999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于GA-BP神經網絡的短期負荷預測

2022-08-10 03:13:38孟亞男高思航張心人境周雪陽
吉林化工學院學報 2022年3期
關鍵詞:優化

孟亞男,高思航,張心人境,周雪陽

(吉林化工學院 信息與控制工程學院,吉林 吉林 132022)

隨著經濟的發展,人們對于供熱的需求也越來越普遍,對供熱的安全性要求也越來越高.現今國內有些供暖系統還不完善,換熱站溫度控制大多采用手動調節的方式,這種方式通常根據人的經驗對溫度控制,其調節往往具有滯后性,不能準確反映供暖過程中的供需關系[1].供暖溫度大于需求時,不利于能源節約;供暖溫度小于需求時,用戶室內溫度得不到保障.相較于傳統的控制方式,負荷預測在維持供熱負荷和用戶負荷方面明顯更具有優勢[2].負荷預測能夠更好地反應耗熱情況、可靠性高且更加易于管理,因此進行熱負荷預測是十分必要的.

熱負荷是受用戶自身和外界環境的各項因素共同影響的,主要有用戶建筑物自身的影響、氣象因素的影響、隨機因素的影響等[3].傳統的熱負荷預測方法有時間序列預測法和回歸模型預測法.時間序列預測法缺點是只能進行短期的負荷預測;回歸模型預測法對于換熱站這種具有非線性、大滯后、時變性的模型預測準確度不高[4].智能負荷預測的方法有灰色系統預測、人工神經網絡預測、專家系統等方法,其中人工網絡法應用較為廣泛.本文在使用BP神經網絡的基礎上,將GA加入,通過GA找出最優的權值和閾值,經過多次更新的最優值將其送入BP中.由于BP容易出現局部最小值的缺點,而加入了GA能在一定程度上改善這種缺點,并且在一定程度上提高了熱負荷預測精度.

1 基本原理

1.1 BP神經網絡概述

BP(back propagation)神經網絡——也被稱為誤差反向傳播網絡,是目前應用最廣泛的神經網絡,學習方法為最速下降法[5].BP神經網絡的訓練方式當為正向時,輸入參數經過處理后最終從輸出層輸出.當其輸出參數與期望值差距較大時,需要進行誤差反向傳播,不斷調整,直到達到期望的輸出值.它的結構如圖1所示.

圖1 神經網絡結構圖

1.2 遺傳優化算法概述

遺傳算法是一種模擬自然遺傳機制和生物進化理論的并行隨機搜索優化方法[6].它的進化方式就像達爾文進化論中所說的“適者生存”原理,將此種方法引入到優化參數形成的編碼串聯種群中,生物遺傳中也存在著選擇個體,染色體交叉最后變異的一個過程,編碼群亦是這個道理,通過選擇適應度好的個體,使兩個染色體進行交換,再進行變異的一個過程.對個體進行篩選,保留適應度值好的個體,淘汰適應度值差的個體,新的種群既繼承了上一代的信息,又優于上一代.重復直至滿足條件.

2 遺傳優化算法優化BP神經網絡

2.1 GA-BP原理

遺傳算法優化BP神經網絡分為3個部分:BP神經網絡結構確定、遺傳算法優化和BP神經網絡預測[7-8].首先,BP中的初始權值、閾值由GA進行優化,GA通過一系列選擇、交叉、變異找到其中最優適應度值相對應的個體,優化后再送入至BP神經網絡中.最后網絡進行數次訓練后得到預測輸出.

2.2 GA-BP算法流程

遺傳算法優化的BP神經網絡包括以下5種操作方式:

1.種群初始化

個體編碼方式為實數編碼,每個個體為一個實數串,由輸入層與隱層連接權值、隱層閾值、隱層與輸出層連接權值、輸出層閾值4部分組成.

2.適應度函數

它是用來將所需數據訓練好并送入BP神經網絡,并且把訓練數據預測誤差作為個體適應度值F:

(1)

式中:y為期望輸出;o為預測輸出.

3.選擇操作

選用輪盤賭法,即基于適應度比例的選擇策略,每個個體i的選擇概率P為:

fi=k/Fi,

(2)

(3)

式中,F為i的適應度值,由于F越小表示F越好,因此對它求倒數;N為種群個體數目.

4.交叉操作

在染色體中隨機選擇一個染色體與另一個染色體按一定的方式進行交叉得到一個全新個體的過程.

akj=akj(1-b)+aljb

alj=alj(1-b)+akjb,

(4)

式中,b是[0,1]間的隨機數.

5.變異操作

選取第i個個體的第j個基因進行變異.變異的方式如下:

aij=aij+(aij-amax)*f(g)r>0.5

aij=aij+(amin-aij)*f(g)r≤0.5 ,

(5)

其中:f(g)=r2(1-g/Gmax).

GA-BP神經網絡的程序流程圖如圖2所示.

