莫文靜,朱嘉偉,何新華,余海霞,江海玲,覃柳菲,張藝粒,李雨澤,羅聰
芒果MiZAT10A和MiZAT10B功能分析
莫文靜,朱嘉偉,何新華,余海霞,江海玲,覃柳菲,張藝粒,李雨澤,羅聰
廣西大學(xué)農(nóng)學(xué)院/亞熱帶農(nóng)業(yè)生物資源保護(hù)與利用國(guó)家重點(diǎn)實(shí)驗(yàn)室/植物科學(xué)國(guó)家級(jí)實(shí)驗(yàn)教學(xué)示范中心,南寧 530004
【】鋅指蛋白(zinc finger protein,ZFP)在植物非生物脅迫應(yīng)答中起重要的作用,研究?jī)蓚€(gè)鋅指蛋白基因和轉(zhuǎn)入擬南芥對(duì)鹽、干旱、重金屬以及外源激素等非生物脅迫的應(yīng)答,為抗逆育種提供理論依據(jù)。【】利用在線軟件PLACE和MEME分別對(duì)芒果和進(jìn)行啟動(dòng)子順式作用元件以及motif預(yù)測(cè)和分析,并利用TBtools軟件和‘四季蜜芒’基因注釋文件(GFF文件,未公開)繪制染色體定位圖;通過實(shí)時(shí)熒光定量分析和的組織表達(dá)模式;構(gòu)建芒果和超量表達(dá)載體,采用農(nóng)桿菌花序浸染法轉(zhuǎn)化模式植物擬南芥,觀察并記錄轉(zhuǎn)基因擬南芥開花表型以及在鹽、干旱、重金屬以及外源激素脫落酸和赤霉素處理下的根生長(zhǎng)情況。【】啟動(dòng)子順式元件分析顯示,兩個(gè)基因的啟動(dòng)子區(qū)域都有許多光響應(yīng)元件、激素響應(yīng)元件和非生物脅迫響應(yīng)元件。表達(dá)模式分析顯示,與在芽和花中表達(dá)水平最高。和分別獲得了9株和14株轉(zhuǎn)基因擬南芥,開花表型分析顯示,和轉(zhuǎn)基因擬南芥提早開花。在鹽脅迫、干旱脅迫和重金屬脅迫以及GA3和ABA激素處理下,兩個(gè)超量表達(dá)轉(zhuǎn)基因擬南芥的根長(zhǎng)顯著長(zhǎng)于WT。【】超量表達(dá)的與可使轉(zhuǎn)基因擬南芥提前開花并提高其對(duì)鹽、干旱、重金屬及外源激素GA3和ABA的抗性。
芒果;非生物脅迫;鋅指蛋白;表達(dá)模式;基因功能分析
【研究意義】芒果(L.)是著名的熱帶亞熱帶水果,逆境脅迫影響芒果的開花、生長(zhǎng)發(fā)育、產(chǎn)量以及果實(shí)品質(zhì),嚴(yán)重的脅迫會(huì)導(dǎo)致芒果死亡。常見的非生物脅迫包括低溫、鹽、干旱、重金屬等[1]。因此,研究并挖掘芒果與非生物脅迫有關(guān)的基因,為后續(xù)芒果的抗性育種提供理論依據(jù)。【前人研究進(jìn)展】鋅指蛋白(zinc finger protein,ZFP)是一類具有‘指狀’結(jié)構(gòu)域的III型轉(zhuǎn)錄因子,廣泛存在于真核生物中,人類基因組中甚至有近1%的序列含有這種結(jié)構(gòu)[2]。鋅指蛋白具有特殊二級(jí)結(jié)構(gòu)的小肽域,其分類依據(jù)為Cys和His殘基的數(shù)目和位置,目前研究得最廣泛和最深入的鋅指蛋白類型是C2H2型鋅指蛋白,也稱為TFIIIA型或Kruppel-like型[3-4]。C2H2型鋅指蛋白在植物生長(zhǎng)發(fā)育、抗病以及逆境脅迫中都發(fā)揮了重要的作用,并參與了GA信號(hào)傳導(dǎo)、ABA信號(hào)傳導(dǎo)、CBF途徑平行的低溫信號(hào)轉(zhuǎn)導(dǎo)途徑以及光和信號(hào)傳導(dǎo)等多種信號(hào)途徑[5-6]。目前,擬南芥[6]、水稻[7]、玉米[8]、蕓薹屬蔬菜[9]、黃瓜[10]、番木瓜[11]、葡萄[12]等多種植物的C2H2型鋅指蛋白基因被陸續(xù)分離鑒定。C2H2型鋅指蛋白是植物生長(zhǎng)發(fā)育中的主要調(diào)控者,擬南芥直接或間接影響器官脫落的過程[13];番茄可以與互作,通過調(diào)控的表達(dá)影響番茄的開花時(shí)間[14];在蘋果中,通過降低的表達(dá),促進(jìn)葉片的衰老[15];參與鹽脅迫和滲透脅迫反應(yīng)[16];受到調(diào)節(jié)H2調(diào)控的抑制脂質(zhì)過氧化和活性氧(ROS)爆發(fā),提高耐鹽性[17];過表達(dá)轉(zhuǎn)基因蘋果苗、愈傷組織及擬南芥均表現(xiàn)出降低干旱抗性的表型[15];超表達(dá)轉(zhuǎn)基因檸檬使ROS維持在較低水平,增強(qiáng)了植株抗寒能力[18];馬鈴薯可能通過ABA依賴途徑來參與干旱和鹽脅迫的反應(yīng)[19]。【本研究切入點(diǎn)】C2H2型鋅指蛋白在植物成花調(diào)控、非生物脅迫響應(yīng)等方面起重要的調(diào)控作用。筆者課題組前期通過cDNA-SCOT差異顯示獲得了兩個(gè)C2H2型鋅指蛋白基因,命名為()和()[20],表達(dá)模式分析顯示,兩個(gè)基因均受低溫、干旱和鹽脅迫的誘導(dǎo)[21],但其功能未知。【擬解決的關(guān)鍵問題】構(gòu)建超量表達(dá)載體,將芒果兩個(gè)和分別轉(zhuǎn)入模式植物擬南芥中,探討和在轉(zhuǎn)基因擬南芥成花和逆境脅迫應(yīng)答中的功能。
