段俊麗, 馮龍秀, 王昆, 肖桂娜
噴墨打印紙質SERS基底應用于水果中福美雙的檢測
段俊麗, 馮龍秀, 王昆, 肖桂娜*
(上海師范大學 數理學院,上海 200234)
采用噴墨打印技術在疏水性相片紙表面沉積銀納米薄膜,制備了一種高效的紙質表面增強拉曼散射(SERS)基底(銀納米薄膜/相片紙),并利用接觸角測量儀與掃描電子顯微鏡(SEM)表征相片紙書寫前后的浸潤性和表面形貌.通過模擬福美雙在果皮表面及果汁中的殘留狀態,對銀納米薄膜/相片紙基底的應用潛力進行評價.研究發現,該基底可以直接識別出果汁溶液或果皮表面摻雜的福美雙分子,不需作任何預處理.對摻雜福美雙的果汁最低檢測的質量濃度低至0.024 mg?L-1,且特征峰強度與濃度間具有較好的線性關系;對果皮表面殘留福美雙分子的檢測限為0.25 ng?cm-2.此外,在吸附福美雙/果汁的基底表面隨機選取10個點,研究銀納米薄膜/相片紙的均勻性,經計算1 142和1 377 cm-1處的特征峰的相對標準偏差分別為7.8%和5.7%.結果表明:銀納米薄膜/相片紙在農藥殘留檢測方面具有潛在的應用前景.
福美雙; 表面增強拉曼散射(SERS); 噴墨打印; 銀油墨
福美雙是一種二甲基二硫代氨基甲酸鹽,被廣泛應用于治療蘋果樹腐爛病及桃子細菌性穿孔病等[1].雖然該農藥被認為是低毒性的,但長期食用殘留農藥的農產品會對身體造成一定危害,如呼吸衰竭、器官損壞,甚至可能影響下一代的健康[2].
目前,應用于農藥殘留檢測的技術有氣相色譜法、高效液相色譜法、酶抑制法等.這些技術有選擇性好、重復性好和靈敏度高等特點,但檢測前需要對樣品進行復雜的預處理,如浸泡、提取、濃縮等,比較耗時. 表面增強拉曼散射(SERS)是一種先進的表面分析技術,能夠極大地提高吸附在貴金屬(如金、銀和銅)表面或附近分子的拉曼散射信號.SERS技術具有選擇性好、靈敏度高和檢測速度快等優點[3],被廣泛應用于生物醫學[4]、環境監測[5]及食品安全檢測[6]等領域.
噴墨印刷技術由于操作簡單、可批量化生產等優點被廣泛應用于制備SERS基底,制備的基底具有均勻性好、可重復、易于保存等優點,可滿足樣品快速分析的需求[7-8].紙質襯底由于其可彎曲和低成本特性被廣泛應用于SERS基底的支撐物[9-10].YU等[11]采用噴墨印刷技術在色層分析紙上印刷銀溶膠,并檢測羅丹明6G、海洛因和可卡因的極限檢出值分別為95fg,9ng和15ng. GODOYA等[12]通過噴墨印刷金納米球制備了一種疏水紙基SERS基底,檢測結晶紫質量濃度低至10-11mg?L-1.
本文作者利用噴墨打印技術,基于相片紙制備紙質SERS基底.模擬福美雙的果皮及果汁中的殘留狀態,研究銀納米薄膜/相片紙基底應用于農藥殘留檢測的潛力.
銀納米粒子油墨(平均直徑約82.6 nm,黏度為0.1 Pa?s)購于溢鑫科創科技集團;分析級試劑福美雙(純度99.99%)購于上海國藥集團化學試劑有限公司,為白色粉末狀;相片紙、蘋果汁、桃汁、蘋果和桃子購于當地超市.
稱取0.024 g福美雙粉末,用10 mL乙醇溶解并超聲震蕩8 min,得到質量濃度為2400 mg?L-1福美雙純溶液,然后依次用去離子水稀釋得到不同濃度的福美雙純溶液.取1 mL的2400 mg?L-1福美雙純溶液與9 mL蘋果汁或者桃汁混合,超聲振蕩10 min,得到福美雙質量濃度為240 mg?L-1的果汁.用蘋果汁和桃汁依次稀釋得到福美雙質量濃度為240 mg?L-1的果汁,制備摻有濃度梯度福美雙的果汁.
紙質SERS基底的制備[13]:用一次性醫用注射器取適量超聲震蕩后的銀納米油墨裝入操作平臺的微量滴定板中;啟動計算機和定位系統,設定面積及形狀等數據,操作計算機定位系統,使分配器負載油墨,負載后移動到相片紙上方,將銀納米油墨噴射到相片紙表面;最后將印刷了銀納米油墨的相片紙置于干燥箱內干燥0.5 h,干燥溫度110 °C.最后,將樣品放置于自封袋內室溫保存備用.
福美雙殘留SERS檢測過程:取1 μL摻有福美雙的果汁滴在基底表面,待其自然干燥后進行SERS檢測.將3 μL福美雙純溶液滴在洗凈的蘋果和桃子表面,自然干燥后,在表面噴灑少量的乙醇溶液[14],通過擦拭的方法使福美雙分子吸附在SERS基底表面,然后進行SERS檢測,如圖1所示.