圖2 GA-BP神經網絡流程圖

3 GA-BP神經網絡仿真

將BP與GA-BP對換熱站進行負荷預測,并進行比對分析.本次以當日最高溫度、當日最低溫度、前一日的熱負荷、當日天氣情況以及風力級別作為模型的輸入,當日熱負荷作為輸出進行負荷預測.取某換熱站90組數據進行神經網絡預測,任意抽取其中的80組作為訓練集,剩下的10組作為神經網絡的測試集,設置迭代次數為100次,種群大小設置為50,隱含層層數經試驗選取7時為最優,交叉概率0.4,變異概率0.2,用MATLAB進行仿真,預測值與真實值仿真結果如圖3所示.

樣本

樣本圖3 預測值與真實值對比圖

預測輸出與期待輸出的誤差百分比如圖4所示.

圖4 誤差百分比圖

4 結 論

通過建立GA-BP神經網絡模型并仿真顯示,可以看出BP神經網絡的真實值與預測值存在一定的誤差,相較于后者經過GA優化的BP預測結果比前者更加準確.從誤差百分比可以看出它的預測效果也比僅采用BP的模型要更好.一般來說,短期負荷預測誤差一般不超過3%,中期負荷預測誤差一般不超過5%[9-10].由結果可以看出GA-BP神經網絡預測可以滿足短期負荷預測的要求.接下來再設計負荷預測的控制方案和氣候補償方案,以實現供熱管網更加科學,達到節能的目的.

猜你喜歡
優化
超限高層建筑結構設計與優化思考
房地產導刊(2022年5期)2022-06-01 06:20:14
PEMFC流道的多目標優化
能源工程(2022年1期)2022-03-29 01:06:28
民用建筑防煙排煙設計優化探討
關于優化消防安全告知承諾的一些思考
一道優化題的幾何解法
由“形”啟“數”優化運算——以2021年解析幾何高考題為例
圍繞“地、業、人”優化產業扶貧
今日農業(2020年16期)2020-12-14 15:04:59
事業單位中固定資產會計處理的優化
消費導刊(2018年8期)2018-05-25 13:20:08
4K HDR性能大幅度優化 JVC DLA-X8 18 BC
幾種常見的負載均衡算法的優化
電子制作(2017年20期)2017-04-26 06:57:45
主站蜘蛛池模板: 免费久久一级欧美特大黄| 大学生久久香蕉国产线观看 | 亚洲天堂网在线观看视频| 中文字幕亚洲乱码熟女1区2区| AV在线麻免费观看网站| 亚洲午夜18| 欧美成人看片一区二区三区| 精品一区二区无码av| 中文国产成人久久精品小说| 国产麻豆精品在线观看| 国产网站黄| 四虎永久在线| 怡春院欧美一区二区三区免费| 国产区精品高清在线观看| 亚洲第一区精品日韩在线播放| 国产视频入口| 人人妻人人澡人人爽欧美一区| 午夜视频www| 亚洲一区黄色| 亚洲va在线∨a天堂va欧美va| 青青草91视频| 2020亚洲精品无码| 亚洲成A人V欧美综合天堂| 国产黑丝一区| 精品一区二区三区中文字幕| 欧美一区中文字幕| 亚洲国产天堂久久综合226114| 99精品福利视频| 国产乱子精品一区二区在线观看| 国产综合另类小说色区色噜噜 | 在线亚洲精品福利网址导航| 国产91麻豆视频| 国产免费人成视频网| 亚洲人成网站18禁动漫无码| 国产swag在线观看| 欧美一区二区三区欧美日韩亚洲| 四虎国产在线观看| 国产精品第5页| 欧美黄色a| 亚洲高清无码精品| 亚洲欧美一级一级a| 日韩精品高清自在线| 呦视频在线一区二区三区| AV色爱天堂网| 国产h视频免费观看| 精品在线免费播放| 制服丝袜 91视频| 免费啪啪网址| 久久中文无码精品| 久操线在视频在线观看| 国产精品一区二区不卡的视频| 国产尤物jk自慰制服喷水| 久青草网站| 久久99国产精品成人欧美| 国产三区二区| 国产69精品久久| 久久精品女人天堂aaa| 全部毛片免费看| 日韩亚洲综合在线| 国产精品亚洲а∨天堂免下载| 99性视频| 在线视频亚洲色图| 国产精品久久久久婷婷五月| 欧美伊人色综合久久天天| 凹凸国产分类在线观看| 亚洲第一成人在线| 亚洲一区网站| 亚洲天堂免费在线视频| 国产精品林美惠子在线观看| 91视频国产高清| 在线欧美a| 亚洲AV色香蕉一区二区| 国产精品免费电影| 91麻豆精品国产91久久久久| 狠狠v日韩v欧美v| 精品久久综合1区2区3区激情| 国产成人免费视频精品一区二区| 亚洲成在线观看| 在线精品亚洲国产| 在线看AV天堂| 久久精品无码国产一区二区三区| 亚洲成人动漫在线|