陳美琳,李芝奇,范琦琦,蔡 瓊,楊星月,顧渝林,郭思敏,林瑞超,趙崇軍
小檗堿藥理作用及其相關作用機制研究進展
陳美琳,李芝奇,范琦琦,蔡 瓊,楊星月,顧渝林,郭思敏,林瑞超*,趙崇軍*
北京中醫藥大學 中藥品質評價北京市重點實驗室,北京 102488
小檗堿是許多中藥的一種常見活性物質,數千年來被廣泛應用于消化系統相關疾病。現代藥理研究表明小檗堿在預防和保護代謝性疾病及主要臟器損傷等方面也具有顯著的藥理活性。因此,在前期文獻研究的基礎上,整理和總結了近年小檗堿在臟器損傷如神經損傷、肝臟損傷、腎臟損傷、生殖系統損傷、胃腸道損傷、心血管疾病以及代謝性疾病如阿爾茨海默癥、糖尿病及相關并發癥、炎癥等疾病的保護作用及其相關機制,并針對亟需解決的的問題提出了建議,以期為小檗堿的臨床安全使用和新藥研發提供參考。
小檗堿;臟器損傷;代謝性疾病;炎癥;臨床安全;新藥研發
小檗堿是一種天然的以季異喹啉為基礎的生物堿,常見3種存在形式,見圖1。小檗堿存在于多種清熱解毒類中藥中,如小檗科三顆針、毛茛科黃連、蕓香科黃柏等。傳統藥理研究認為小檗堿及相關中藥具有顯著的抗炎、抗菌、抗病毒作用,如《傷寒論》中記載:“傷寒胸中有熱,胃中有邪氣,腹中痛,欲嘔吐者,黃連湯主之”“熱利下重者,白頭翁湯主之”,因此其被長期應用于多種細菌引起的消化系統疾病。而現代研究者發現小檗堿在臟器損傷、心血管及代謝性疾病的預防和治療方面效果顯著,且沒有明顯的不良反應報道,并不斷對其研究進展進行系統整理和報道[1-3]。因此,基于小檗堿的主要生物功能,在前期文獻研究整理基礎上,本文重點收集、整理和總結了小檗堿在臟器損傷保護和代謝性疾病等方面的最新進展,以期為小檗堿的新藥研發和臨床應用提供思路和參考。

圖1 小檗堿的化學結構
AD是中老年人群中常見的一種神經退行性疾病,主要臨床表現為記憶力減退及認知功能缺失,其典型病理特征為β淀粉樣蛋白(amyloid β-protein,Aβ)沉積、神經纖維纏結和神經元細胞死亡等[4]。小檗堿能增強腦內血小板-內皮細胞黏附分子、血管內皮生長因子(vascular endothelial growth factor,VEGF)、人血管生成素-1等表達,降低Aβ積累并抑制神經元凋亡,促進腦微血管形成和腦血流量恢復,改善AD模型(3×Tg-AD)轉基因小鼠的認知功能障礙[5]。不僅如此,小檗堿還能通過磷酸化細胞外調節蛋白激酶(phosphorylated extracellular regulated protein kinase,p-ERK)/真核翻譯啟動因子2α(eukaryotic translation initiation factor 2α,eIF2α)/淀粉蛋白前β-分解酶1(β-secretase 1,BACE1)信號通路抑制Aβ42的產生[6],增強Aβ自噬清除來緩解Aβ產生過程[7],抑制神經元凋亡,改善神經纖維纏結狀態,從而改善AD模型大鼠海馬區認知學習和記憶保持能力。此外,AD的發生進程與淀粉樣前體蛋白(amyloid precursor protein,APP)表達相關。研究發現小檗堿不僅能通過顯著上調Aβ25~35誘導的人神經母細胞瘤SK-N-SH細胞中的表達,下調APP表達[8],降低APP和APP C端片段的高度磷酸化來調節APP過程[9],還能通過抑制哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)/p70核糖體蛋白S6激酶(p70 ribosomal protein S6 kinase,p70S6K)信號通路活化,降低Aβ在/小鼠中的表達[10],抑制內質網應激p-ERK/eIF2α信號轉導的APP裂解酶水平等多種途徑降低細胞凋亡率,發揮其保護作用[11]。
抑郁癥是一種慢性情緒障礙,其發病機制較復雜,涉及環境、遺傳、生理等多種因素。小檗堿能夠顯著改變5XFAD轉基因小鼠和去卵巢大鼠在曠場實驗、高架十字迷宮實驗中的抑郁和焦慮行為學指標[12-13]。另外,小檗堿能緩解抑郁模型小鼠強迫游泳實驗不動時間和蔗糖偏好實驗中糖水偏愛比的變化水平,減少乳酸和丙酮酸含量,而這些作用可能與促進腺嘌呤核苷三磷酸(adenosine triphosphate,ATP)含量和5′-單磷酸腺苷激活的蛋白激酶(adenosine 5′-monophosphate-activated protein kinase,AMPK)蛋白表達、促進腦源性神經營養因子(brain-derived neurotrophic factor,BDNF)表達從而逆轉和對抑郁行為和海馬神經元生長的調控有關[14-15]。
神經細胞損傷在一定程度上會引起細胞凋亡,引起神經系統功能損失,該過程受腦內膠質細胞、神經元的成熟度、細胞因子、炎癥因子等影響。研究發現小檗堿通過激活mTOR磷酸化,抑制內質網應激和自噬過程來提高氧糖剝奪/再灌注腎上腺嗜鉻細胞瘤PC12細胞的活力[16],通過上調過氧化物酶體增殖物激活受體γ(peroxisome proliferators-activated receptor γ,PPARγ)、抑制核因子-κB(nuclear factor kappa-B,NF-κB)等因子發揮對大鼠海馬神經元體外氧糖剝奪模型的保護作用[17]。小檗堿還能通過p-ERK//C/EBP同源蛋白(C/EBP homologous protein,CHOP)/半胱氨酸蛋白酶-3(cysteinyl aspartate specific proteinase-3,Caspase-3)、蛋白激酶B(protein kinase B,Akt)/糖原合成酶激酶3β(glycogen synthase kinase 3β,GSK3β)/ERK、磷酸肌醇-3-激酶(phosphoinositide 3-kinase,PI3K)/Akt、沉默調節蛋白1(silent mating type information regulation 2 homolog 1,SIRT1)、低氧誘導因子-1(hypoxia-inducible factor-1,HIF-1)/p53等多個信號通路來影響腦神經凋亡相關通路,發揮對腦損傷模型的保護作用[18-19]。不僅如此,小檗堿可促進海馬CA1-CA3區中小白蛋白免疫反應神經元和神經纖維數量,調節神經元中Ca2+水平,從而對抗神經元損傷[20]。
此外,小檗堿能緩解化療、物理損傷導致的神經損傷。研究發現小檗堿可通過抑制腦組織中膠質纖維酸性蛋白、NF-κB和Caspase-3等蛋白水平,上調過氧化物酶體增殖受體γ輔激活因子-1α(peroxisome proliferators-activated receptor γ coactivator-1α,PGC-1α)和錳超氧化物歧化酶來激活抗氧化和炎癥防御,進而減輕阿霉素誘發的病理組織異常、認知障礙和行為缺陷[21-22];可通過下調NOD樣受體熱蛋白結構域相關蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)炎癥小體信號通路,減少炎癥因子白細胞介素-1β(interleukin-1β,IL-1β)、腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)釋放,降低降鈣素基因相關肽表達水平,提高眶下神經縮窄術制備三叉神經痛大鼠神經面部感覺區域的機械痛閾值[23]。
