999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

X-ray phase-sensitive microscope imaging with a grating interferometer: Theory and simulation

2022-09-24 08:04:20JiechengYang楊杰成PeipingZhu朱佩平DongLiang梁棟HairongZheng鄭海榮andYongshuaiGe葛永帥
Chinese Physics B 2022年9期

Jiecheng Yang(楊杰成) Peiping Zhu(朱佩平) Dong Liang(梁棟)Hairong Zheng(鄭海榮) and Yongshuai Ge(葛永帥)

1Research Center for Medical Artificial Intelligence,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China

2Platform of Advanced Photon Source Technology R&D,Laboratory of X-ray Optics and Technology,Beijing Synchrotron Radiation Facility,Institute of High Energy Physics,Chinese Academy of Sciences,Beijing,100049,China

3Beijing Advanced Innovation Center for Imaging Theory and Technology,Capital Normal University,Beijing 100048,China

4Paul C Lauterbur Research Center for Biomedical Imaging,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China

Keywords: x-ray phase contrast imaging,x-ray microscope,grating interferometer

1. Introduction

The development of phase-sensitive x-ray imaging techniques over the last decades allows the measurement of the inner structure of weakly absorbing objects(e.g.,soft tissue,and carbon materials)with high sensitivity,and dramatically complements the conventional absorption imaging. Among the various promising x-ray phase contrast imaging methods,[1-4]the grating-based x-ray Talbot and Talbot-Lau interferometers have been subject to increasing attention due to its compatibility with x-ray tube imaging systems. Many efforts[5-10]have been taken by integrating the Talbot(-Lau)interferometry with the full-field transmission x-ray microscope. One exciting progress is demonstrated by Takanoet al.[10,11]on such a system to obtain superior phase information in comparison with the Zernike phase-contrast imaging approach. However,instead of generating the DPI images, such a combined x-ray microscope system produces the PDI images, which need to be post-processed via the iterative deconvolution method[12]or the maximum likelihood reconstruction method[13]to recover the phase information. Yashiroet al.[6,7]have provided pioneering theoretical explanations for such PDI phenomenon by exploiting the Talbot self-imaging effect.

In this work,a complete theoretical analysis for the imaging procedure of an x-ray microscope equipped with a grating interferometer is investigated. The theory has the capability to deal with various shaped source, and thus permits the explanations to other alternative interferometer designs, e.g., Lau typed interferometer. Additionally, the conversion condition from the PDI to the DPI, or vise versa, is quantitatively investigated with respect to the resolution limit of the imaging system. Finally, numerical simulations are performed to verify the consistency between the theoretical predictions and the previous experimental observations.[11]

2. Theoretical framework

In this study, the x-ray propagation is governed by Fresnel diffraction, which is a near-field approximation of the Kirchhoff-Fresnel diffraction for scalar waves. To simplify the derivations, the following analysis will be conducted in a one-dimensional (1D) case (along thexaxis). The twodimensional (2D) results can be easily obtained upon this basis. With the paraxial approximation, the diffracted fieldUout(x')at any distancedfrom the initial wave fieldUin(x)can be expressed as

whereλis the x-ray wavelength,andk(=2π/λ)is the wave number. Such propagation of the initial wave field can be formally denoted by an action of the operatorP.

Fig.1. Illustration of the x-ray phase contrast microscope system with an arrayed source and a π/2 phase grating.

By using Eq.(1), the scalar wave fieldU1(x1)of a point sourceδ(x0-η)(ηdenotes the off-axis distance)after propagating freely over a distanced1(before the sample) can be calculated as

The analysis dealing with a point source can be easily extended to study the signal formation process of an arrayed source by performing an integration of the final intensity according to the source shape.

Assuming that the thickness of the sample along the optical axis is negligible compared to the focal length of the zone plate,the modulation of the x-ray wavefront after penetrating the sample with a refractive indexn=1-δ+iβis approximated by

wherem=±1,±3,..., andfcorresponds to the first order(m=+1) focal length of the zone plate. Note that the zeroorder term corresponding to the transmission of the incident radiation in the forward direction is not included here. The reason is that such term would interfere with the imaging process involving the amplification by zone plate and is usually removed during experiments by a carefully designed imaging system.[10,14]TheV(x2),closely related to the size of the zone plate,stands for the correction factor of its amplitude transmission function.[7]With an ideal zone plate having an infinitely large area,V(x2)becomes a constant(V(x2)=1 is assumed)and the associated spatial resolution becomes infinitesimal.

whereq=d3(f-m(d1+d2))+f(d1+d2). In particular,the aforementioned x-ray microscope equipped with a Talbot (-Lau)interferometer[5,10]works under this condition.

withτ=(d1+d2)(f-m(d3+d4))+(d3+d4)f.

Further, the ordermis set to +1 because the diffraction efficiencies of other odd orders decrease rapidly by a factor of 1/m2. Similarly, the diffraction ordernof the grating is limited to 0 and±1.[16]By the first-order approximation, the detected beam intensity,i.e.,|U4(x4,η)|2,is proportional to

3. Numerical simulation

A series of 2D numerical simulations regarding the x-ray microscopic system shown in Fig. 1 are conducted. There comes with two main objectives. One is to verify the above theoretical derivations in comparison with the experimental measurements.[10,11]The other is to investigate the conversion condition and relationship between PDI and DPI.As discussed above,since the shape of the source only affects the fringe visibility, a point source is always considered in the subsequent numerical calculations for simplicity.

