999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

在變式教學中挖掘題根
——以一道“數列”課后習題為例

2022-11-23 01:07:40西華師范大學數學與信息學院吳明忠陳清方
中學數學雜志 2022年21期
關鍵詞:思路探究思想

西華師范大學數學與信息學院 梁 燕 吳明忠 陳清方

萬爾遐老師曾經說過:題根是一道具有生長性的題. 題根將學生救出“題海深淵”,提高解題效率,減輕學生負擔[1]. 數列作為高考中必考的知識點. 涉及的相關題型變化多端,計算紛繁復雜,但看似雜亂無章的問題背后,事實上有通法可尋. 古人云:“萬變不離其宗.”由于題根是題目的根基,因此研究題根對解題而言顯得尤為重要.

1 原題呈現

已知Sn是等比數列{an}的前n項和,S3,S9,S6成等差數列,求證:a2,a8,a5成等差數列.

思路1:化歸思想、方程思想.

分析:由于涉及等比數列前n項和,所以首先分類討論公比q是否為1,根據前n項和的定義,分析出S9和S6中都包含了S3,再根據等差數列性質(等差中項)與等比數列通項公式列方程,求出公比q,代入需要求證的式子中,從而驗證結論.

證明:①當q=1時,由Sn=na1,得

2S9=18a1,S3+S6=3a1+6a1=9a1.

所以2S9≠S3+S6.

故S3,S9,S6不成等差數列,應舍去.

②當q≠1時,因為S3,S9,S6成等差數列,有2S9=S3+S6,所以

2(S3+a4+……+a9)=S3+(S3+a4+a5+a6).

故2S3+2(a4+……+a9)=2S3+(a4+a5+a6).

即2(a4+……+a9)=a4+a5+a6.

所以2(a4+a5+a6)+2(a7+a8+a9)=a4+a5+a6,a4+a5+a6+2(a7+a8+a9)=0.

又因為a7+a8+a9=q3(a4+a5+a6),所以

(a4+a5+a6)(1+2q3)=0.

又因為a4+a5+a6≠0,所以1+2q3=0.

由此可得

所以2a8=a2+a5,即a2,a8,a5成等差數列.

思路2:整體代換法、分析法、方程思想.

分析:同思路1先分類討論公比q是否為1,再根據等比數列前n項和公式以及等差數列的性質(等差中項)列出等式,約分化簡后運用分析法,觀察化簡后的式子與待證明的式子之間的關系,發現兩式相差a1q-2倍. 思路2的特點是整個計算過程中并不用求出公比q,其巧妙之處在于運用分析法發現待證明等式和化簡出來的等式之間存在特定的倍數關系從而找到此題的突破口.

證明:①當q=1時,同思路1.

2(1-q9)=1-q3+1-q6,

2q9=q3+q6.

等式兩邊同時乘a1q-2,得

2a1q7=a1q+a1q4.

所以2a8=a2+a5,即a2,a8,a5成等差數列.

點評:思路1結合代入驗證利用化未知為已知思想,中規中矩;思路2結合逆向思維利用設而不求的整體代換思想,非常巧妙,為后面的變式奠定了基礎. 兩種處理方法殊途同歸,都運用了性質法,分類討論思想、方程思想,培養了學生數學運算、邏輯推理等核心素養.

2 變式探究

原題所考查的知識點如表1所示,下面從條件和結論兩方面入手,對此題進行變式探究. 數列題所包含的基本量有:首項a1、公差d(或公比q)、具體項第n項an、第n項的序號n、前n項和Sn等[2]. 由于此題涉及到的基本量較少,因此主要研究項的下標以及前n項和的下標這兩種變式思路.

表1 原題所考查的知識點

2.1 條件變式探究

結論不變,條件改變下標:

S3,S9,S6→S1,S7,S4/S2,S8,S5/Sn,Sn+6,Sn+3.

變式1已知Sn是等比數列{an}的前n項和,S1,S7,S4成等差數列,求證a2,a8,a5成等差數列.

思路:引導學生逆向分析,由于條件改變,根據等差中項的性質得到的等式可變為2S7=S1+S4,化簡得到2q7=q+q4,比較它與特征式的異同之處,發現等式兩邊同時乘a1,可以得到2a1q7=a1q+a1q4,于是證明出a2,a8,a5成等差數列.

變式2已知Sn是等比數列{an}的前n項和,S2,S8,S5成等差數列,求證a2,a8,a5成等差數列.

思路:等式2q8=q2+q5兩邊同時乘a1q-1.

變式3已知Sn是等比數列{an}的前n項和,對任意n∈N*,Sn,Sn+6,Sn+3成等差數列,求證a2,a8,a5成等差數列.

思路:等式2qn+6=qn+qn+3兩邊同乘a1q1-n.

2.2 結論變式探究

條件不變,結論改變下標:

a2,a8,a5→a1,a7,a4/a3,a9,a6/am,am+6,am+3.

變式4已知Sn是等比數列{an}的前n項和,S3,S9,S6成等差數列,求證a1,a7,a4成等差數列.

思路:由于條件不變,因此由已知條件得到的等式2q9=q3+q6不變,引導學生利用原題的解決方法(根據在等式兩邊同時乘a1q-2便可得證),因此為我們提供了解題思路,等式兩邊同時乘a1q-3就能證明a1,a7,a4成等差數列.

變式5已知Sn是等比數列{an}的前n項和,S3,S9,S6成等差數列,求證a3,a9,a6成等差數列.

思路:等式2q9+q3+q6兩邊同時乘a1q-1.

變式6已知Sn是等比數列{an}的前n項和,對任意m∈N*,S3,S9,S6成等差數列,求證am,am+6,am+3成等差數列.

