梁競夫
(太原重型機械集團有限公司,太原 030024)
隨著我國經濟的快速發展,礦山機械、工程機械和海洋工程裝備等重型機械設備在能源、海洋、交通、冶金等領域被廣泛應用,由于齒輪齒條傳動具有結構簡單、傳動直接等特性,在這些設備中得到了充分應用。前幾年這些大型設備的核心技術幾乎被國外壟斷,隨著國內技術的不斷發展,這些大型設備已經開始國產化,傳動部件作為大型設備的核心部件,它的可靠性對于設備的性能起著至關重要的作用。
重載齒輪傳動最致命的失效形式是斷齒,斷齒會給重型設備帶來不可估量的損失,因此提高齒輪的彎曲強度是首要考慮的因素,對于重載齒輪齒條傳動,通常都是采用大模數、小齒輪少齒數的傳動方式,例如:對于自升式鉆井平臺的爬升齒輪,行業內基本取齒數為7,模數取80、100 mm等,根據平臺承載能力大小確定;對于大型挖掘機的推壓齒輪齒條傳動,齒數通常取14,模數取40、50 mm等。
這些大模數的齒輪齒條傳動設計目前沒有設計標準可參考,也沒有成熟的計算軟件計算強度。目前設計還是通過有限元計算齒根應力,如果強度計算不通過,重新進行齒形設計,再建模,再進行有限元分析計算,設計過程很繁瑣。本文研究齒形各參數對齒根應力及耐磨性的影響,導出齒形設計的計算公式,并針對齒形推導齒根應力的快捷計算方法。下列內容中的齒輪齒條指的都是重載大模數的齒輪齒條。
大模數齒輪齒條不適于采用通常的滾、插加工方法。對于小齒輪往往是根據齒形設計銑削加工工藝,對于齒條則根據齒形采取數控切割或鑄造而成。為了便于制造,在礦用大型挖掘設備上推壓齒輪齒形曾經采用過近似漸開線的3段圓弧組成,基圓以下是齒根圓弧,分度圓與齒根圓弧之間為一段圓弧,分段圓以上為另一段圓弧。在使用過程中傳動誤差大,引起振動,磨損嚴重。有的由于齒根圓弧設計不合理,出現過斷齒現象。如何使齒形設計得到優化,解決問題的關鍵還是齒輪的各項參數指標。
對于開式齒輪,齒頂太薄更容易磨損,建議齒輪頂厚S≥0.4m。上述適用于受疲勞載荷的齒輪齒條傳動,對于鉆井平臺類承受靜載荷的齒輪齒條傳動,S≥0.15m即可。國外大型挖掘機推壓機構XP2300、XP2800的推壓小齒輪齒頂后分別為0.41m、0.42m,國外知名的NOV升降裝置300 ft、400 ft自升式鉆井平臺的爬升小齒輪的齒頂厚分別為0.14m和0.15m。

式中:da為齒頂圓直徑;αa為齒頂壓力角;m為模數。
對于受疲勞載荷的齒輪齒條傳動,推薦重疊系數ε≥1.2,若重合度小,則嚙合沖擊大,對齒輪強度不利。對于鉆井平臺類主要承受靜載荷的齒輪齒條傳動,ε≥1.05即可。因為主要承受靜載荷的齒輪齒條壓力角通常都大于25°,重合度大,齒頂幾乎變尖,容易產生塑變。
式中,ha2′為嚙合點以上齒條有效齒頂高(如圖1)。


圖1 重合度計算圖形
根據使用工況,利用式(1)和式(2)可以求出齒頂圓直徑da和齒頂壓力角,同時滿足式(3),有了齒頂圓直徑,要看變位系數和齒輪的齒頂高系數的選取,若采用短齒大變位,齒輪齒厚加大,意味著嚙合點齒條齒厚減小,齒輪強度加大,根據齒輪齒條等強度原則選擇變位系數,齒輪正變位。
考慮到開式齒輪齒條齒形制造誤差、安裝距的誤差、周節累積誤差、傳動時齒面摩擦發熱膨脹,齒側間隙一般取0.12~0.15倍模數。齒側間隙的留取通過減薄齒輪齒條的齒厚實現。齒條齒根厚度厚。
在確定上述參數后,最終設計齒根圓角半徑。
學生自主申報的科研項目,往往是由同一屆學生甚至同班同學組成,重申請、輕完成的情況較為普遍[5],項目申報時學生正處于積極性高、精力充沛的大二、大三階段,學生在項目申報時表現積極,而在實施過程中因缺乏動力和持之以恒的精神,或者由于學生已臨近畢業,導致項目尚未完成而中途放棄的現象。這種情況一方面影響下次的申報,另一方面也影響了帶教教師的積極性。
齒輪齒根圓角采用單圓弧,相對齒輪而言,齒條危險截面的寬度比齒輪大,受載循環次數少,可以根據強度計算,齒根取雙圓弧,齒條采用雙圓弧可以減小齒根高,齒條基體增厚,齒條不易變形。根據需要選取齒條齒根圓弧半徑,這里主要是針對齒輪齒根圓角研究。對于齒輪齒條的傳動,在保證重疊系數和齒頂弧齒厚的情況下,齒輪最低嚙合點基本在基圓上,通常比基圓大2~3 mm。齒根單圓弧與漸開線的切點設為該最低嚙合點。齒根圓角半徑rρ計算如下:

式中:rρ為齒根圓角半徑,mm;Db為基圓直徑,mm;αce為齒根圓弧與漸開線切點的壓力角;Smin為分度圓實際齒厚,mm;α為分度圓壓力角;Dce為齒根圓弧與漸開線切點的直徑,Dce=Db+(2~3 mm)。
根據齒輪齒條的嚙合特點,不管安裝距是不是標準安裝距,節點始終是在齒輪分度圓上。根據圖2,齒條有效齒頂高ha2e計算如下:


圖2 齒條有效齒頂高計算圖形
對于重載大模數齒輪齒條傳動的計算,有很多文獻研究計算方法,有的用積分法,有的用映射函數法,在齒輪齒根彎曲應力的計算方法中,折截面比平截面計算的齒根應力更加精準,但折截面計算方法太復雜,用ISO的30°切線來確定危險截面的平截面法簡單,而且試驗表明兩種方法計算的齒根應力相差不超過5%~6%。對于低速重載的大模數齒輪齒條,加工時都是采用特殊的刀具和加工方法,目前沒有專門的計算軟件。大部分是通過有限元分析法進行計算。有限元計算過程復雜,必須建模分析,不利于初始參數設計。研究一種針對大模數齒輪齒條強度的快捷解析計算方法便于設計計算。
這里特別注意的是,是按單齒嚙合受力點還是按齒頂嚙合受力點計算齒根應力。齒輪精度較高時,齒根應力按單齒嚙合點進行計算;齒輪精度較低時,齒根應力具體是按哪一個方法計算,根據載荷分配系數Ka決定。

式中:Cr為同時嚙合的兩對輪齒迭加剛度系數的平均值;Δ為兩齒輪的基節差;ε為重合度;Fteff為輪齒分度圓上的圓周力,Fteff=Ft·KA·Kv·KB;B為齒寬。
當Ka≤1時,說明齒輪單齒受力點受力最大;當Ka≥1時,說明齒輪傳遞的全部載荷作用于齒頂,齒根應力按齒頂受力進行計算。
低速重載的大模數齒輪齒條制造精度都難以保證,即使齒輪齒條嚙合的重疊系數大于1.2,在齒傳遞載荷的過程中都是單齒受力,所以齒根應力應該按照齒頂受載進行計算,而不能按照單齒嚙合點的受載計算齒根應力。參考文獻[6]中,當齒輪精度低于11級時,齒根應力按照齒頂應力計算。
下面按照圖3和圖4推導專門用于低速重載的大模數齒輪齒條的齒根應力計算方法。

圖3 齒輪圖形

圖4 齒條圖形
根據ISO的30°切線來確定危險截面的平截面法(如圖3),齒根應力計算公式為:

式中,危險截面的寬度SF和力臂hF是計算的關鍵參數,下面分別按齒輪和齒條推導這兩個參數。
按照齒輪圖形(如圖3),P點為齒根圓弧的圓心,SF=2AC,hF=L-OA,在△OPD中,∠POD=π/Z,根據圖中三角形的幾何關系,得出:

根據齒條圖形(如圖4),e為兩齒根圓弧中心的距離,如果是單圓弧,e=0,齒條任意點的載荷角都等于壓力角,推導的關系式為:

式中:h為有效齒條高度,mm;Sa為齒條有效高度的齒厚,mm;Fn為有效高度的齒頂法向載荷,N。


圖5 載荷角計算圖
以300 ft自升式鉆井平臺升降裝置爬升齒輪齒條傳動為例,表1為小齒輪幾何參數,齒輪齒寬為190 mm,齒條寬為177 mm,按照爬升齒輪的推壓力2000 kN進行解析計算和有限元分析計算。

表1 小齒輪傳動幾何參數
根據式(4)和式(5),計算的齒輪參數如圖6所示,齒根弧半徑為35 mm,齒頂厚為0.15倍模數。

圖6 爬升齒輪齒條
為了便于計算,取一對齒嚙合進行計算(如圖7),推壓力加到齒條上,通過嚙入與嚙出兩種狀態計算齒條和齒輪的齒根應力。

圖7 有限元分析計算

表2 解析法和有限元分析法的齒根應力結果對比
本文的齒根應力計算方法與有限元比較,最大誤差約為5.1%,由于自升式鉆井平臺升降裝置長期承受靜載荷,齒根應力與齒輪、齒條各自材料的屈服強度比較即可。
1)針對低速重載大模數齒輪齒條傳動的失效形式,研究了特殊的齒形設計,以及齒形各個參數的匹配計算;2)通過載荷分配系數的計算,決定齒根應力是按全部載荷作用于齒頂還是按單齒嚙合點進行計算;3)針對低速重載大模數齒輪齒條傳動由于制造精度難以保證,載荷分配系數都大于1,根據ISO的30°切線來確定危險截面的平截面法推導出的齒根應力快捷計算公式,經過與有限元分析計算的值對比,誤差不超過10%。