帕金森病是世界上第2大神經退行性疾病,且帕金森病炎癥過程與NLR家族NLRP3炎癥小體激活密切相關。研究發現小檗堿可增強黑質自噬活性,降低NLRP3炎性小體水平;可通過調節長鏈非編碼RNALINC00943/微小RNA-142-5p/KPNA4/NF-κB和激活單磷酸腺苷、AMPK,降低α突觸核蛋白、微管相關蛋白1輕鏈3II(microtubule-associated protein 1 light chain 3II,LC3II)水平等來抑制炎癥和凋亡,保護1-甲基-4-苯基-1,2,3,6-四氫吡啶誘導帕金森病小鼠和1-甲基-4-苯基吡啶離子誘導小鼠小膠質瘤BV2細胞的神經元退化和損傷[24-26]。此外,小檗堿可以穿透血腦屏障,實現在線粒體中積累,進而抑制患帕金森病斑馬魚大腦六羥基多巴損傷細胞抑癌基因誘導的假定激酶1(PTEN induced putative kinase 1,PINK1)蛋白積累和LC3蛋白過表達,進而緩解斑馬魚多巴胺能神經元的損失[27]。
腸道菌群可能也是小檗堿多功能作用的靶點。苯基丙氨酸-酪氨酸-多巴胺通路能向大腦提供多巴胺,而酪氨酸羥化酶(tyrosine 3-monooxygenase,TH)以四氫生物蝶呤(tetrahydrobiopterin,BH4)為輔酶,是羥化酪氨酸并生成左旋多巴的限速酶。臨床研究發現小檗堿通過細菌產生的二氫小檗堿供應硝基還原酶,促進二氫小檗堿產生BH4,進而增強TH的活性來加速腸道細菌產生左旋多巴,且糞腸或屎腸球菌移植與小檗堿聯用更能顯著增加帕金森病小鼠的腦多巴胺水平,改善帕金森病癥狀[28]。
心血管疾病也是世界范圍內的首要健康問題。小檗堿是治療心血管疾病更安全、經濟、有前途的天然衍生藥物之一[29],對多種疾病均具有一定保護作用[30-31]。小檗堿能抑制血性心肌病大鼠模型Toll樣受體4(Toll-like receptor 4,TLR4)/NF-κB信號通路激活,通過抑制TLR4、p65、TNF-α和IL-1β水平發揮保護作用[32]。在心肌肥厚大鼠模型中,小檗堿能夠降低組織中心房鈉尿肽、腦鈉肽、磷酸化Akt(phosphorylated Akt,p-Akt)及磷酸化糖原合成酶激酶-3水平,抑制左心室舒張末期后壁厚度,緩解左心室舒張末期內徑、左心室射血分數減少水平[33]。在缺血再灌注損傷大鼠模型大鼠心肌組織損傷中,小檗堿還能夠升高PINK1、LC3B等蛋白,抑制TNF-α、IL-6、Caspase-3、IL-10蛋白水平,抑制炎癥反應和細胞凋亡[34-35]。不僅如此,小檗堿還可提高飲食誘導肥胖小鼠心臟Krüppel樣因子4水平,改善心功能參數,上調線粒體質量、ATP生產和氧消耗的水平,保護心臟線粒體的生物發生和活性[36];能夠豐富人蛋白激酶Cα(protein kinase Cα,PKCα)膜定位,促進PKCα的磷酸化水平和PKCα的活性,逆轉硝酸甘油的耐受性[37];減少CD4+和CD8+T細胞浸潤和抑制同種異體移植中的T細胞功能來保護心肌細胞[38];抑制心房快速起搏模型的心房結構重構,預防心房顫動[39]。
非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)是一種與代謝綜合征密切相關的病理性疾病。小檗堿可通過調節多種機制來發揮保肝用[40]。臨床上,小檗堿能降低NAFLD患者的三酰甘油、血清總膽固醇(serum total cholesterol,TC)、胰島素抵抗(insulin resistance,IR)等,通過調節糖脂代謝等來改善相關癥狀[41]。在高脂飼料誘導大鼠NAFLD中,小檗堿能通過提高肝臟及糞便中總膽汁酸水平,上調肝臟細胞色素7A1、微粒體三酰甘油轉移蛋白,下調肝X受體α、膽固醇調節元件結合蛋白、細胞內膽固醇轉運體1、脂肪酸合成酶(fatty acid synthase,FAS)、硬脂酰輔酶α1、重組人脂肪酸結合蛋白1和肉毒堿棕櫚酰基轉移酶1A蛋白水平,抑制脂肪酸合成和腸道-肝臟復合物I,來促進脂肪代謝和糞便脂質排泄[42-44];能通過抑制巨噬細胞浸潤、中性粒細胞和肝星狀細胞激活、促炎巨噬細胞極化和細胞外基質異常沉積來改善脂肪變性和結構病變情況[45-46]。此外,研究證明小檗堿還能激活高脂飲食小鼠肝臟能量代謝感知通路AMPK/SIRT1軸,增加PPARγ脫乙酰、產熱蛋白的表達來促進脂肪組織重塑、分布和生熱作用[47]。不僅如此,小檗堿還能增加遺傳性肥胖小鼠模型體內雙歧桿菌和嗜黏蛋白阿克曼菌盲腸內容物,緩解高三酰甘油血癥和炎癥等變化水平[48];能夠降肝缺血再灌注大鼠損傷模型組織中NLRP3、含有凋亡相關微粒蛋白、Caspase-1等炎癥小體相關蛋白表達水平,緩解細胞凋亡[49]。在非酒精性脂肪性肝炎模型中,小檗堿能明顯改善促炎細胞因子和游離脂肪酸等變化水平,降低肝臟中趨化素、人趨化樣因子受體1和趨化因子C-C-基元受體2蛋白表達,恢復大鼠肝內調節性T細胞/輔助性T細胞17的值[50]。不僅如此,小檗堿還能夠拮抗藥物誘導肝損傷,如小檗堿能下調p38-絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)、NF-κB和Kelch樣環氧氯丙烷相關蛋白-1,有效降低甲氨蝶呤的肝毒性[51];能夠降低脂肪酸合酶和羥甲基戊二酸單酰輔酶A還原酶表達水平,逆轉檳榔水提取物誘發的肝臟脂肪變性、血脂異常等[52]。
小檗堿藥物聯用在治療NAFLD中可展現出更好的效果,如小檗堿與幾內亞油松、梔子咖啡聯用可通過調節、和腸道微生物組來改善高脂飲食誘導NAFLD模型[53];與西格列汀聯合能通過抑制p-ERK/ERK表達,升高脂聯素受體2表達,進而促進高脂血癥大鼠脂肪組織重塑[54]。
