張小云,李前輝,林濤,潘勝男,劉萬波,唐朝貴
MALDI-TOF MS在血流感染快速鑒定病原菌中的應用
張小云,李前輝,林濤,潘勝男,劉萬波,唐朝貴
南京醫科大學附屬淮安第一醫院檢驗科,江蘇淮安 223300
探討基質輔助激光解吸電離飛行時間質譜(matrix-assisted laser desorption/ionization time of flight mass spectrometry,MALDI-TOF MS)結合短時培養在快速鑒定血流感染病原菌中的應用。對南京醫科大學附屬淮安第一醫院微生物室2020年11月至2021年12月血培養報告陽性的標本進行革蘭染色分類,并采用4h和6h短時培養法及MALDI-TOF MS技術快速鑒定感染病原菌并實時報送病區單元。4h短時培養革蘭陰性菌共351株,339株(96.6%)細菌鑒定到種屬,與24h鑒定結果相同,11株無鑒定結果,1株鑒定錯誤;6h短時培養革蘭陽性菌共216株,212株(98.1%)鑒定到種屬,與24h鑒定結果相同,3株無鑒定結果,1株鑒定錯誤。跟蹤321株革蘭陰性菌的臨床反饋,287例(89.4%)給予臨床關注,89例(27.7%)進行藥物調整,238例(74.1%)臨床療效良好;跟蹤183株革蘭陽性菌的臨床反饋,其中150例(82.0%)給予臨床關注,49例(26.8%)進行藥物調整,131例(71.6%)臨床療效良好。MALDI-TOF MS技術結合短時培養方法可有效提高血流感染病原菌鑒定準確率,改善血流感染患者抗菌藥物治療時機。
基質輔助激光解吸電離飛行時間質譜;短時培養;快速鑒定;血流感染
基質輔助激光解吸電離飛行時間質譜(matrix- assisted laser desorption/ionization time of flight mass spectrometry,MALDI-TOF MS)技術近年來逐步應用于病原微生物的鑒定中,特別是在血流感染質譜快速鑒定病原菌方面的研究和探討尤其熱烈。短時培養法鑒定流程中分離膠[1-2]及短時固相培養法[3-4]因其具備一定的適用性、高效性備受實驗室關注,筆者根據相關專家共識及文獻報道[5-6]結合臨床微生物實驗室實際工作可操作性和質譜鑒定高效性,采用短時固相培養法并進行改進,對南京醫科大學附屬淮安第一醫院2020年11月至2021年12月臨床血流感染患者陽性血培養瓶進行短時固相培養質譜快速鑒定,并向臨床發布質譜鑒定結果,比較短時培養質譜快速鑒定與常規方法的一致性,并跟蹤分析質譜鑒定結果對患者臨床療效的影響,為建立血培養陽性標本質譜快速鑒定方法提供依據。
收集南京醫科大學附屬淮安第一醫院檢驗科微生物室2020年11月至2021年12月血培養報告陽性標本,剔除同一人多套重復菌株及兩種以上菌混合感染的標本,共培養菌株567株。
Bactec FX全自動血培養儀和血培養瓶(美國BD公司);MALDI-TOF MS質譜儀和基質液及甲酸(法國生物梅里埃有限公司),血平板、巧克力平板培養基(鄭州安圖生物工程股份有限公司);細菌培養箱[賽默飛世爾科技(中國)有限公司]。
血培養報告陽性立即進行革蘭染色并轉種培養皿35℃、5%CO2恒溫孵箱孵育培養,革蘭陰性菌培養4h、革蘭陽性菌培養6h后進行質譜鑒定(無鑒定結果菌株排除非待測菌株本身原因)?;旌霞毦罢婢庋劭梢娋浜箬b定,給予剔除,不計入最后統計結果。結束后平板放回孵育箱繼續培養,次日上午再次對24h單個菌落進行質譜鑒定。質控菌株為大腸埃希菌ATCC8739及產氣腸桿菌ATCC13048。
當血培養提示陽性時,取出陽性瓶進行革蘭染色并轉種至相應的平板37℃溫育18~24h,平板分離出的單個菌落直接涂布于靶板上,滴加1μl的基質液干燥后進行鑒定。質控菌株為大腸埃希菌ATCC8739及產氣腸桿菌ATCC13048。
351株革蘭陰性菌中共有339株(96.6%)細菌鑒定到種屬,與24h鑒定結果相同。11株無鑒定結果,分別為肺炎克雷伯菌2株,銅綠假單胞菌2株、缺陷短波單胞菌1株、嗜水氣單胞菌1株、熒光假單胞菌1株、放射形土壤桿菌1株、布氏桿菌1株、脆弱擬桿菌1株、陰道加德拉菌1株。1株鑒定錯誤菌株為銅綠假單胞菌,見表1。
