]. 中國農業科學, 2016, 49(2): 381-390.

[74] ZHANG Z H, HU B, CHU C C. Towards understanding the hierarchical nitrogen signalling network in plants[J]. Current Opinion in Plant Biology, 2020, 55: 60-65.

(責任編輯:陳海霞)

收稿日期:2021-10-25

基金項目:西南大學科研啟動基金項目(SWU019012);高等學校學科創新引智計劃項目(B20053)

作者簡介:何炫頤(1998-),女,重慶人,碩士研究生,研究方向為植物營養與調控。(E-mail)876816420@qq.com

通訊作者:習向銀,(E-mail)xixiangyin@126.com;楊懷玉,(E-mail)yanghuaiyu@swu.edu.cn

主站蜘蛛池模板: 国产91在线|中文| 亚洲乱码精品久久久久..| 欧美日韩高清| 日本亚洲成高清一区二区三区| 日韩精品一区二区三区免费| 日韩国产精品无码一区二区三区 | 最新国产成人剧情在线播放| 国产成人综合久久| 精品国产美女福到在线不卡f| 高清精品美女在线播放| AV老司机AV天堂| 欧美日韩国产成人高清视频| 熟妇丰满人妻av无码区| 少妇露出福利视频| 亚洲娇小与黑人巨大交| 国产亚洲视频在线观看| 亚欧美国产综合| 亚洲日韩Av中文字幕无码| 久久免费观看视频| 99热这里只有免费国产精品| 激情六月丁香婷婷四房播| 狠狠色成人综合首页| vvvv98国产成人综合青青| 99re在线视频观看| 老司国产精品视频| 美女视频黄频a免费高清不卡| 亚洲综合极品香蕉久久网| 97久久免费视频| 欧美成人手机在线观看网址| 久久综合丝袜日本网| 一区二区三区高清视频国产女人| 欧美成人A视频| 亚洲成人动漫在线| 欧美yw精品日本国产精品| 孕妇高潮太爽了在线观看免费| 国产成人永久免费视频| 黄色三级网站免费| 精品综合久久久久久97超人| 国产91av在线| 91久久天天躁狠狠躁夜夜| aaa国产一级毛片| 色综合手机在线| 日韩精品久久久久久久电影蜜臀 | 国产美女精品一区二区| 国内老司机精品视频在线播出| 亚洲另类国产欧美一区二区| 国产精品hd在线播放| 国产另类乱子伦精品免费女| 91视频国产高清| 2020精品极品国产色在线观看 | 欧美一级高清片久久99| 国产又色又爽又黄| 动漫精品啪啪一区二区三区| 久久精品最新免费国产成人| 免费不卡视频| 日韩不卡高清视频| 亚洲中文字幕23页在线| 91色在线观看| aⅴ免费在线观看| 欧美无专区| 亚洲日本中文综合在线| 亚洲大学生视频在线播放| 在线看AV天堂| 欧美一级夜夜爽www| 国产99在线| 九色国产在线| 51国产偷自视频区视频手机观看| 国产成人精品一区二区不卡| 狂欢视频在线观看不卡| 久青草国产高清在线视频| 天天色天天综合| 亚洲国产看片基地久久1024| 久久国产免费观看| 正在播放久久| 日韩美毛片| 天堂中文在线资源| 久久久噜噜噜久久中文字幕色伊伊 | 欧美一区二区三区香蕉视| 亚洲成在线观看| 超碰91免费人妻| 欧美国产日韩一区二区三区精品影视 | 亚洲91精品视频|