小檗堿對腎損傷模型也表現出顯著的保護作用。研究發現小檗堿能降低人腎皮質近曲小管上皮HK-2細胞損傷模型線粒體活性氧生成,促進生長抑制特異性基因的表達[55];能上調鈣黏蛋白E并下調NLRP3及Caspase-1蛋白的表達,降低Caspase-1酶活力和IL-1β的分泌來發揮對HK-2細胞損傷的保護作用[56]。在阿霉素誘導的大鼠腎臟損傷模型中,小檗堿能通過降低轉化生長因子-β(transforming growth factor-β,TGF-β)、Caspase-3和NF-κB表達,減少氧化應激來緩解組織結構的改變,降低尿素、肌酐等水平,實現保護作用[57]。不僅如此,小檗堿還能通過降低血清鉻和血尿素氮濃度、腎臟IL-1β和TNF-α含量,抑制腎臟組織中SIRT1/核因子E2相關因子2(nuclear factor NF-E2-related factor 2,Nrf2)信號通路及相關Caspase-1和NLRP3表達水平來實現對腎缺血再灌注損傷模型的保護作用[58];通過顯著降低血清尿酸、尿素氮和肌酐水平,下調NLRP3、Caspase-1和IL-1β的表達來保護低氧嗪酸鉀和次黃嘌呤誘導高尿酸血癥小鼠的腎損傷[59];通過抑制腎臟中α平滑肌肌動蛋白、IL-1β蛋白,升高鈣黏蛋白E,從而緩解非代謝性經典腎臟纖維化模型小鼠部分腎小球代償性肥大,管周間隙增寬,炎癥細胞浸潤等癥狀[60]。研究發現小檗堿和馬兜鈴酸會形成超分子自組裝結構來阻斷馬兜鈴酸的代謝,保護機體腸道菌群的穩態,進而顯著降低馬兜鈴酸的急性腎損傷[61]。
多囊卵巢綜合征(polycystic ovarian syndrome,PCOS)是一種伴有生殖和內分泌紊亂的臨床綜合征,而小檗堿在治療PCOS方面具有顯著療效[62],如改善患者的卵巢包膜厚度、卵巢體積、卵泡數量和卵泡直徑,卵巢動脈平均血流速度、規律月經比例、排卵比例等[63]。臨床前研究表明小檗堿可以干預和逆轉ip丙酸睪酮誘導PCOS大鼠的卵泡數、黃體數的變化趨勢,能降低血清黃體生成素和TC、整合素和溶血磷脂酸受體3蛋白表達水平,增加黃體生成素/絨毛膜促性腺激素受體、細胞色素卵巢蛋白及顆粒細胞mRNA表達水平[64]。此外,小檗堿能通過PI3K/Akt途徑,改變血清激素水平、恢復卵巢形態病變、改善IR、細胞活力和抑制凋亡,實現對曲唑誘導PCOS的保護作用[65];可上調豬卵母細胞轉錄水平,降低心型脂肪酸結合蛋白、固醇調節元件結合轉錄因子1、過氧化物酶體增生激活受體γ表達,增加過氧化物酶體增生激活受體γ磷酸化,抑制c-Jun氨基末端激酶(c-Jun-terminal kinase,JNK)磷酸化,增強豬卵母細胞體外成熟模型脂質紊亂模型中脂質代謝水平和提高豬卵母細胞質量[66]。
小檗堿及相關中藥如黃連數千年來一直被廣泛應用治療腹瀉等胃腸道疾病。研究發現小檗堿能緩解脫氧雪腐鐮刀菌醇暴露對仔豬空腸形態參數和小腸的損傷。進一步研究發現小檗堿能增加小腸血清抗氧化酶和T細胞表面抗原表達,減少促炎細胞因子釋放,升高回腸和空腸黏膜緊密連接蛋白、封閉蛋白和跨膜蛋白,降低空腸和回腸中ERK、JNK和NF-κB水平[67]。此外,小檗堿能通過改善氧化應激,調節Nrf2、SIRT1、叉形頭轉錄因子、GSK3β、Akt、mTOR、蛋白酪氨酸激酶和信號轉導及轉錄激活蛋白3(signal transducer and activator of transcription 3,STAT3)水平來顯著恢復甲氨蝶呤誘導的大鼠腸損傷組織的病理學異常[68];能通過降低腸通透性,保護腸黏膜屏障,降低5-羥色胺受體4、F2R樣凝血酶/胰蛋白酶受體3、神經肽Y、促腎上腺皮質素釋放激素受體2、IL-1β、血管活性腸肽、水通道蛋白8含量,增加一氧化氮合酶含量能明顯改善雙氯芬酸對SD大鼠腸損傷狀態[69];小檗堿可增加緊密連接和黏附連接蛋白而減輕其損傷,改善微絨毛的形態來改善小鼠結腸上皮屏障受損狀態。此外,在創面愈合實驗中,小檗堿可通過促進細胞遷移,改善結腸腸上皮屏障功能障礙,促進細胞功能的恢復[70];通過抑制全身IL-6、IL-1β和TNF-α的產生,上調表達;同時,在誘導NF-κB抑制蛋白α(inhibitor of NF-κB α,IκBα)表達的同時,小檗堿能抑制叉頭框蛋白A1、p-IκBα、p65的表達,進而發揮對盲腸漿液誘導小鼠腸道損傷的保護作用[71]。
臨床上,小檗堿能夠顯著緩解急性腸胃炎患者嘔吐、腹痛和腹瀉癥狀,縮短急性胃腸炎癥狀消失時間,改善白細胞計數和中性粒細胞百分比[70-72]。而且,小檗堿聯合雙歧桿菌四聯活菌片能夠促進感染性腹瀉患兒體溫恢復正常、改善腹瀉及腹痛癥狀,降低內毒素、C-反應蛋白(C-reactive protein,CRP)、TNF-α、-乳酸、二胺氧化酶水平[73];聯合美沙拉嗪可緩解遠端潰瘍性結腸炎患者機體炎癥反應[74]。在潰瘍性結腸炎模型中,小檗堿還能緩解動物體質量、結腸組織大體形態及結腸黏膜損傷指數的變化水平,降低血清和結腸組織促炎因子IL-6、IL-1β、TNF-α含量及蛋白水平,增加抗炎因子IL-10、TGF-β、IL-4含量及蛋白水平[75],降低一氧化氮合成酶、NF-κB亞基、mRNA表達,升高精氨酸酶mRNA表達水平和M2/M1巨噬細胞值[76]。不僅如此,小檗堿還能以宿主依賴的方式增加小鼠嗜黏蛋白阿克曼菌的豐度,顯著增加黏液蛋白產生基因轉錄和黏液蛋白的分泌,促進糞便中多胺的產生過程且不受真核多胺合成酶抑制劑的影響[69-77]。
在大鼠慢性萎縮性胃炎中,小檗堿可以改善胃組織病理特征,降低胃泌素,抑制炎癥因子NF-κB、TNF-α、環氧合酶-2、IL-6α、IL-17a、I型γ干擾素、以及TGF-β1軸相關信號TGF-β1、PI3K、p-Akt/Akt、p-mTOR/mTOR、p70核糖體蛋白S6激酶表達,促進蛋白酪氨酸磷酸酶、LC3II表達[78-79]。
2型糖尿病是世界范圍內發病率日益增高的代謝性疾病之一,且臨床上往往伴隨多種并發癥。研究發現小檗堿能通過多靶點、多通路調控治療2型糖尿病及其相關并發癥,且具有良好的安全性[80]。
小檗堿能改善高脂加鏈脲佐菌素誘導糖尿病大鼠IR、瘦素、空腹血糖、TC、三酰甘油等指標,降低TNF-α、IL-6及p-ERK/eIF2α通路相關蛋白的表達水平[81-82];可抑制糖尿病大鼠的乙酰膽堿酯酶活性,上調血清中乙酰膽堿水平和肝組織中α7煙堿乙酰膽堿受體表達,下調IL-1β、TNF-α和NF-κB表達[83];可顯著降C57BL/6J糖尿病小鼠相關生化指標,促進維甲酸X受體α的表達,降低肝臟中核受體亞家族3C組成員1表達[84];能夠改善高脂飼料喂養小鼠糖耐量、IR指數,通過miR-146b/SIRT1途徑降低肝臟IR[85];通過提高miR-106b的甲基化水平,激活β-catenin/轉錄因子4(transcription factor 4,TCF4)信號通路,促進腸道L細胞產生胰高糖素樣肽-1(glucagon-like peptide-1,GLP-1)[86]。
小檗堿能通過多途徑來實現對糖尿病腎損傷的保護作用,如通過抑制IL-6、IL-1β、TNF-α、miR-1290等炎癥因子[87]、通過降低p-Akt、p-p65、p-IκBα等蛋白表達水平,升高腎母細胞瘤、足突蛋白蛋白表達水平抑制細胞遷移和促進劃痕愈合率[88-89],通過調節AMPK/PGC-1α途徑來調控自噬活性[90],通過Nrf2/血紅素加氧酶-1(heme oxygenase-1,HO-1)/谷胱甘肽過氧化酶4(glutathione peroxidase 4,GPX4)通路降低環加氧酶2和長鏈脂酰輔酶A合成酶4的水平來緩解高糖誘導的細胞質膜起泡、線粒體皺縮、細胞凋亡等過程,進而降低高糖誘導小鼠腎足MPC5細胞損傷。此外,研究還發現小檗堿能通過顯著上調鈉/葡萄糖協同轉運蛋白1 mRNA和蛋白表達,促進小鼠小腸內分泌STC-1細胞分泌GLP-1和葡萄糖消耗,進而發揮保護作用[91]。