思路:等式2q9=q3+q6兩邊同時乘a1qm-4.

3 題根探究

在上述兩種變式思路的基礎上,可以發現下標之間存在特定的聯系,結合由特殊到一般的數學思想方法,將條件結論結合在一起進行變式,拓展到更為一般情況.

變式7已知Sn是等比數列{an}的前n項和,對任意n,m∈N*,有Sn+1,Sn,Sn+2成等差數列,求證am+1,am,am+2成等差數列.

思路:由變式教學過渡到題根教學的過程中,教師切忌“填鴨式”教學,而應充分發揮學生的主觀能動性,根據前面的變式循序漸進地引導學生自主找出規律,總結方法,提煉題根.培養學生的數學抽象素養和歸納能力.(等式2qn=qn+1+qn+2兩邊同時乘a1qm-n-1.)

變式8已知Sn是等比數列{an}的前n項和,對任意p,r,t,k,m,n∈N*,且p,r,t成等差數列,若pSk,rSm,tSn成等差數列,求證pak,ram+1,tan+1成等差數列.

思路:由于新添加了系數這一基本量,具有一定的難度.教師可以適當給出題根分析,即此題根是在討論已知含有系數的任意三個前n項和為等差數列,去判定任意三項亦為等差數列的問題.證明方法與前面類似,此處不再作具體的分析.

4 教學反思

荀子曰:“千舉萬變,其道一也.”意思是萬千事物盡管在形式上變化多端,但其本質是不變的[3]. 在解決千變萬化的數學題的過程中,要注意觀察分析其變化規律,在變與不變中抓準其本質的不變性,還原數學知識的本來面目,從而開展變式教學.

變式教學是一種雙贏的教學手段, 既能培養學生在變換的條件下舉一反三,又能挖掘出題目的本質,有利于學生了解知識方法的拓展和遷移,從而掌握這一類題型. 因此教師在變式教學中,應抓住問題本質,精選題、巧設計、有意識地尋找和設置題根,開展圍繞題根知識的變式教學.

猜你喜歡
思路探究思想
一道探究題的解法及應用
思想之光照耀奮進之路
華人時刊(2022年7期)2022-06-05 07:33:26
思想與“劍”
當代陜西(2021年13期)2021-08-06 09:24:34
不同思路解答
一道IMO預選題的探究
中等數學(2021年11期)2021-02-12 05:11:46
艱苦奮斗、勤儉節約的思想永遠不能丟
人大建設(2019年4期)2019-07-13 05:43:08
“思想是什么”
當代陜西(2019年12期)2019-07-12 09:11:50
探究式學習在國外
快樂語文(2018年13期)2018-06-11 01:18:16
一道IMO預選題的探究及思考
中等數學(2018年11期)2018-02-16 07:47:42
拓展思路 一詞多造
主站蜘蛛池模板: 欧美日韩一区二区三区在线视频| 欧美激情综合| 在线国产欧美| 亚洲色图欧美在线| 国产AV毛片| 香蕉精品在线| 国产丰满成熟女性性满足视频 | 亚洲精品视频网| 国产欧美日韩18| 天天综合色网| 亚洲国产成人在线| 99热亚洲精品6码| 无码久看视频| 99热国产这里只有精品无卡顿"| 国产美女视频黄a视频全免费网站| 三上悠亚一区二区| 啊嗯不日本网站| 亚洲综合精品香蕉久久网| 久久精品女人天堂aaa| 欧美精品在线观看视频| 在线观看视频一区二区| 精品小视频在线观看| 国产手机在线小视频免费观看| av无码一区二区三区在线| 亚洲香蕉久久| 国产迷奸在线看| 91精品人妻一区二区| 国产香蕉国产精品偷在线观看 | 精品无码国产自产野外拍在线| 欧美午夜在线视频| 欧美、日韩、国产综合一区| 国产精品久久久精品三级| 国产亚洲成AⅤ人片在线观看| 国产激爽大片在线播放| а∨天堂一区中文字幕| 亚洲国产精品日韩av专区| 欧美高清视频一区二区三区| 国产传媒一区二区三区四区五区| 亚洲色大成网站www国产| 丁香六月综合网| 国产成人高清精品免费| 日韩国产一区二区三区无码| 热re99久久精品国99热| 99热这里只有精品久久免费| 韩日午夜在线资源一区二区| 日韩视频福利| 国产精品人成在线播放| 亚洲人人视频| 91国内在线观看| 18禁色诱爆乳网站| 最新亚洲人成无码网站欣赏网| 欧美日韩va| 黄色片中文字幕| 91免费国产在线观看尤物| 国产美女视频黄a视频全免费网站| 老色鬼久久亚洲AV综合| 青青操国产视频| 中国一级特黄大片在线观看| 99久久精品免费视频| 2020国产在线视精品在| 欧美人与动牲交a欧美精品| 日本精品视频一区二区| 欧美日韩免费| 9久久伊人精品综合| 亚洲最猛黑人xxxx黑人猛交 | 色偷偷一区二区三区| 亚洲高清日韩heyzo| 国产视频入口| 97se亚洲综合在线韩国专区福利| 亚洲天堂日韩在线| 亚洲人成亚洲精品| 欧洲日本亚洲中文字幕| 无码粉嫩虎白一线天在线观看| 天天色天天操综合网| 视频二区国产精品职场同事| 国产h视频免费观看| 美女视频黄又黄又免费高清| 国产无码网站在线观看| 丝袜高跟美脚国产1区| 久久久久夜色精品波多野结衣| 色噜噜中文网| 99国产在线视频|