芒果試驗(yàn)材料栽培于廣西大學(xué)農(nóng)學(xué)院果樹標(biāo)本園。芒果童期樣品采集于2年生‘四季蜜芒’幼樹的葉、莖、芽,成年期樣品采集于16年生‘四季蜜芒’的葉、莖、花、幼果(花后20 d)、成熟果(花后100 d)。采樣時(shí)間為2021年10月12日下午5:00—6:00,所有試驗(yàn)材料采集后立刻用液氮速凍,寫好標(biāo)簽后放入-80℃超低溫冰箱中保存?zhèn)溆谩M南芥為哥倫比亞野生型擬南芥。
利用軟件TBtools和基因組GFF文件繪制芒果和在‘四季蜜芒’品種中的染色體定位圖;利用MEME(https://meme-suite.org/ meme/tools/meme)對(duì)MiZAT10A和MiZAT10B蛋白質(zhì)序列保守基序進(jìn)行分析,參數(shù)設(shè)置為基序長(zhǎng)度8—100個(gè)氨基酸,尋找3個(gè)基序;利用在線數(shù)據(jù)庫(kù)PLACE(https://www.dna.affrc.go.jp/PLACE/?action= newplace)預(yù)測(cè)和在‘四季蜜芒’中ATG上游-2.0 kb區(qū)域的啟動(dòng)子順式作用元件。
為了研究芒果和的組織表達(dá)模式,采用美基公司的多糖多酚植物總RNA小提試劑盒提取芒果不同組織的總RNA,然后逆轉(zhuǎn)錄為cDNA,用于后續(xù)試驗(yàn)。用在線軟件Primer 3.0 Plus(https://www. bioinformatics.nl/cgi-bin/primer3plus/ primer3plus.cgi)設(shè)計(jì)特異引物(表1),通過實(shí)時(shí)熒光定量qRT-PCR對(duì)和的表達(dá)進(jìn)行檢測(cè),采用2-ΔΔCT方法對(duì)定量數(shù)據(jù)進(jìn)行處理,以芒果為內(nèi)參基因[22],使用IBM SPSS Statistics 24.0進(jìn)行數(shù)據(jù)處理。qRT-PCR試驗(yàn)使用TaKaRa公司的SYBR Green試劑,儀器為Applied Biosystems 7500實(shí)時(shí)定量PCR儀。

表1 引物序列
將和的全長(zhǎng)ORF構(gòu)建到35S啟動(dòng)子啟動(dòng)的pBI121載體中,采用農(nóng)桿菌介導(dǎo)的花序侵染法侵染野生型擬南芥[23],通過抗生素篩選和PCR檢測(cè)鑒定轉(zhuǎn)基因陽性植株,其中DNA提取參照余海霞等[24]改良的方法。
以野生型擬南芥(WT)和轉(zhuǎn)空載體擬南芥(pBI1121)為對(duì)照,觀察轉(zhuǎn)基因純合T3代植株的表型,統(tǒng)計(jì)第一朵花開放的時(shí)間、抽薹時(shí)(0.5 cm)的蓮座葉數(shù)以及第一朵花開花時(shí)的植株高度。每個(gè)株系統(tǒng)計(jì)12棵苗,結(jié)果采用Excel進(jìn)行數(shù)據(jù)處理,SPSS19.0進(jìn)行方差分析。以純合株系的葉片組織為材料提取RNA,逆轉(zhuǎn)錄為cDNA并統(tǒng)一稀釋濃度為50 ng·μL-1,保存在-20℃。以擬南芥基因(AT3G18780)為內(nèi)參基因通過半定量法檢測(cè)芒果基因在轉(zhuǎn)基因擬南芥中的表達(dá)水平。反應(yīng)體系為:Easy Buffer 2.5 μL、AtACTIN2u/d或MiZAT10Au/d或MiZAT10Bu/d 1 μL,DNA 2 μL,dNTP 0.5 μL、Taq 0.25 μL,超純水補(bǔ)至25 μL。反應(yīng)程序:95℃ 3 min;95℃ 20 s,56℃ 20 s,72℃ 20 s,30個(gè)循環(huán);72℃ 5 min。1.5%瓊脂糖電泳檢測(cè)。
逆境脅迫下擬南芥的根長(zhǎng)試驗(yàn):完成消毒播種后的擬南芥經(jīng)過2 d的4℃春化,培養(yǎng)3 d,然后轉(zhuǎn)入逆境1/2MS培養(yǎng)基的方皿中,方皿豎直放置于培養(yǎng)箱中培養(yǎng)5 d后觀察記錄野生型和轉(zhuǎn)基因擬南芥的根長(zhǎng)表型,并拍照記錄,每個(gè)株系5棵單株,每個(gè)處理做3個(gè)重復(fù)。逆境脅迫處理所用的試劑及濃度設(shè)計(jì)如下:氯化鈉(NaCl)模擬鹽脅迫,濃度為0和150 mmol?L-1;甘露醇(mannitol)模擬干旱脅迫,濃度為0和400 mmol·L-1;激素類有0、5 μmol·L-1脫落酸(ABA)和10 μmol·L-1赤霉素(GA3);氯化鋁(AlCl3)模擬重金屬脅迫,濃度為0和50 μmol·L-1。