小檗堿可改善妊娠糖尿病相關的并發癥。小檗堿能緩解高脂飼料誘導的妊娠期和哺乳期野生型C57BL/6雌性小鼠后代體質量,胰島素分泌減少,心臟收縮時間增加等癥狀[92],緩解后代心臟中心臟指數含量升高水平,增加脂肪酸攝取、氧化和電子傳遞鏈亞基相關心肌酶的表達,改善線粒體功能[93]。
認知障礙也是2型糖尿病的并發癥。研究發現小檗堿輔助治療可降低糖尿病患者精神分裂的癥狀[94]。小檗堿在改善糖代謝、降低IR的同時,還能有效降低海馬Tau、Aβ和Tau異常磷酸化表達,減少Aβ42生成,激活絲氨酸/蘇氨酸p21激活激酶/磷酸肌醇依賴性蛋白激酶-1信號通路,改善大鼠海馬神經元結構,抑制海馬神經元凋亡[95-96];能通過抑制Rho/Rho相關蛋白激酶通路來提高糖尿病腦病大鼠基質金屬蛋白酶水平,減輕糖尿病大鼠空間學習記憶能力受損、皮質神經元紊亂、神經元凋亡等認知功能障礙和病理損傷[97]。此外,小檗堿和二甲雙胍聯用能顯著改善db/db轉基因小鼠神經行為、腦海馬區中神經細胞組織結構和細胞形態[98-99],與人參皂苷Rb1聯用可降低應激下血漿皮質醇和促腎上腺皮質激素水平,減少慢性不可預測輕度應激誘導的抑郁樣行為,上調BDNF蛋白表達,與絞股藍皂苷或聯苯芬酯低劑量聯合給藥可以改善2型糖尿病小鼠和db/db小鼠代謝異常[100]。
Adefegha等[101]發現小檗堿能改善糖尿病誘發勃起功能障礙模型陰莖組織的組織學結構,提高睪酮、促黃體生成素和促卵泡激素水平,降低催乳素、乙酰膽堿酯酶、血管緊張素-1轉化酶水平。
Yin等[102]發現小檗堿可保護db/db轉基因小鼠糖尿病視網膜病變模型的視網膜形態,降低糖原積累和TNF-α、IL-1β含量,下調動物視網膜中VEGF、VEGF受體2、缺氧誘導因子-1α和NF-κB、p65蛋白表達水平。
研究發現小檗堿可通過抑制CRP、IL-6和TNF-α水平,提高脂聯素水平;通過抑制胸主動脈血管平滑肌細胞增殖和遷移,降低TGF-β1、IL-6、TNF-α水平,來改善2型糖尿病大鼠胸主動脈的病理狀態,緩解肺動脈收縮減弱及對非內皮依賴性松弛反應增強的變化程度[103]。此外,小檗堿和雙乙酰丙酮氧釩聯用不僅降糖效果較單用更好,還能顯著改善模型動物血管中膜結構、鈣化水平及機體抗氧化應激能力,緩解血脂紊亂情況進而實現對血管損傷的保護作用[104]。
炎癥在健康和多種病理生理過程中發揮著關鍵作用。研究發現,小檗堿能通過抑制花生四烯酸或脂多糖誘導人單核細胞中TNF-α、單核細胞趨化蛋白-1、IL-6、IL-8和環氧合酶-2等因子水平,抑制NF-κB轉位進入細胞核而顯著減弱炎癥反應[105];能抑制雙鏈RNA誘導RAW264.7小鼠巨噬細胞中中性粒細胞數、前列腺素E2、FAS、白血病抑制因子、趨化因子和人巨噬細胞炎癥蛋白2的產生以及鈣的釋放,抑制p38 MAPK、ERK1/2、IκBα和STAT3的磷酸化[106];能抑制脂多糖誘導內皮細胞、人臍靜脈內皮細胞和人肺微血管內皮細胞中LC3II/LC3I值水平,促進p62表達緩解自噬過程[107];能抑制脂多糖誘導牛子宮內膜上皮炎癥模型細胞中CRP、IL-1β、IL-6和TNF-α表達,調節Nrf2活性來發揮其抗炎活性[108]。不僅如此,在脂多糖誘導處理外周血單核細胞模型中,小檗堿能抑制和mRNA和蛋白表達以及其細胞因子分泌[109]。不僅如此,小檗堿吸入和注射2種方式均可抑制TLR4/ NF-κB和JAK2/STAT3信號通路,降低支氣管肺泡灌洗液和血清中促炎因子,減輕脂多糖誘導急性呼吸窘迫綜合征的病理過程[110]。
小檗堿在預防和治療器官損傷及代謝性疾病方面具有良好的臨床應用前景,見圖2,且小檗堿也是許多中藥的主要質控指標之一。基于此,研究者對小檗堿展現出極大興趣,對小檗堿藥理活性進行了廣泛研究、總結和報道[111],申請了許多重要專利[112],并構建了一系列的衍生物進行新藥篩選和研發[113]。但是,為了保證小檗堿的臨床安全合理使用,仍然需要研究者對小檗堿面臨的關鍵問題進行更加深入的研究。
在西方國家,小檗堿提取物補充劑作為非處方藥可以在藥店和正規市場出售,不需要醫療處方和醫療監督。雖然研究報道小檗堿補充劑被認為是耐受性良好和安全的,但其臨床指導原則的不完善有可能導致不良反應的發生。總的來說,食品和藥品監管機構應該盡快建立嚴格的法規監管小檗堿作為膳食補充劑的生產和銷售。

圖2 小檗堿在臟器損傷保護和代謝性疾病等方面的相關信號通路圖
小檗堿是一種重要的先導化合物,在藥物開發中具有很大的優化潛力。小檗堿水溶性極低,口服吸收不良,口服生物利用度較差,是限制小檗堿臨床應用的主要因素[114-115]。因此,研究者應該盡可能通過現代技術,嘗試使用不同的劑型、給藥系統和技術,如固體分散體、微膠囊、納米粒、脂質體、和自納米乳化等新型藥物載體來進一步提高其生物利用度和治療效果。此外,根據小檗堿在植物中的生長環境和相應的代謝產物[116],根據不同成分之間的協同作用,利用特定的原生植物代謝物來制備相應的靶向給藥系統,以期改善小檗堿在新藥研發中的瓶頸問題。
小檗堿生物分子靶點不明確直接制約了小檗堿在制藥領域的發展。非編碼RNA轉錄本和編碼mRNA上的非編碼區域在生物活動中的作用被逐漸挖掘[117]。因此,建議研究者可以嘗試針對RNA(包括編碼區和非編碼區)進行小檗堿相關疾病治療性藥物的開發。此外,腸道菌群的結構和功能與藥物代謝產物、藥效存在著密切的關系。因此,深入研究腸道菌群變化、探討不同物種、不同狀態下細菌對小檗堿應答的物種特異性和物種間功能共性[118-119]、生理病理狀態(如糖尿病和健康狀態下)對小檗堿吸收、代謝和藥效的影響,有助于更深入地了解小檗堿在不同疾病治療中的作用。
小檗堿在中藥真實使用環境中的作用和意義仍沒有被完全挖掘,如Feng等[120]發現小檗堿具有明顯抑制CYP3A4酶的活性。而且小檗堿的這種活性主要是通過降低孕烷X受體水平來抑制3A4的轉錄水平、通過泛素途徑來加速3A4的蛋白降解來實現的[121]。而中藥中的許多有效物質,主要是毒性物質,都是通過CYP3A4代謝酶進行代謝,那么從CYA3A4的角度進行小檗堿配伍減毒的機制研究,對于闡釋中藥臨床配伍使用是非常有益的。
利益沖突 所有作者均聲明不存在利益沖突
[1] Ye Y, Liu X F, Wu N H,. Efficacy and safety of berberine alone for several metabolic disorders: A systematic review and meta-analysis of randomized clinical trials [J]., 2021, 12: 653887.