The subsequent simulation work is based on the previous theoretical derivation. Specifically,the Fresnel diffraction integral was calculated based on the discrete fast Fourier transform (DFFT) in Python. The transmission of x-rays through the optical components and the sample is imitated with the projection approximation. It is also assumed that the x-ray source is perfectly coherent and the detector has an ideal response without any crosstalk and photon shot noise. Besides,the resolution of the detector is determined by the discretization of the imaging field of view.To facilitate comparisons,the same imaging geometry and beam energy as listed in Ref.[10]were taken into account. In all simulations, the x-ray energy was fixed at 8.04 keV,and the imaging system ran in the large field of view(LFOV)mode with a 10-fold sample magnification. The simulated imaging field of view is 120μm×120μm with a zone plate having a resolution of 97.7 nm and a detector possessing a pixel dimension of 76.9 nm. Other key parameters to perform the calculations are shown in Table 1.

Table 1. Simulation parameters of the phase grating, zone plate and layout of the interferometer.

Fig.2. Numerical simulation results: (a)the fringe distribution,(b)the phase difference imaging results to evaluate the spatial resolution,(c)the phase difference imaging results,and(d)the differential phase imaging results. The white and black scale bars denote 1μm and 10μm,respectively.

Fig.3. Conversion conditions between PDI(gray area)and DPI(colored area)for the settings in Ref.[10]: (a)with varied spatial resolutions and grating periods;(b)with varied spatial resolutions and the geometrical factor d4/M. The color bar denotes the sensitivity of the DPI.The inverted triangle corresponds to the LFOV mode.

4. Discussion and conclusion

As demonstrated in the theoretical analysis,both the PDI and the DPI can be explained by the same imaging theory,upon which the PDI and DPI are unified. Meanwhile,certain phase signals,either PDI or DPI ones,can be retrieved under specific imaging conditions. By adjusting the imaging condition appropriately, the PDI can be converted to the DPI, or vise versa. For instance, increasing the grating period while maintaining other system settings would transform the x-ray microscope from the PDI mode to the DPI mode. However,our theoretical analysis also reveals that the sensitivity of DPI may be limited when pursuing a high image resolution.To this end,the parameters of an x-ray microscope system integrated with a grating interferometer need to be carefully optimized to meet the desired imaging applications.

In conclusion, we have developed a comprehensive theoretical framework based on the diffraction theory to explain the formation of the phase information in a grating-based x-ray microscope. Analysis demonstrates that the phase difference imaging and the differential phase imaging originate from a unified phase imaging theory and can be converted by changing certain conditions. Additionally, the impact of different optical components including the x-ray source can be analyzed by this imaging theory. In future, optimizations such as exploiting different shaped and polychromatic x-ray sources and varied grating types would be investigated for given x-ray microscope imaging tasks.

Acknowledgements

Project supported by the National Natural Science Foundation of China (Grant Nos. 12027812 and 11804356) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2021362).

主站蜘蛛池模板: 久久精品丝袜高跟鞋| 亚洲AV无码久久天堂| 中文无码精品a∨在线观看| 毛片在线区| 999福利激情视频| 热九九精品| 色婷婷亚洲综合五月| 午夜精品久久久久久久无码软件| 伊人91在线| 国产精品视频猛进猛出| 91综合色区亚洲熟妇p| 2021最新国产精品网站| 亚洲二区视频| 成人福利在线看| 国产中文在线亚洲精品官网| 国产成人精品在线| 欧美国产综合视频| 午夜在线不卡| 91丝袜乱伦| 日韩av手机在线| 成人福利在线免费观看| 亚洲伦理一区二区| 2020国产在线视精品在| 97国产在线观看| 欧美日韩国产一级| 制服丝袜亚洲| 亚洲欧洲自拍拍偷午夜色| 国产爽妇精品| 伊人色综合久久天天| 精品国产污污免费网站| 99青青青精品视频在线| 热99精品视频| 日本三级欧美三级| 99久久亚洲综合精品TS| 久久综合色播五月男人的天堂| 精品视频一区二区三区在线播| 国产第八页| 亚洲av无码专区久久蜜芽| 久久久精品国产亚洲AV日韩| 亚洲国产成人超福利久久精品| 亚洲a级毛片| 欧美成在线视频| 中文国产成人精品久久| 一本综合久久| 国产呦精品一区二区三区网站| 亚洲国模精品一区| 伊人久久久大香线蕉综合直播| 91av国产在线| 久久亚洲天堂| 国产成人亚洲精品无码电影| 国产在线一区视频| 在线精品亚洲一区二区古装| 日韩欧美国产成人| 日韩成人午夜| 全色黄大色大片免费久久老太| 538国产在线| 精品国产免费观看一区| 久久久亚洲色| 国产主播在线一区| 91精品国产91久无码网站| 在线不卡免费视频| 亚洲swag精品自拍一区| 亚洲大尺度在线| 亚洲欧美一区二区三区麻豆| 国产杨幂丝袜av在线播放| 精品视频免费在线| 欧美97欧美综合色伦图| 欧美精品黑人粗大| 噜噜噜久久| 国产对白刺激真实精品91| 日本不卡视频在线| 国产一级精品毛片基地| 97久久超碰极品视觉盛宴| 色综合久久88| 国产偷倩视频| 国产91九色在线播放| 欧美日韩国产成人在线观看| 无码精品国产dvd在线观看9久| 日韩精品一区二区三区免费| 日韩黄色精品| 国产日本一区二区三区| 91啦中文字幕|