999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The multiplicity and concentration of positive solutions for the Kirchhoff-Choquard equation with magnetic fields

2022-08-25 08:52:40LiWANG王莉

Li WANG(王莉)

College of Science,East China Jiaotong University,Nanchang 330013,China E-mail : wangli.4230163.com

Kun CHENG(程琨)

Department of Information Engineering,Jingdezhen Ceramic Institute,Jingdezhen 333403,China E-mail : chengkun0010@126.com.

Jixiu WANG(汪繼秀)+

School of Mathematics and Statistics,Hubei University of Arts and Science,,Xiangyang 441053,China E-mail : wangjiaxiu12r@aligun.com

1 Introduction and Main Results

d’Avenia et al. [14] studied the existence, regularity and asymptotic behavior of solutions to(1.4)for when f(u)=upand V(x)≡const. Foe when V(x)=1 and f satisfies Berestycki-Lions type assumptions, the existence of ground state solutions for a fractional Choquard equation was established in [29]. Recently, the author of [6] studied the multiplicity and concentration of positive solutions for (1.4) under local conditions on the potential V(x).

around the local minimum of V as ε →0. We must note that, in [25], the assumptions on the decay of V and the range for p ≥2 are optimal. In [9], the authors considered the ground state solutions of the Choquard equation (1.6) in R2. By variational methods, they proved the existence and concentration of ground states to(1.6)involving critical exponential growth in the sense of the Pohozˇaev-Trudinger-Moser inequality. Alves et al. [10] investigated the existence and concentration of solutions to equation (1.6) under the local potential well condition (V1)–(V2).

Remark 1.2 Our conclusion is still new even in the case that s=1 or that A=0.

The outline of this paper is as follows: in Section 2 we give the notations and recall some useful lemmas for the fractional magnetic Sobolev spaces. In Section 3, some preliminaries of problem (1.1) are given. In Section 4, we study the autonomous problem of (1.1). In the last section, we provide a multiplicity result for (1.1)via the Ljusternik-Schnirelmann category theory, and we study the concentration of the maximum points.

Throughout this paper, we will use the following notations: Br(0)={x ∈R3:|x|<r} is a ball in R3of radius r >0 at the origin;on(1)is a generic infinitesimal value. We always denote positive constants as C for convenience.

2 Variational Framework for Problem (1.1)

In this section, we outline the variational framework for problem (1.1) and give some preliminary lemmas. It is easy to see that, just performing the change of variables u(x)→u(εx),the problem (1.1) can be rewritten in the form

3 Preliminaries

which implies that there exists a τ0>0 (independent of u) such that τu≥τ0. Next, we show that the second conclusion holds. Assume, by contradiction, that there exist sequences

4 The Autonomous Problem

Hence, by using Ekeland’s variational principle [18], we can find vn∈Sλsuch that {vn} is a(PS)cV0sequence of Rλon Sλand that ‖vn‖λ→‖v‖λ. By Lemma 3.1,we have that{Rλ(vn)}is a (PS)cV0sequence of Iλ. It follows from Lemma 4.2 that there exists v ∈Sλsuch that Rλ(vn)→Rλ(v) in Hsλ. Taking this together with Lemma 4.1 and‖vn‖λ→‖v‖λ, we conclude that vn→v in Hsλ. □

5 The Proof of Theorem 1.1

主站蜘蛛池模板: 欧美色亚洲| 99re精彩视频| 欧美视频在线播放观看免费福利资源 | 午夜福利在线观看入口| 欧美日韩福利| 色吊丝av中文字幕| 无码AV日韩一二三区| 在线免费观看AV| 欧美特级AAAAAA视频免费观看| 国产精品综合色区在线观看| 国产精品欧美在线观看| 久久99国产综合精品女同| 亚洲中字无码AV电影在线观看| 国产精品30p| 欧美一区二区啪啪| 欧美区国产区| 国产精品私拍在线爆乳| 精品久久久久久中文字幕女| 亚洲伦理一区二区| 国产精品不卡片视频免费观看| 日韩亚洲综合在线| 国产一区二区免费播放| Aⅴ无码专区在线观看| 97影院午夜在线观看视频| 最新国产麻豆aⅴ精品无| 成AV人片一区二区三区久久| 五月丁香伊人啪啪手机免费观看| 激情亚洲天堂| 88国产经典欧美一区二区三区| 日韩国产综合精选| 亚洲αv毛片| 国产一区三区二区中文在线| 永久免费AⅤ无码网站在线观看| 亚洲一区毛片| 国产91精品久久| 毛片视频网| 婷婷六月综合| 亚洲欧洲日产无码AV| 都市激情亚洲综合久久| 国产美女在线免费观看| 日韩无码黄色| 免费在线a视频| 波多野结衣视频一区二区| 色吊丝av中文字幕| 国产一级精品毛片基地| 亚洲男人天堂网址| 在线观看国产黄色| 欧美一级一级做性视频| 人妻丰满熟妇αv无码| 亚洲精品免费网站| 在线观看国产小视频| 中文字幕欧美成人免费| 蝴蝶伊人久久中文娱乐网| 久久美女精品| 2021最新国产精品网站| 亚洲无码四虎黄色网站| 日韩免费毛片| 欧美三级视频网站| 婷婷丁香在线观看| av在线5g无码天天| 欧美另类精品一区二区三区| 99在线视频精品| 精品伊人久久大香线蕉网站| 日韩精品一区二区三区大桥未久| 成人一区在线| 国产精品网址在线观看你懂的| 国产玖玖视频| 成人亚洲天堂| 伊人久综合| 99精品视频九九精品| 色婷婷在线影院| 最新日本中文字幕| 中文字幕一区二区人妻电影| 精品91自产拍在线| 久久久久国产精品嫩草影院| 国产成人h在线观看网站站| 一区二区三区在线不卡免费| 5388国产亚洲欧美在线观看| 女人18毛片一级毛片在线 | 久久77777| 天天综合网在线| 精品视频第一页|