[2] 李璐, 王玉琳, 秦鴻宇, 等. 小檗堿調節腸肝軸治療非酒精性脂肪肝病的研究進展 [J]. 中草藥, 2021, 52(5): 1501-1509.
[3] Cai Y, Xin Q Q, Lu J J,. A new therapeutic candidate for cardiovascular diseases: Berberine [J]., 2021, 12: 631100.
[4] Akbar M, Shabbir A, Rehman K,. Neuroprotective potential of berberine in modulating Alzheimer’s disease via multiple signaling pathways [J]., 2021, 45(10): e13936.
[5] Ye C H, Liang Y B, Chen Y,. Berberine improves cognitive impairment by simultaneously impacting cerebral blood flow and β-amyloid accumulation in an APP/tau/PS1 mouse model of Alzheimer's disease [J]., 2021, 10(5): 1161.
[6] Wu Y, Chen Q J, Wen B,. Berberine reduces Aβ42deposition and tau hyperphosphorylationameliorating endoplasmic reticulum stress [J]., 2021, 12: 640758.
[7] Ghareeb D A, Khalil S, Hafez H S,. Berberine reduces neurotoxicity related to nonalcoholic steatohepatitis in rats [J]., 2015, 2015: 361847.
[8] 周景芬, 張開, 張林英, 等. 小檗堿通過上調miR-137抑制APP表達調控阿爾茨海默病的發生發展 [J]. 中國老年學雜志, 2021, 41(17): 3766-3770.
[9] Kneynsberg A, Combs B, Christensen K,. Axonal degeneration in tauopathies: Disease relevance and underlying mechanisms [J]., 2017, 11: 572.
[10] Wang Y Y, Yan Q, Huang Z T,. Ameliorating ribosylation-induced amyloid-β pathology by berberine via inhibiting mTOR/p70S6K signaling [J]., 2021, 79(2): 833-844.
[11] Liang Y B, Ye C H, Chen Y L,. Berberine improves behavioral and cognitive deficits in a mouse model of Alzheimer’s disease via regulation of β-amyloid production and endoplasmic reticulum stress [J]., 2021, 12(11): 1894-1904.
[12] 余偉, 丁立, 陳玉倩, 等. 小檗堿改善5XFAD小鼠抑郁和焦慮 [J]. 神經損傷與功能重建, 2021, 16(9): 497-501.
[13] Fang Y, Zhang J D, Zhu S W,. Berberine ameliorates ovariectomy-induced anxiety-like behaviors by enrichment in equol generating gut microbiota [J]., 2021, 165: 105439.
[14] 盧帥菲, 汪保英, 白明, 等. 小檗堿對抑郁小鼠腦海馬組織能量代謝的影響 [J]. 中華中醫藥雜志, 2021, 36(6): 3580-3584.
[15] Zhan Y H, Han J Y, Xia J,. Berberine suppresses mice depression behaviors and promotes hippocampal neurons growth through regulating the miR-34b-5p/miR-470-5p/BDNF axis [J]., 2021, 17: 613-626.
[16] Xie P, Ren Z K, Lv J,. Berberine ameliorates oxygen-glucose deprivation/reperfusion-induced apoptosis by inhibiting endoplasmic reticulum stress and autophagy in PC12 cells [J]., 2020, 40(6): 1047-1056.
[17] Zhao Y N, Li Z K, Lu E R,. Berberine exerts neuroprotective activities against cerebral ischemia/ reperfusion injury through up-regulating PPAR-γ to suppress NF-κB-mediated pyroptosis [J]., 2021, 177: 22-30.
[18] Zhao L N, Li H M, Gao Q,. Berberine attenuates cerebral ischemia-reperfusion injury induced neuronal apoptosis by down-regulating the CNPY2 signaling pathway [J]., 2021, 12: 609693.
[19] 田悅, 王奇, 羅玉敏. 小檗堿介導的抗腦缺血凋亡通路研究進展 [J]. 實用藥物與臨床, 2021, 24(5): 461-465.
[20] Szalak R, Kukula-Koch W, Matysek M,. Effect of berberine isolated from barberry species by centrifugal partition chromatography on memory and the expression of parvalbumin in the mouse hippocampus proper [J]., 2021, 22(9): 4487.
[21] Ibrahim Fouad G, Ahmed K A. Neuroprotective potential of berberine against doxorubicin-induced toxicity in rat’s brain [J]., 2021, 46(12): 3247-3263.
[22] Shaker F H, El-Derany M O, Wahdan S A,. Berberine ameliorates doxorubicin-induced cognitive impairment (chemobrain) in rats [J]., 2021, 269: 119078.
[23] 梁自飛, 吳安石, 沈文振, 等. 基于NLRP3炎癥小體信號通路探討鹽酸小檗堿對三叉神經痛大鼠的影響 [J]. 中國醫院用藥評價與分析, 2021, 21(6): 658-662.
[24] Li X Q, Su Y, Li N,. Berberine attenuates MPP+-induced neuronal injury by regulating LINC00943/mir-142-5p/KPNA4/NF-κB pathway in SK-N-SH cells [J]., 2021, 46(12): 3286-3300.
[25] Huang S X, Liu H Q, Lin Y W,. Berberine protects against NLRP3 inflammasome via ameliorating autophagic impairment in MPTP-induced Parkinson's disease model [J]., 2021, 11: 618787.
[26] Deng H, Ma Z G. Protective effects of berberine against MPTP-induced dopaminergic neuron injury through promoting autophagy in mice [J]., 2021, 12(18): 8366-8375.