定位于19號(hào)染色體上,定位于10號(hào)染色體上(圖1)。對(duì)和進(jìn)行保守基序分析發(fā)現(xiàn),兩個(gè)基因高度相似的基序可能和其功能一致有關(guān)。
分別選取和ATG上游-2.0 kb區(qū)域的啟動(dòng)子序列進(jìn)行元件分析,兩個(gè)基因均包含多個(gè)光響應(yīng)元件、脫落酸響應(yīng)元件,赤霉素響應(yīng)元件、水楊酸響應(yīng)元件、茉莉酸響應(yīng)元件和逆境脅迫響應(yīng)元件等(圖2),說明這兩個(gè)表達(dá)受光、溫度、鹽脅迫、干旱脅迫等環(huán)境因子的影響;同時(shí),脫落酸和赤霉素等多種激素也對(duì)其表達(dá)產(chǎn)生影響,從而共同調(diào)控芒果的生長(zhǎng)發(fā)育。

A:MiZAT10A和MiZAT10B的染色體定位圖;B:MiZAT10A和MiZAT10B蛋白保守基序分布圖

圖2 MiZAT10A和MiZAT10B啟動(dòng)子的順式元件分析
為了明確和在‘四季蜜芒’不同生長(zhǎng)發(fā)育時(shí)期的表達(dá)特性,利用實(shí)時(shí)熒光定量PCR對(duì)和的表達(dá)模式進(jìn)行分析(圖3)。結(jié)果顯示,兩個(gè)在‘四季蜜芒’中表達(dá)模式類似,和在營(yíng)養(yǎng)組織和生殖組織中均表達(dá),其中在童期的頂芽和成年期的花中表達(dá)水平最高,而在成年期的莖中表達(dá)水平最低。
采用花序浸染法將和轉(zhuǎn)入模式植物擬南芥中,通過PCR檢測(cè)共獲得9株轉(zhuǎn)基因株系和14株轉(zhuǎn)基因株系。半定量PCR分析顯示,和在野生型和轉(zhuǎn)pBI121空載體植株中表達(dá)水平為零,而在各個(gè)轉(zhuǎn)基因株系中,和可以正常表達(dá)(圖4)。

A:MiZAT10A組織表達(dá);B:MiZAT10B組織表達(dá)。不同小寫字母代表在P<0.05水平上差異顯著。下同

A1:過表達(dá)MiZAT10A轉(zhuǎn)基因擬南芥開花圖;A2:過表達(dá)MiZAT10A轉(zhuǎn)基因擬南芥開花數(shù)據(jù);B1:過表達(dá)MiZAT10B轉(zhuǎn)基因擬南芥開花圖;B2:過表達(dá)MiZAT10B轉(zhuǎn)基因擬南芥開花數(shù)據(jù) A1: Flowering photos of overexpressed MiZAT10A gene in Arabidopsis thaliana; A2: Flowering data of overexpressed MiZAT10A gene in Arabidopsis thaliana; B1: Flowering photos of overexpressed MiZAT10B gene in Arabidopsis thaliana; B2: Flowering data of overexpressed MiZAT10B gene in Arabidopsis thaliana
分別選取的OE-1、OE-4和OE-8以及的OE-7、OE-15和OE-31作為進(jìn)一步研究的對(duì)象,以野生型擬南芥(WT)和轉(zhuǎn)空載體pBI121擬南芥為對(duì)照,對(duì)其開花時(shí)間進(jìn)行統(tǒng)計(jì)分析。結(jié)果顯示,陽性對(duì)照和陰性對(duì)照植株的開花時(shí)間分別為27.1 d和26.4 d,而超量表達(dá)的35S::MiZAT10A和35S::MiZAT10B轉(zhuǎn)基因植株的開花時(shí)間都平均約為24.5 d。因此,轉(zhuǎn)芒果和可以誘導(dǎo)轉(zhuǎn)基因擬南芥提早成花。