圖1 銀納米薄膜/相片紙應用于農藥殘留檢測示意圖
利用場發射掃描電子顯微鏡(SEM),加速電壓為5 kV,表征樣品的表面形貌和微觀結構.接觸角測量儀用來表征相片紙及SERS基底的接觸角,取5次實驗平均值確定接觸角大小.采用拉曼光譜儀測試SERS光譜.在測量之前,使用硅晶片的特征峰520 cm-1校準設備.選擇波長為532 nm的激光作為激發源,入射到樣品表面激光功率為0.1 mW.實驗數據采集時間均為每次3 s.光譜范圍為300~1 800 cm-1.
圖2(a),2(b)分別為相片紙和銀納米薄膜/相片紙的SEM圖.插圖為對應接觸角測量圖.由圖2(a)可觀察到相片紙清晰的纖維結構,且其接觸角為124°.沉積在相片紙表面的銀納米顆粒分布相對均勻,排列較為緊密,如圖2(b)所示.銀納米薄膜/相片紙接觸角為125°,變化較小.

圖2 (a)相片紙和(b)銀納米薄膜/相片紙的SEM照片,插圖為對應接觸角測量圖
圖3(a)為摻雜不同濃度福美雙的果汁吸附在銀納米薄膜/相片紙的SERS光譜圖.由圖3(a)可知,SERS對摻有福美雙的蘋果汁最低檢測質量濃度為0.024 mg?L-1,拉曼特征峰的強度隨著福美雙濃度的降低而降低.當質量濃度為0.024 mg?L-1時,仍可以較好地分辨出1377 cm-1處的特征峰,該峰歸屬于C—N鍵的伸縮振動和CH3對稱變形[15-16].圖3(b)給出了拉曼特征峰1142和1377 cm-1與福美雙濃度對數的線性擬合圖,線性相關系數分別為0.968 9和0.987 1.同樣對摻有福美雙的桃汁進行了SERS測試,最低檢測質量濃度為0.024 mg?L-1,如圖3(c)所示.拉曼特征峰1 142和1 377 cm-1的強度與福美雙濃度對數間的線性相關系數分別為0.972 5和0.994 4,如圖3(d)所示.

圖3 摻雜不同濃度福美雙(a)蘋果汁和(c)桃汁的SERS光譜;(b)蘋果汁和(d)桃汁的拉曼特征峰1 142和1 377 cm-1處的強度與福美雙濃度對數的線性擬合圖
利用銀納米薄膜/相片紙作為拭子,擦拭殘留有不同濃度的福美雙的果皮表面,最低能檢測到殘留福美雙的質量濃度為0.024 mg?L-1.假設3 μL質量濃度為0.024 mg?L-1的福美雙溶液均勻地擴散在果皮表面,溶液徹底蒸發的擴散面積約為0.09π cm2,忽略酒精稀釋,則滴在果皮表面的分子總質量為:

則果皮表面殘留福美雙濃度
圖4是從蘋果皮和桃皮表面萃取福美雙分子并吸附在銀納米薄膜/相片紙的SERS光譜圖.對蘋果用銀鏡反應法在濾紙上生長AgNPs作為SERS基底,并通過擦拭的方法萃取香蕉、蘋果和西紅柿表面殘留的福美雙分子,檢測其極限濃度分別為3.6,12和24 ng?cm-2[17].MA課題小組[14]利用絲網印刷制備Ag NPs/GO紙基,檢測蘋果、橘子、西紅柿和青菜表面的福美雙殘留,檢測極限濃度分別為10.0,10.2,11.2和9.8 ng?cm-2.與之對比,噴墨打印制備的銀納米薄膜/相片紙具有更高的SERS活性.