[27] Wang L Z, Sheng W L, Tan Z S,. Treatment of Parkinson's disease in Zebrafish model with a berberine derivative capable of crossing blood brain barrier, targeting mitochondria, and convenient for bioimaging experiments [J]., 2021, 249: 109151.
[28] Wang Y, Tong Q, Ma S R,. Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson’s disease by regulating gut microbiota [J]., 2021, 6(1): 77.
[29] 郭莎莎, 李焱, 蘇文革. 小檗堿抗動脈粥樣硬化的作用及機制研究進展 [J]. 中華中醫藥學刊, 2021, 39(12): 46-51.
[30] Cao R Y, Zheng Y T, Zhang Y,. Berberine on the prevention and management of cardiometabolic disease: Clinical applications and mechanisms of action [J]., 2021, 49(7): 1645-1666.
[31] Chen C, Lin Q, Zhu X Y,. Pre-clinical evidence: Berberine as a promising cardioprotective candidate for myocardial ischemia/reperfusion injury, a systematic review, and meta-analysis [J]., 2021, 8: 646306.
[32] Chen H Q, Liu Q, Liu X Q,. Berberine attenuates septic cardiomyopathy by inhibiting TLR4/NF-κB signalling in rats [J]., 2021, 59(1): 121-128.
[33] 劉盛祥, 黃宇鵬, 楊國康, 等. 小檗堿對大鼠壓力超負荷肥厚心肌組織miR-21-3p表達的影響及其干預心肌肥厚的作用機制 [J]. 疑難病雜志, 2021, 20(9): 879-882.
[34] 孫建利, 趙慶偉, 李朋朋, 等. 小檗堿對心肌缺血再灌注損傷大鼠線粒體自噬及對PINK1/Parkin通路的影響 [J]. 現代藥物與臨床, 2021, 36(4): 637-644.
[35] Abdulredha A, Abosaooda M, Al-Amran F,. Berberine protests the heart from ischemic reperfusion injury via interference with oxidative and inflammatory pathways [J]., 2021, 75(3): 174-179.
[36] Ding L L, Li S F, Wang F,. Berberine improves dietary-induced cardiac remodeling by upregulating Kruppel-like factor 4-dependent mitochondrial function [J]., 2021, 402(7): 795-803.
[37] Zhang H N, Dong J H, Lau C W,. Berberine reverses nitroglycerin tolerance through suppressing protein kinase C alpha activity in vascular smooth muscle cells [J]., 2022, 36(4): 633-643.
[38] Ma Y H, Yan G L, Guo J J,. Berberine prolongs mouse heart allograft survival by activating T cell apoptosis via the mitochondrial pathway [J]., 2021, 12: 616074.
[39] 王洋, 張建, 辛芳冉, 等. 基于網絡藥理學預測小檗堿治療心房顫動作用靶點及通路 [J]. 創傷與急危重病醫學, 2021, 9(3): 165-170.
[40] Ren S C, Ma X, Wang R L,. Preclinical evidence of berberine on non-alcoholic fatty liver disease: A systematic review and meta-analysis of animal studies [J]., 2021, 12: 742465.
[41] 鄭吉敏, 李蘋蘋, 崔子瑾, 等. 小檗堿治療代謝相關脂肪性肝病合并腹瀉型腸易激綜合征臨床觀察 [J]. 河北醫藥, 2021, 43(8): 1233-1235.
[42] Chen P, Li Y S, Xiao L. Berberine ameliorates nonalcoholic fatty liver disease by decreasing the liver lipid content via reversing the abnormal expression of MTTP and LDLR [J]., 2021, 22(4): 1109.
[43] 張東行, 郭彩娟, 方沐潮, 等. 小檗堿的降膽固醇作用及對CYP7A1、NPC1L1表達的影響 [J]. 中藥材, 2021, 44(2): 416-421.
[44] Yu M Y, Alimujiang M, Hu L L,. Berberine alleviates lipid metabolism disorders via inhibition of mitochondrial complex I in gut and liver [J]., 2021, 17(7): 1693-1707.
[45] Wang Y Y, Tai Y L, Zhao D,. Berberine prevents disease progression of nonalcoholic steatohepatitis through modulating multiple pathways [J]., 2021, 10(2): 210.
[46] Li D, Yang C, Zhu J Z,. Berberine remodels adipose tissue to attenuate metabolic disorders by activating sirtuin 3 [J]., 2022, 43(5): 1285-1298.
[47] Xu Y X, Yu T H, Ma G J,. Berberine modulates deacetylation of PPARγ to promote adipose tissue remodeling and thermogenesis via AMPK/SIRT1 pathway [J]., 2021, 17(12): 3173-3187.
[48] Neyrinck A M, Sánchez C R, Rodriguez J,. Prebiotic effect of berberine and curcumin is associated with the improvement of obesity in mice [J]., 2021, 13(5): 1436.
[49] 朱虹燕, 王勝軍, 戶占飛, 等. 小檗堿預處理對大鼠肝缺血再灌注損傷的影響 [J]. 中國實驗診斷學, 2021, 25(2): 259-263.
[50] Lu Z S, Lu F B, Wu L Y,. Berberine attenuates non-alcoholic steatohepatitis by regulating chemerin/CMKLR1 signalling pathway and Treg/Th17 ratio [J]., 2021, 394(2): 383-390.
[51] Shalkami A S, Hassanein E H M, Sayed A M,. Hepatoprotective effects of phytochemicals berberine and umbelliferone against methotrexate-induced hepatic intoxication: Experimental studies and in silico evidence [J]., 2021, 28(47): 67593-67607.
[52] Bhattacharjee K, Nath M, Choudhury Y. Berberine is as effective as the anti-obesity drug Orlistat in ameliorating betel-nut induced dyslipidemia and oxidative stress in mice [J]., 2021, 1(3): 100098.
[53] Cossiga V, Lembo V, Nigro C,. The combination of berberine, tocotrienols and coffee extracts improves metabolic profile and liver steatosis by the modulation of gut microbiota and hepatic miR-122 and miR-34a expression in mice [J]., 2021, 13(4): 1281.
[54] Mehrdoost S, Yaghmaei P, Jafary H,. The therapeutic effects of berberine plus sitagliptin in a rat model of fatty liver disease [J]., 2021, 24(4): 451-459.
[55] Xu J, Liu L Q, Gan L,. Berberine acts on C/EBPβ/lncRNA Gas5/miR-18a-5p loop to decrease the mitochondrial ROS generation in HK-2 cells [J]., 2021, 12: 675834.
[56] 梅昭, 蔡文麗, 鄭鐵騎, 等. 小檗堿調控NLRP3炎癥小體對TGF-β1誘導HK-2細胞轉分化的影響 [J]. 中國藥師, 2021, 24(5): 829-834.
[57] Ibrahim Fouad G, Ahmed K A. The protective impact of berberine against doxorubicin-induced nephrotoxicity in rats [J]., 2021, 73: 101612.
[58] 孫琳琳, 郝明月, 盛明薇, 等. SIRT1/Nrf2信號通路在小檗堿減輕小鼠腎缺血再灌注損傷中的作用 [J]. 中華麻醉學雜志, 2021(5): 598-602.
[59] Li Q P, Huang Z W, Liu D F,. Effect of berberine on hyperuricemia and kidney injury: A network pharmacology analysis and experimental validation in a mouse model [J]., 2021, 15: 3241-3254.
[60] 高智宏. 鹽酸小檗堿對小鼠UUO模型誘導的腎臟纖維化的保護作用及其相關機制研究 [D]. 太原: 山西醫科大學, 2021.