為確定超量表達(dá)的鋅指蛋白基因是否能提高抗逆性,選取長(zhǎng)勢(shì)一致的野生和T3代轉(zhuǎn)基因擬南芥,進(jìn)行根的逆境脅迫處理(圖5)。由結(jié)果可知,對(duì)照組,即正常培養(yǎng)條件下,野生型擬南芥和超量表達(dá)和轉(zhuǎn)基因擬南芥之間長(zhǎng)勢(shì)無顯著差異,說明和的超量表達(dá)并不影響擬南芥的根長(zhǎng)生長(zhǎng);然而,150 mmol·L-1NaCl和300 mmol·L-1甘露醇處理下的擬南芥根長(zhǎng)生長(zhǎng)受到抑制,但超量表達(dá)和轉(zhuǎn)基因擬南芥的根長(zhǎng)受到的抑制程度顯著小于野生型擬南芥,說明超量表達(dá)的和提高了擬南芥的抗鹽和抗干旱能力;在5 μmol·L-1ABA和10 μmol·L-1GA3處理下,野生型擬南芥的根長(zhǎng)生長(zhǎng)受到抑制,而超量表達(dá)的和轉(zhuǎn)基因擬南芥在ABA的根長(zhǎng)顯著長(zhǎng)于野生型,在GA3處理下幾乎不受抑制,說明超量表達(dá)的和降低了ABA和GA3對(duì)擬南芥根長(zhǎng)的敏感性;50 μmol·L-1AlCl3處理下,野生型擬南芥和超量表達(dá)和轉(zhuǎn)基因擬南芥的根長(zhǎng)生長(zhǎng)出現(xiàn)顯著差異,轉(zhuǎn)基因擬南芥的根長(zhǎng)優(yōu)于野生型,說明超量表達(dá)和轉(zhuǎn)基因增強(qiáng)了擬南芥對(duì)重金屬鋁的耐受性。
近年來,轉(zhuǎn)錄因子在植物抗逆過程中的作用是研究的熱點(diǎn)[25],如CBF/DREB、MYB、CUC(NAC)、鋅指蛋白等[26]。啟動(dòng)子不僅具有核心啟動(dòng)元件,還在高等植物的基因表達(dá)調(diào)控中發(fā)揮著重要作用,為研究植物基因功能提供了新的思路[27]。比如,大部分毛果楊鋅指蛋白基因[28]、蘋果[29]、麻風(fēng)樹[30]啟動(dòng)子區(qū)域包含光響應(yīng)元件、激素響應(yīng)元件和逆境脅迫響應(yīng)元件。本研究也得到類似的結(jié)果,在和中含有激素響應(yīng)元件、非生物脅迫響應(yīng)元件、光響應(yīng)元件以及多個(gè)轉(zhuǎn)錄因子結(jié)合位點(diǎn),推測(cè)兩個(gè)基因可能受到光照、激素和逆境脅迫的影響。
在葡萄中,的表達(dá)受脫落酸、干旱、高鹽、SA和MeJA的誘導(dǎo),并對(duì)白粉病的感染也有快速反應(yīng)[31];小麥?zhǔn)茺}誘導(dǎo)后,其表達(dá)量在根和葉中上調(diào)[32];6個(gè)巨桉鋅指蛋白均受到鹽的誘導(dǎo)表達(dá)[33];芒果()和()受到干旱、鹽和低溫的誘導(dǎo)表達(dá)[21],表明其可能與非生物脅迫有關(guān)。水稻鋅指蛋白在花穗中表達(dá)[34];毛果楊主要參與花的發(fā)育[28];蒺藜苜蓿C2H2鋅指蛋白在花中特異性表達(dá)[35]。本研究中和在芽和花中的表達(dá)量較高,且芽到花呈上升趨勢(shì),這表明兩個(gè)基因與芒果花芽分化有關(guān)。
前人研究發(fā)現(xiàn),沙冬青可能參與成花[36];小擬南芥表現(xiàn)為提前開花[37];番茄促進(jìn)開花[38]。本研究結(jié)果顯示超量表達(dá)的和分別使轉(zhuǎn)基因擬南芥提前2—3 d開花,證實(shí)其參與芒果的花期調(diào)控。
鋅指蛋白與植物的非生物脅迫密切相關(guān)。水稻過表達(dá)增強(qiáng)了其對(duì)鹽、冷、干旱脅迫的耐受性[39];轉(zhuǎn)基因的小麥擬南芥在鹽脅迫下根長(zhǎng)顯著長(zhǎng)于野生型[40]。本研究也得到類似的結(jié)果,超量表達(dá)和的轉(zhuǎn)基因擬南芥在鹽、干旱和外源激素ABA的脅迫下,根長(zhǎng)均優(yōu)于野生型擬南芥,說明超量表達(dá)的和提高了擬南芥對(duì)這些脅迫的抗性。GA3對(duì)主根的生長(zhǎng)具有兩面性,低濃度的GA3會(huì)抑制根的生長(zhǎng),而高濃度GA3則會(huì)促進(jìn)主根生長(zhǎng)[41],高濃度ABA抑制主根的生長(zhǎng)[42]。本研究中,ABA抑制了WT主根的伸長(zhǎng),而轉(zhuǎn)基因擬南芥的主根受ABA抑制的程度顯著輕于對(duì)照,說明超量表達(dá)和減輕了ABA對(duì)擬南芥主根的脅迫。而GA3也抑制了WT主根的伸長(zhǎng),但轉(zhuǎn)基因擬南芥不受GA3的抑制。重金屬危害植物生長(zhǎng)發(fā)育,尤其是根部[43],本研究結(jié)果表明,重金屬處理下的超量表達(dá)和增強(qiáng)了擬南芥對(duì)重金屬鋁的耐受性。

A1:過表達(dá)MiZAT10A轉(zhuǎn)基因擬南芥逆境脅迫根長(zhǎng)數(shù)據(jù);A2:過表達(dá)MiZAT10B轉(zhuǎn)基因擬南芥逆境脅迫根長(zhǎng)數(shù)據(jù);B1:過表達(dá)轉(zhuǎn)MiZAT10A擬南芥根長(zhǎng)數(shù);B2:過表達(dá)MiZAT10B擬南芥根長(zhǎng);*表示在0.05水平上差異顯著