圖4 (a)蘋果和(b)桃子皮表面福美雙殘留的SERS光譜
基底均勻性對于SERS基底應用是至關重要的.在吸附質量濃度為0.024 mg?L-1福美雙蘋果汁的基底表面隨機選取10個點進行SERS測試,結果如圖5所示.圖5(a)為福美雙/蘋果汁SERS光譜圖,譜線形狀基本相似,且特征峰位置和強度大致相同.圖5(b)是拉曼特征峰1 142和1 377 cm-1的強度圖,經計算特征峰的相對標準偏差(RSD)分別為8.6%和6.9%.用同樣的方法研究基底對福美雙/桃汁檢測的均勻性,對應特征峰的RSD分別為7.8%和5.7%.

圖5 吸附福美雙(a)蘋果汁/(b)桃汁的同一個基底表面隨機選取10個點的SERS光譜;(b)蘋果汁和(d)桃汁中福美雙相應特征峰1142和1377 cm-1的強度分布圖
基底應用于果皮表面福美雙檢測的均勻性研究結果如圖6所示,對應特征峰的RSD為7.2%,6.4%和6.5%,7.7%,表明采用噴墨打印方法制備的銀納米薄膜/相片紙SERS基底對水果中的福美雙殘留濃度檢測有一定的應用潛力.