[61] Wang P L, Guo W B, Huang G R,. Berberine-based heterogeneous linear supramolecules neutralized the acute nephrotoxicity of aristolochic acid by the self-assembly strategy [J]., 2021, 13(28): 32729-32742.
[62] Mirzaee F, Razmjouei P, Shahrahmani H,. The effect and safety of Berberine on polycystic ovary syndrome: A systematic review [J]., 2021, 41(5): 684-689.
[63] 楊丹丹, 桑敏. 枸櫞酸氯米芬聯合小檗堿對多囊卵巢綜合征患者卵巢形態及血流動力學的影響 [J]. 中國醫藥, 2021, 16(7): 1070-1073.
[64] Wang Z, Nie K X, Su H,. Berberine improves ovulation and endometrial receptivity in polycystic ovary syndrome [J]., 2021, 91: 153654.
[65] Yu J, Ding C F, Hua Z J,. Protective effects of berberine in a rat model of polycystic ovary syndrome mediated via the PI3K/AKT pathway [J]., 2021, 47(5): 1789-1803.
[66] Dai J G, Huang X M, Zhang C,. Mechanisms of lipid metabolism promoted by berberine via peroxisome proliferator-activated receptor gamma duringmaturation of porcine oocytes [J]., 2021, 92(1): e13582.
[67] Tang M, Yuan D X, Liao P. Berberine improves intestinal barrier function and reduces inflammation, immunosuppression, and oxidative stress by regulating the NF-κB/MAPK signaling pathway in deoxynivalenol-challenged piglets [J]., 2021, 289: 117865.
[68] Hassanein E H M, Kamel E O, Ali F E M,. Berberine and/or zinc protect against methotrexate-induced intestinal damage: Role of GSK-3β/Nrf2 and JAK1/STAT-3 signaling pathways [J]., 2021, 281: 119754.
[69] Chao G Q, Wang Q Q, Ye F X,. Gene expression analysis in NSAID-induced rat small intestinal disease model with the intervention of berberine by the liquid chip technology [J]., 2021, 43(1): 32.
[70] Zhang D L, Jiang L, Wang M L,. Berberine inhibits intestinal epithelial barrier dysfunction in colon caused by peritoneal dialysis fluid by improving cell migration [J]., 2021, 264: 113206.
[71] Li B H, Niu S P, Geng H L,. Berberine attenuates neonatal sepsis in mice by inhibiting FOXA1 and NF-κB signal transduction via the induction of miR-132-3p [J]., 2021, 44(6): 2395-2406.
[72] 林潔鋒. 鹽酸小檗堿片治療飲酒相關急性胃腸炎的臨床研究 [J]. 醫學理論與實踐, 2021, 34(8): 1323-1325.
[73] 張俊波, 張亞光, 李泳鋒. 鹽酸小檗堿聯合雙歧桿菌四聯活菌片治療小兒感染性腹瀉的臨床效果 [J]. 河南醫學研究, 2021, 30(23): 4356-4358.
[74] 王亞欽, 李旭飛. 鹽酸小檗堿片聯合美沙拉嗪治療遠端潰瘍性結腸炎患者的效果評價 [J]. 河南醫學研究, 2021, 30(23): 4371-4372.
[75] Jiang Y, Zhao L, Chen Q,. Exploring the mechanism of berberine intervention in ulcerative colitis from the perspective of inflammation and immunity based on systemic pharmacology [J]., 2021, 2021: 9970240.
[76] 熊亞立, 陳誠, 胡光明, 等. 小檗堿通過促進巨噬細胞M2極化緩解潰瘍性結腸炎 [J]. 西北藥學雜志, 2021, 36(3): 414-419.
[77] Dong C R, Yu J Q, Yang Y N,. Berberine, a potential prebiotic to indirectly promotegrowth through stimulating gut mucin secretion [J]., 2021, 139: 111595.
[78] Tong Y L, Liu L P, Wang R L,. Berberine attenuates chronic atrophic gastritis induced by MNNG and its potential mechanism [J]., 2021, 12: 644638.
[79] Tong Y L, Zhao X, Wang R L,. Therapeutic effect of berberine on chronic atrophic gastritis based on plasma and urine metabolisms [J]., 2021, 908: 174335.
[80] Khashayar A, Bahari Z, Elliyeh M,. Therapeutic effects of berberine in metabolic diseases and diabetes mellitus [J]., 2021, 31(3): 272-281.
[81] 郭志利, 姚克青, 姚玉英. 小檗堿對高脂加鏈脲佐菌素誘導的糖尿病大鼠的影響 [J]. 中醫學報, 2021, 36(6): 1272-1277.
[82] 李陽, 高明松, 肖方喜, 等. 小檗堿對糖尿病大鼠主動脈病變及其PERK/eIF2α表達的作用 [J]. 藥物分析雜志, 2021, 41(5): 826-831.
[83] Wang D K, Ren Y L, Sun W,. Berberine ameliorates glucose metabolism in diabetic rats through the alpha7 nicotinic acetylcholine receptor-related cholinergic anti-inflammatory pathway [J]., 2022, 88(1): 33-42.
[84] Di S, Han L, An X D,. In silico network pharmacology andanalysis of berberine-related mechanisms against type 2 diabetes mellitus and its complications [J]., 2021, 276: 114180.
[85] Sui M, Jiang X F, Sun H P,. Berberine ameliorates hepatic insulin resistance by regulating microRNA-146b/SIRT1 pathway [J]., 2021, 14: 2525-2537.
[86] Wang J, Wei L R, Liu Y L,. Berberine activates the β-catenin/TCF4 signaling pathway by down-regulating miR-106b to promote GLP-1 production by intestinal L cells [J]., 2021, 911: 174482.
[87] 楊晶晶, 沈宗姮, 何沛原, 等. 小檗堿通過下調miR-1290緩解高糖誘導的足細胞損傷研究 [J]. 中草藥, 2021, 52(18): 5620-5625.
[88] 汪佳佳. 小檗堿對糖尿病腎病足細胞保護作用及對長鏈非編碼RNA的初步調節作用研究 [D]. 合肥: 安徽醫科大學, 2021.
[89] 鄢秀, 師朗, 陳景, 等. 小檗堿通過腺苷酸活化蛋白激酶、過氧化物酶體增殖物激活受體γ共激活因子-1α調節自噬減輕高糖環境下足細胞損傷的機制研究 [J]. 中國糖尿病雜志, 2021, 29(7): 528-534.
[90] 關錫梅, 解勇圣, 倪偉建, 等. Nrf2/HO-1/GPX4對高糖誘導足細胞鐵死亡的影響及小檗堿的干預機制研究 [J]. 中國藥理學通報, 2021, 37(3): 396-403.
[91] 楊欣妤, 黃明月, 時正媛, 等. 基于腸道L細胞葡萄糖轉運體表達的小檗堿降糖機制研究 [J]. 中華中醫藥雜志, 2021, 36(4): 1926-1930.
[92] Cole L K, Zhang M, Chen L,. Supplemental berberine in a high-fat diet reduces adiposity and cardiac dysfunction in offspring of mouse dams with gestational diabetes mellitus [J]., 2021, 151(4): 892-901.
[93] Cole L K, Sparagna G C, Vandel M,. Berberine elevates cardiolipin in heart of offspring from mouse dams with high fat diet-induced gestational diabetes mellitus [J]., 2021, 11(1): 15770.
[94] Li M J, Liu Y, Qiu Y Y,. The effect of berberine adjunctive treatment on glycolipid metabolism in patients with schizophrenia: A randomized, double-blind, placebo-controlled clinical trial [J]., 2021, 300: 113899.