超量表達(dá)芒果和可以誘導(dǎo)轉(zhuǎn)基因擬南芥提早2—3 d開花;同時(shí),可以提高擬南芥在鹽脅迫、干旱脅迫和重金屬脅迫下的適應(yīng)能力,并能降低擬南芥對(duì)外源激素GA3和ABA的敏感性。
[1] MAHAJAN S, TUTEJA N. Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 2005, 444(2): 139-158. doi: 10.1016/j.abb.2005.10.018.
[2] 黃驥, 王建飛, 張紅生. 植物C2H2型鋅指蛋白的結(jié)構(gòu)與功能. 遺傳, 2004, 26(3): 414-418.
HUANG J, WANG J F, ZHANG H S. Structure and function of plant C2H2zinc finger protein. Hereditas, 2004, 26(3): 414-418. (in Chinese)
[3] IUCHI S. Three classes of C2H2zinc finger proteins. Cellular and Molecular Life Sciences, 2001, 58(4): 625-635. doi: 10.1007/ PL00000885.
[4] KIE?BOWICZ-MATUK A. Involvement of plant C2H2-type zinc finger transcription factors in stress responses. Plant Science, 2012, 185/186: 78-85. doi: 10.1016/j.plantsci.2011.11.015.
[5] 張佳, 劉俊芳, 趙婷婷, 任婧, 許向陽. 植物C2H2型鋅指蛋白研究進(jìn)展. 分子植物育種, 2018(2): 427-433.
ZHANG J, LIU J F, ZHAO T T, REN J, XU X Y. Research progress of C2H2zinc finger protein in plant. Molecular Plant Breeding, 2018(2): 427-433. (in Chinese)
[6] ENGLBRECHT C C, SCHOOF H, B?HM S. Conservation, diversification and expansion of C2H2zinc finger proteins in thegenome. BMC Genomics, 2004, 5(1): 39. doi: 10.1186/1471-2164-5-39.
[7] AGARWAL P, ARORA R, RAY S, SINGH A K, SINGH V P, TAKATSUJI H, KAPOOR S, TYAGI A K. Genome-wide identification of C2H2zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Molecular Biology, 2007, 65(4): 467-485. doi: 10.1007/s11103-007-9199-y.
[8] WEI K F, PAN S, LI Y. Functional characterization of maize C2H2zinc-finger gene family. Plant Molecular Biology Reporter, 2016, 34(4): 761-776. doi: 10.1007/s11105-015-0958-7.
[9] LAWRENCE S D, NOVAK N G. Comparative analysis of the genetic variability within the Q-type C2H2zinc-finger transcription factors in the economically important cabbage, canola and Chinese cabbage genomes. Hereditas, 2018, 155(1): 29.
[10] CHEN Y, WANG G, PAN J, WEN H F, DU H, SUN J X, ZHANG K Y, LV D, HE H L, CAI R, PAN J S. Comprehensive genomic analysis and expression profiling of the C2H2Zinc finger protein family under abiotic stresses in cucumber (L.). Genes, 2021, 11(2): 171. doi: 10.21203/rs.3.rs-215409/v1.