圖6 (a)蘋果和(c)桃子果皮表面殘留福美雙吸附在同一個基底上隨機選取10個點的SERS光譜;(b)蘋果和(d)桃子表面福美雙相應特征峰1142和1377 cm-1的強度分布圖
結合噴墨打印及恒溫干燥熱處理技術制備了銀納米薄膜/相片紙基底,通過模擬水果中福美雙的殘留狀態,對銀納米薄膜/相片紙基底的應用潛力進行了研究.研究發現基底對殘留福美雙果汁的最低檢測質量濃度為0.024 mg?L-1.當福美雙的質量濃度為0.024 mg?L-1時,其特征峰1 377 cm-1仍可以較好地被分辨出.特征峰1 142和1 377 cm-1強度與濃度間有較好的線性關系,線性相關系數高達0.987 1和0.994 4.銀納米薄膜/相片紙對果皮表面福美雙的檢測限為0.25 ng?cm-2.另外,在吸附福美雙分子的基底表面,隨機選取10個點進行SERS測試,計算特征峰1 142和1 377 cm-1的相對標準偏差值來評價基底的均勻性.在吸附福美雙蘋果汁和桃汁的基底表面所采集的SERS光譜大致相似,特征峰的相對標準偏差分別為8.6%,6.9%和7.8%,5.7%.結果表明,銀納米薄膜/相片紙有望應用于水果中農藥殘留的快速檢測.
[1] FUA Z W, SHENA Z D, FANB Q Z, et al. Preparation of multi-functional magnetic-plasmonic nanocomposite for adsorption and detection of thiram using SERS [J]. Journal of Hazardous Materials, 2020,392:122356.
[2] LIAN S, CHEN B, GU Y F, et al. The study of Raman spestroscopy of bifenthrin molecular [J]. Spestroscopy and Spectral Analysis, 2020,40(6):298-301.
[3] GONG T X, HUANG Y F, WEI Z J, et al. Magnetic assembled 3D SERS substrate for sensitive detection of pesticide residue in soil [J]. Nanotechnology, 2020,31:205501.
[4] KASHIF M, MAJEED M I, HANIF M A, et al. Surface enhanced Raman spectroscopy of the serum samples for the diagnosis of hepatitis C and prediction of the viral loads [J]. Spectrochimica Acta Part A, 2020,242:118729.
[5] WANG, Z S, ZHU Q Y, WANG Y L, et al. Silver-nanoparticle-grafted silicon nanocones for reproducible Raman detection of trace contaminants in complex liquid environments [J]. Spectrochimica Acta Part A, 2021,251:119447.
[6] AUGUSTINE S, SOORAJ K P, PACHCHIGAR V, et al. SERS based detection of dichlorvos pesticide using silver nanoparticles arrays: influence of array wavelength/amplitude [J]. Applied Surface Science, 2021,544:148878.
[7] LAN L L, HOU X Y, GAO Y M, et al. Inkjet-printed paper-based semiconducting substrates for surface-enhanced Raman spectroscopy [J]. Nanotechnology, 2019,31(5):055502.
[8] WENG G J, YANG Y, ZHAO J, et al. Preparation and SERS performance of Au NP/paper strips based on inkjet printing and seed mediated growth: the effect of silver ions [J]. Solid State Commun, 2018,272:67-73.
[9] SUN M Z, LI B H, LIU X J, et al. Performance enhancement of paper-based SERS chips by shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Journal of Materials Science & Technology, 2019,35(10):2207-2212.
[10] LEE M, OH K, CHOI H K, et al. Subnanomolar sensitivity of filter paper-based SERS sensor for pesticide detection by hydrophobicity change of paper surface [J]. Acs Sensors, 2018,3(1):151-159.
[11] YU W W, WHITE I M. Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection [J]. Analyst, 2013,138:1020-1025.
[12] GODOYA N V, GARCIA-LOJOB D, SIGOLIA F A. Ultrasensitive inkjet-printed based SERS sensor combining a high performance gold nanosphere ink and hydrophobic paper [J]. Sensors and Actuators B: Chemical, 2020,320:128412.
[13] DUAN J L, QIU Z Y, LI L, et al. Inkjet printed silver nanoparticles on hydrophobic papers for efficient detection of thiram [J]. Spectrochimica Acta Part A, 2020,243:118811.
[14] MA Y, WANG Y, LUO Y, et al. Rapid and sensitive on-site detection of pesticide residues in fruits and vegetables using screenprinted paper-based SERS swabs [J]. Analytical Methods, 2018,10:4655.
[15] WANG K Q, SUN D W, PU H B, et al. Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique [J]. Food Chemistry, 2019,310:125923.
[16] PASTORELLO M, SIGOLI F A, DOS SANTOS D P, et al. On the use of Au@Ag core-shell nanorods for SERS detection of thiram diluted solutions [J]. Spectrochimica Acta Part A, 2020,231:118113.
[17] ZHU Y Q, LI M Q, YANG L B, et al. A novel paper rag as “D-SERS” substrate for detection of pesticide residues at various peels [J]. Talanta, 2014,128:117-124.
Application of inkjet printed paper-based SERS substrate in thiram detection in fruits
DUANJunli, FENGLongxiu, WANGKun, XIAOGuina*
(College of Mathematics and Science, Shanghai Normal University, Shanghai 200234, China)
The efficient AgNPs/photographic surface enhanced Raman scattering(SERS) paper substrate was prepared by inkjet printing silver ink on photographic paper, for which the wettability and surface morphology were represented by contact angle meter and scanning electron microscope(SEM). The application of AgNPs/photographic paper for detecting pesticide residues was studied by simulating the residual states of thiram on peels and in juice. It was found that thiram molecules mixed in juice or on peels could be directly recognized by the substrate without any treatment. The minimum detection concentration of thiram in juice was 0.024 mg?L-1, in which a good linear relationship between characteristic peak intensity and concentration was obtained The detection limit of thiram on the two peels was both 0.25 ng?cm-2. In addition, ten spots were selected from the same substrate to study the uniformity randomly. The relative standard deviations of the characteristic peak intensities at 1 142 and 1377 cm-1of thiram were 7.8% and 5.7%, respectively. The results showed that AgNPs/photographic paper substrate had great potential in the detection of pesticide residues.
thiram; surface enhanced Raman scattering(SERS); inkjet printing; silver ink
10.3969/J.ISSN.1000-5137.2022.04.003
2021-06-30
上海市自然科學基金(19ZR1437700) ;上海師范大學一般項目(SK202138)
段俊麗(1996-), 女, 碩士研究生, 主要從事表面增強拉曼光譜方面的研究. E-mail: 1347017881@qq.com
肖桂娜(1983-), 女, 副教授, 主要從事功能性納米材料、 表面增強拉曼光譜等方面的研究. E-mail: xiaoguina@shnu.edu.cn
段俊麗, 馮龍秀, 王昆, 等. 噴墨打印紙質SERS基底應用于水果中福美雙的檢測 [J]. 上海師范大學學報(自然科學版), 2022,51(4):407?413.
DUAN J L, FENG L X, WANG K, et al. Application of inkjet printed paper-based SERS substrate in thiram detection in fruits [J]. Journal of Shanghai Normal University(Natural Sciences), 2022,51(4):407?413.
O 647
A
1000-5137(2022)04-0407-07
(責任編輯:顧浩然)