[95] Zhang J H, Zhang J F, Song J,. Effects of berberine on diabetes and cognitive impairment in an animal model: The mechanisms of action [J]., 2021, 49(6): 1399-1415.
[96] 王嘉雯, 吳寧華, 李寰, 等. 小檗堿激活PAK1/PDK1緩解胰島素抵抗治療糖尿病腦病的作用 [J]. 中國醫院藥學雜志, 2021, 41(8): 790-795.
[97] Tian L, Ri H, Qi J P,. Berberine elevates mitochondrial membrane potential and decreases reactive oxygen species by inhibiting the Rho/ROCK pathway in rats with diabetic encephalopathy [J]., 2021, 17: 1744806921996101.
[98] 曹月盈, 孟祥寶, 孫桂波, 等. 二甲雙胍聯合小檗堿對db/db小鼠糖尿病認知功能障礙的改善作用 [J]. 中國新藥雜志, 2021, 30(8): 690-700.
[99] Zhang J H, Yang H Z, Su H,. Berberine and ginsenoside Rb1 ameliorate depression-like behavior in diabetic rats [J]., 2021, 49(5): 1195-1213.
[100]Zhang M, Li J, Guo X,. Co-administration of berberine/gypenosides/bifendate ameliorates metabolic disturbance but not memory impairment in type 2 diabetic mice [J]., 2021, 7(1): e06004.
[101]Adefegha S A, Oboh G, Dada F A,. Berberine modulates crucial erectogenic biomolecules and alters histological architecture in penile tissues of diabetic rats [J]., 2021, 53(7): e14074.
[102]Yin Z J, Tan R R, Yuan T M,. Berberine prevents diabetic retinopathy through inhibiting HIF-1α/VEGF/NF-κB pathway in db/db mice [J]., 2021, 76(4): 165-171.
[103]Wu Z G, Gu L, Si Y K,. Macrovascular protecting effects of berberine through anti-inflammation and intervention of BKCa in type 2 diabetes mellitus rats [J]., 2021, 21(7): 1270-1281.
[104]孫媛花, 李思宇, 邊遠, 等. 雙乙酰丙酮氧釩和小檗堿聯用對1型糖尿病大鼠影響的研究 [J]. 中國糖尿病雜志, 2021, 29(4): 300-305.
[105]Reddi K K, Li H X, Li W,. Berberine, A phytoalkaloid, inhibits inflammatory response induced by LPS through NF-kappaB pathway: Possible involvement of the IKKα [J]., 2021, 26(16): 4733.
[106]Kim H J, Kim Y J, Park W. Berberine modulates hyper-inflammation in mouse macrophages stimulated with polyinosinic-polycytidylic acid via calcium-CHOP/STAT pathway [J]., 2021, 11(1): 11298.
[107]Guo J P, Chen W, Bao B B,. Protective effect of berberine against LPS-induced endothelial cell injury via the JNK signaling pathway and autophagic mechanisms [J]., 2021, 12(1): 1324-1337.
[108]Fu K Q, Wang Z Z, Cao R F. Berberine attenuates the inflammatory response by activating the Keap1/Nrf2 signaling pathway in bovine endometrial epithelial cells [J]., 2021, 96: 107738.
[109]Ghorbani N, Sahebari M, Mahmoudi M,. Berberine inhibits the gene expression and production of proinflammatory cytokines by mononuclear cells in rheumatoid arthritis and healthy individuals [J]., 2021, 17(1): 113-121.
[110]Xu G H, Wan H Q, Yi L T,. Berberine administrated with different routes attenuates inhaled LPS-induced acute respiratory distress syndrome through TLR4/NF-κB and JAK2/STAT3 inhibition [J]., 2021, 908: 174349.
[111]Singh S, Pathak N, Fatima E,. Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine [J]., 2021, 226: 113839.
[112] Kong Y, Li L, Zhao L G,. A patent review of berberine and its derivatives with various pharmacological activities (2016-2020) [J]., 2022, 32(2): 211-223.
[113]Gaba S, Saini A, Singh G,. An insight into the medicinal attributes of berberine derivatives: A review [J]., 2021, 38: 116143.
[114]Feng X C, Wang K, Cao S J,. Pharmacokinetics and excretion of berberine and its nine metabolites in rats [J]., 2020, 11: 594852.
[115]Zhou H, Li W Y, Sun L,. A rapid LC-MS/MS method for simultaneous determination of berberine and irbesartan in rat plasma: Application to the drug-drug pharmacokinetic interaction study after oral administration in rats [J]., 2021, 35(9): e5144.
[116]Zhao J, Zhou T, Lu J Z,. Intra-herb interactions: Primary metabolites inextract improved the pharmacokinetics of oral berberine hydrochloride in mice [J]., 2021, 12: 675368.
[117]Satpathi S, Endoh T, Podbev?ek P,. Transcriptome screening followed by integrated physicochemical and structural analyses for investigating RNA-mediated berberine activity [J]., 2021, 49(15): 8449-8461.
[118]Wolf P G, Devendran S, Doden H L,. Berberine alters gut microbial function through modulation of bile acids [J]., 2021, 21(1): 24.
[119]Du H, Xu T, Yi H,. Effect of gut microbiota on the metabolism of chemical constituents ofextract based on UHPLC-orbitrap-MS technique [J]., 2021, doi.org/10.1055/a-1617-9489.
[120]Feng P F, Zhao L, Guo F F,. The enhancement of cardiotoxicity that results from inhibiton of CYP 3A4 activity and hERG channel by berberine in combination with statins [J]., 2018, 293: 115-123.
[121]Feng P F, Zhu L X, Jie J,. The intracellular mechanism of berberine-induced inhibition of CYP3A4 activity [J]., 2021, 27(40):4179-418
Research progress on pharmacological action and related mechanism of berberine
CHEN Mei-lin, LI Zhi-qi, FAN Qi-qi, CAI Qiong, YANG Xing-yue, GU Yu-lin, GUO Si-min,LIN Rui-chao, ZHAO Chong-jun
Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
Berberine is a common active substance in many traditional Chinese medicine, which was widely used to treat the digestive system related diseases for thousands of years. Modern pharmacological studies showed that berberine also has significant pharmacological activities in preventing and protecting main organs damage, including nerve damage, heart damage, kidney damage, reproductive system damage, gastrointestinal tract damage, and metabolic disease, including Alzheimer’s disease, diabetes and related complications, as well as the inflammation. Therefore, based on the previous research, pharmacological activities of berberine in organ injury such as nerve damage and liver damage as well as the metabolic diseases were organized and summarized in this paper, and some suggestions were made to solve the urgent problems, in order to provide reference for safe use of berberine in clinic and the development of new drugs in the future.
berberine; organs damage; metabolic disease; inflammation; clinical safety; research and development of new drugs
R282.710.5
A
0253 - 2670(2022)18 - 5861 - 12
10.7501/j.issn.0253-2670.2022.18.029
2022-06-20
國家科技重大專項(2018ZX09735005);國家中醫藥管理局公益性中醫藥行業科研專項(201507004)
陳美琳(1999—),女,碩士研究生,研究方向為中藥毒性評價。E-mail: erdongXD@163.com
趙崇軍(1988—),男,助理研究員,研究方向為中藥安全性評價及主要活性/毒性物質基礎篩選。E-mail: 1014256537@qq.com
林瑞超(1954—),教授,研究方向為中藥品質評價。E-mail: linrch307@sina.com
[責任編輯 崔艷麗]