[11] JIANG L, PAN L J. Identification and expression of C2H2transcription factor genes inunder abiotic and biotic stresses. Molecular Biology Reports, 2012, 39(6): 7105-7115. doi: 10.1007/s11033-012-1542-y.
[12] ARREY-SALAS O, CARIS-MALDONADO J C, HERNáNDEZ- ROJAS B, GONZALEZ E. Comprehensive genome-wide exploration of C2H2zinc finger family in grapevine (L.): Insights into the roles in the pollen development regulation. Genes, 2021, 12(2): 302. doi: 10.3390/genes12020302.
[13] CAI S Q, LASHBROOK C C. Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: Enhanced retention of floral organs in transgenic plants overexpressing. Plant Physiology, 2008, 146(3): 1305-1321. doi: 10.1104/pp.107.110908.
[14] WANG L, BAI X D, ZHAO F F, LI R, HAN X. Manipulation of flowering time and branching by overexpression of the tomato transcription factor. Plant Biotechnology Journal, 2016, 14(12): 2310-2321. doi: 10.1111/pbi.12584.
[15] 楊闊. 蘋果C2H2型鋅指蛋白MdZAT10調(diào)控葉片衰老和干旱脅迫的機(jī)理研究[D]. 泰安: 山東農(nóng)業(yè)大學(xué), 2021.
YANG K. Molecular mechanism of C2H2-type zinc finger protein MdZAT10 regulating leaf senescence and drought stress in apple [D]. Taian: Shandong Agricultural University, 2021. (in Chinese)
[16] ZHANG A D, LIU D D, HUA C M, YAN A, LIU B H, WU M J, LIU Y H, HUANG L L, ALI I, GAN Y B. Thegene() is involved in salt stress and osmotic stress response. PLoS ONE, 2016, 11(12): e0168367. doi: 10.1371/journal. pone.0168367.
[17] XIE Y J, MAO Y, LAI D W, ZHANG W, SHEN W B. H2Enhancessalt tolerance by manipulating-mediated antioxidant defence and controlling sodium exclusion. PloS ONE, 2012, 7(11): e49800. doi: 10.1371/journal.pone.0049800.
[18] 杜娟. 枳低溫響應(yīng)基因和轉(zhuǎn)化柑橘及轉(zhuǎn)基因植株鑒定[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2016.
DU J.transformation ofcold-responsive genesandand analysis of transgenic plants [D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)
[19] TIAN Z D, ZHANG Y, LIU J, XIE C H. Novel potato C2H2-type zinc finger protein gene,, which responds to biotic and abiotic stress, plays a role in salt tolerance. Plant Biology, 2010, 12(5): 689-697. doi: 10.1111/j.1438-8677.2009.00276.x.
[20] LUO C, HE X H, HU Y, YU H X, OU S J, FANG Z B. Oligo-dT anchored cDNA-SCoT: A novel differential display method for analyzing differential gene expression in response to several stress treatments in mango (L.). Gene, 2014, 548(2): 182-189. doi:10.1016/j.gene.2014.07.024.
[21] 余海霞, 羅聰, 樊琰, 張秀娟, 王逸涵, 黃方, 盧新喜, 何新華. 芒果和基因克隆與表達(dá)模式分析. 分子植物育種, 2019, 17(23): 7692-7699. doi: 10.13271/j.mpb.017.007692.
YU H X, LUO C, Fan Y, ZHANG X J, WANG Y H, HUANG F, Lu X X, He X H. Cloning and expression analysis ofandgenes in mango. Molecular Plant Breeding, 2019, 17 (23): 7692-7699. doi: 10.13271/j.m pb. 017.007692. (in Chinese)
[22] LUO C, HE X H, CHEN H, HU Y, OU S J. Molecular cloning and expression analysis of four actin genes () from mango. Biologia Plantarum, 2013, 57(2): 238-244.
[23] CLOUGH S J, BENT A F. Floral dip: A simplified method for Agrobacterium-mediated transformation of. Plant Journal, 1998, 16(6): 735-743. doi: 10.1046/j.1365-313x.1998. 00343.x.
[24] 余海霞, 羅聰, 徐趁, 何新華. 一種簡(jiǎn)單高效提取高質(zhì)量轉(zhuǎn)基因擬南芥和煙草DNA的方法. 分子植物育種, 2016, 14(6): 1436-1440. doi: 10.13271/j.mpb.014.001436.
YU H X, LUO C, XU C, HE X H. A simple and efficient method for high quality DNA extraction from transgenicand tobacco. Molecular Plant Breeding, 2016, 14(6): 1436-1440. doi: 10.13271 / j.mpb.014.001436. (in Chinese)
[25] 王翠, 蘭海燕. 植物bHLH轉(zhuǎn)錄因子在非生物脅迫中的功能研究進(jìn)展. 生命科學(xué)研究, 2016, 20(4): 358-364. doi: 10.16605/j.cnki.1007- 7847.2016.04.013.
WANG C, LAN H Y. Advances in functional studies of plant bHLH transcription factors under abiotic stress. Life Science Research, 2016, 20(4): 358-364. doi: 10.16605/j.cnki.1007-7847. (in Chinese)
[26] LUO X, BAI X, ZHU D, LI Y, JI W, CAI H, WU J, LIU B H, ZHU Y M. GsZFP1, a new Cys2/His2-type zinc-finger protein, is a positive regulator of plant tolerance to cold and drought stress. Planta, 2012, 2012, 235(6): 1141-1155. doi: 10.1007/s00425-011-1563-0.
[27] 王雪, 王盛昊, 于冰. 轉(zhuǎn)錄因子和啟動(dòng)子互作分析技術(shù)及其在植物應(yīng)答逆境脅迫中的研究進(jìn)展. 中國(guó)農(nóng)學(xué)通報(bào), 2021, 37(33): 112-119.
WANG X, WANG S H, YU B. Interaction analysis of transcription factors and promoters and its application in response of plants to stress. Chinese Agricultural Science Bulletin, 2021, 37(33): 112-119. (in Chinese)
[28] LIU Q G, WANG J C, XU X M, ZHANG H Z, LI C H. Genome-wide analysis of C2H2zinc-finger family transcription factors and their responses to abiotic stresses in Poplar (). PLoS ONE, 2015, 10(8): e0134753. doi: 10.1371/journal.pone.0134753.
[29] YANG K, LI C Y, AN J P, WANG D R, WANG X, WANG C K, YOU C X. The C2H2-type zinc finger transcription factor MdZAT10 negatively regulates drought tolerance in apple. Plant Physiology and Biochemistry, 2021, 167: 390-399. doi: 10.1016/j.plaphy.2021.08.014.
[30] 李詩(shī)娟, 張偉, 魏磊, 黃曉明, 林娜, 徐鶯, 陳放. 一個(gè)麻瘋樹C2H2型鋅指蛋白基因的克隆與表達(dá)分析. 四川大學(xué)學(xué)報(bào)(自然科學(xué)版), 2014, 51(1): 206-212.
LI S J, ZHANG W, WEI L, HUANG X M, LIN N, XU Y, CHEN F. Cloning and expression analysis of a C2H2type zinc finger protein, JcZFP1, fromL. Journal of Sichuan University (Natural Science Edition), 2014, 51(1): 206-212. (in Chinese)
[31] YU Y H, LI X Z, WU Z J, CHEN D X, LI G R, LI X Q, ZHANG G H. VvZFP11, a Cys2His2-type zinc finger transcription factor, is involved in defense responses in. Biologia Plantarum, 2016, 60(2): 292-298. doi: 10.1007/s10535-016-0598-2.
[32] SUN B G, ZHAO Y J, SHI S Y, YANG M Y, XIAO K. TaZFP1, a C2H2type-ZFP gene of T., mediates salt stress tolerance of plants by modulating diverse stress-defensive physiological processes. Plant Physiology and Biochemistry, 2019, 136: 127-142.
[33] WANG S, WEI X L, CHENG L J, TONG Z K. Identification of a C2H2-type zinc finger gene family fromand its response to various abiotic stresses. Biologia Plantarum, 2014, 58(2): 385-390. doi: 10.1007/s10535-014-0399-4.
[34] 孫姝璟. 水稻TFIIIA型鋅指蛋白ZFP179和ZFP182的功能分析[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2010.
SUN S J. Functional analysis of TFIIIA-type Zinc finger proteins ZFP179 and ZFP182 from rice (L.) [D]. Nanjing: Nanjing Agricultural University, 2010. (in Chinese)
[35] JIAO Z J, WANG L P, DU H, WANG Y, WANG W X, LIU J J, HUANG J H, HUANG W, GE L F. Genome-wide study of C2H2zinc finger gene family in Medicago truncatula. BMC Plant Biology, 2020, 20(1): 401. doi: 10.1186/s12870-020-02619-6.
[36] 任美艷, 王志林, 郭慧琴, 薛敏, 殷玉梅, 王茅雁.沙冬青C2H2型鋅指蛋白基因的克隆與表達(dá)分析. 華北農(nóng)學(xué)報(bào), 2017, 32(2): 8-13. doi: 10.7668/hbnxb.2017.02.002.
REN M Y, WANG Z L, GUO H Q, XUE M, YIN Y M, WANG M Y. Cloning and expression analysis of, A C2H2-typegene from. Acta Agriculturae Boreali-Sinica, 2017, 32(2): 8-13. doi: 10.7668 / HBNXB 2017.02.002. (in Chinese)
[37] 劉慧, 郭丹麗, 蔡大潤(rùn), 黃先忠. 小擬南芥基因異源超表達(dá)促進(jìn)擬南芥開花并提高耐逆性. 植物學(xué)報(bào), 2016, 51(3): 296-305. doi: 10.7668/hbnxb.2017.02.002.
LIU H, GUO D L, CAI D R, HUANG X Z. Heterologous overexpression ofpromotes flowering and improves abiotic tolerance in. Bulletin of Botany, 2016, 51(3): 296-305. doi: 10.7668 / HBNXB 2017.02.002. (in Chinese)
[38] WENG L, ZHAO F F, LI R, XU C J, CHEN K S, XIAO H. The zinc finger transcription factornegatively regulates abscisic acid biosynthesis and fruit ripening in tomato. Plant Physiology, 2015, 167(3): 931-49. doi: 10.1104/pp.114.255174.
[39] HUANG J, SUN S J, XU D Q, LAN H G, SUN H, WANG Z F, BAO Y M, WANG J F, TANG H J, ZHANG H S. A TFIIIA-type zinc finger protein confers multiple abiotic stress tolerances in transgenic rice(L.). Plant Molecular Biology, 2012, 80(3):337-350. doi: 10.1007/s11103-012-9955-5.
[40] MA X L, LIANG W J, GU P H, HUANG Z J. Salt tolerance function of the novel C2H2-type zinc finger protein TaZNF in wheat. Plant Physiology and Biochemistry, 2016, 106:129-140. doi: 10.1016/j. plaphy.2016.04.033.
[41] 趙栗. 外源GA3和SA對(duì)棉花幼苗根系生長(zhǎng)的影響. 安徽農(nóng)學(xué)通報(bào), 2021, 27(10): 45-48.
ZHAO L. Effects of gibberellins and salicylic acid on cotton seedling root growth. Anhui Agricultural Science Bulletin, 2021, 27(10): 45-48. (in Chinese)
[42] 張幸福, 韓栓, 王偉, 江靜. ABA和GA刺激的ROS代謝調(diào)節(jié)水稻幼根伸長(zhǎng)分析. 河南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2010(1): 62-66.
ZHANG X F, HAN S, WANG W, JIANG J. Analysis of ABA-and GA-stimulated reactive oxygen species mediating the elongation of rice seeding roots. Journal of Henan University (Natural Science Edition), 2010(1): 62-66. (in Chinese)
[43] 葛坤, 王培軍, 邵海林, 郭家雁, 杜賓. 重金屬脅迫對(duì)植物生理生化的影響及其抗性機(jī)理研究. 山西林業(yè)科技, 2021, 50(3): 43-46.
GE K, WANG P J, SHAO H L, GUO J Y, DU B. Study on the effects of heavy metal stress on plant physiology and biochemistry and its resistance mechanism. Shanxi Forestry Science and Technology, 2021, 50(3): 43-46. (in Chinese)
Functional Analysis ofandGenes in Mango
MO WenJing, ZHU JiaWei, HE XinHua,YU HaiXia, JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe, LUO Cong
College of Agriculture, Guangxi University/State Key Laboratory of Subtropical Agricultural Biological Resources Protection and Utilization/National Experimental Teaching Demonstration Center of Plant Science, Nanning 530004
【】Zinc finger protein (ZFP) plays an important role in plant abiotic stress response. Therefore, to provide a theoretical basis for stress resistance breeding, this study aimed to analyze the response of two zinc finger protein genes ofandtransgenicto abiotic stresses, such as salt, drought, heavy metals and exogenous hormones. 【】The promoteracting elements and motif of mangoandgenes were predicted and analyzed by online software PLACE and MEME, respectively. The chromosome location map was drawn by TBtools software and SiJiMi gene annotation file (GFF file and unpublished). Tissue expression patterns ofandgenes were analyzed by qRT-PCR. The overexpression vectors ofandgenes were constructed and transformed intobyfloral-dip method. The phenotype ofandtransgenic plant were observed and recorded under salt, drought, heavy metals, abscisic acid and gibberellin treatments. 【】Promoter cis element analysis showed that there were many light response elements, hormone response elements and abiotic stress response elements in the promoter region ofandgenes. Expression analysis showed thatandwere highly expressed in buds and flowers. 9 ofand 14 oftransgenicstrains were obtained. Overexpression ofandsignificantly resulted early flowering compared with the control lines. The root length ofandoverexpressing transgenicwas significantly longer than that of control lines under salt stress, drought stress, heavy metal stress, GA3and ABA hormone treatments. 【】Overexpression ofandnot only promoted transgenicflowering early but also improved salt, drought, heavy metals and exogenous hormones GA3and ABA resistance.
mango; abiotic stress; zinc finger protein; expression; function analysis

2022-03-02;
2022-05-12
廣西自然科學(xué)基金(2015GXNSFAA139052)、國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系廣西芒果創(chuàng)新團(tuán)隊(duì)栽培與病蟲害防治崗位項(xiàng)目(nycytxgxcxtd- 2021-06-02)、科技先鋒隊(duì)‘強(qiáng)農(nóng)富民’‘富六個(gè)一’專項(xiàng)行動(dòng)(202204)
莫文靜,E-mail:tuanzy97616@163.com。朱嘉偉,E-mail:zhujiaweiii1206@163.com。莫文靜和朱嘉偉為同等貢獻(xiàn)作者。通信作者羅聰,E-mail:22003luocong@163.com
(責(zé)任編輯 趙伶俐)