表1 革蘭陰性菌4h與24h培養質譜鑒定結果[n(%)]
216株革蘭陽性菌共有212株(98.1%)鑒定到種屬,與24h鑒定結果相同,3株無鑒定結果,經24h培養,鑒定結果分別為緩癥鏈球菌1株,肺炎鏈球菌1株,血液鏈球菌1株。1株鑒定錯誤菌株為馬紅球菌,見表2。
跟蹤321株質譜初步鑒定為革蘭陰性菌患者,其中287例(89.4%)給予臨床關注,89例(27.7%)進行藥物調整,238例(74.1%)臨床療效良好。跟蹤183株質譜初步鑒定為革蘭陽性菌患者,其中150例(82.0%)給予臨床關注,49例(26.8%)進行藥物調整,131例(71.6%)臨床療效良好,見表3。
與傳統的表型技術或分子生物學相比,MALDI- TOF MS病原微生物鑒定技術是一種功能強大、快速、精確且經濟高效的鑒定完整細菌的方法[3]。在常規工作流程中,可將微生物鑒定的時間縮短約24h,有利于臨床應用抗菌藥物治療[7-8]。及時的病原學診斷對于臨床感染性疾病患者,尤其是血流感染和重癥感染患者的臨床決策、控制感染進程、挽救患者生命至關重要,不僅可顯著提高患者存活率,還可大大降低醫療費用[9-11]。
目前,血流感染質譜快速鑒定病原菌前處理方法主要有:去污劑選擇裂解法、滲透壓選擇裂解法、分離膠分離法、濾膜過濾分離法[12-14],然而因其操作煩瑣及需要提取試劑盒等原因,現臨床微生物室多采用短時培養法進行微生物病原菌的鑒定,隨著培養時間的延長其鑒定成功率隨之增加[2,15-16],為進一步順應該技術可操作性,提升鑒定成功率,本研究改進流程及操作,使8點至14點報告陽性的血培養標本當日均能得到鑒定結果。
表2 革蘭陽性菌6h與24h培養質譜鑒定結果[n(%)]
表3 504例質譜鑒定菌株結果發布后臨床響應情況[n(%)]
注:臨床關注:臨床收到質譜鑒定結果后臨床病程有記錄,醫生查房有交代;藥物調整:臨床收到質譜鑒定結果后根據具體細菌調整相應抗菌藥物,與之前經驗用藥有不同
351株革蘭陰性菌經4h短時培養,共有339株(96.6%)細菌鑒定到種屬,與24h鑒定結果相同,與既往文獻報道相近[12,17],11株無鑒定結果。其中腸桿菌科2株均為肺炎克雷伯菌,氣單胞菌屬1株為嗜水氣單胞菌,非發酵菌屬2株為銅綠假單胞菌和缺陷短波單胞菌,觀察其24h菌落形態生長情況,分析原因可能與生長較緩慢及菌落色素沉積、肥大、水樣多黏性等因素不能獲取足夠的蛋白相關[18];放射形土壤桿菌1株,是否因菌株原因或菌株庫局限原因有待考證,目前文獻報道尚少;布氏桿菌1株推測與其接種量低,生長緩慢及生物標本庫不足有關[19]。鑒定錯誤的1株銅綠假單胞菌推測測試失敗的主要原因是缺乏可測量的質量信號[20]。216株革蘭陽性菌經6h短時培養共有212株(98.1%)鑒定到種屬,與24h鑒定結果相同,與余德基等[17]報道相近,高于潘宏偉等[12]報道結果,推測原因可能與菌株不同有關。3株無鑒定結果菌株經24h培養,鑒定結果分別為血液鏈球1株,緩癥鏈球菌1株,肺炎鏈球菌1株,推測原因可能與菌株生長緩慢、培養瓶報警時含菌量低及細胞壁較堅韌、不易裂解等原因,1株馬紅球菌鑒定錯誤,與24h第2次鑒定結果不同且結果錯誤,后經科研庫鑒定為馬紅球菌,因此質譜鑒定目前對罕見菌和菌株的少見型檢測存在不足,測試失敗的主要原因是缺乏可測量的質量信號及生物標本庫不足原因[19-20]。183株革蘭陽性菌主要為葡萄球菌屬、腸球菌屬、鏈球菌屬,臨床關注度為82.0%,略低于革蘭陰性菌(89.4%),最低為木糖葡萄球菌(60.0%),推測與該菌株致病力弱及非臨床感染有關,后續將進一步跟蹤調查。
血流感染是住院患者死亡的主要原因。由于抗菌治療的延遲與患者不良反應的增加密切相關,因此快速診斷至關重要[8]。504株菌經質譜鑒定后立即按血流感染危急值通過實驗室信息系統發布臨床,醫生通過醫院信息系統工作站可實時接收和查詢報告結果,病程記錄和上級醫生查房顯示,革蘭陰性菌臨床關注為89.4%,其中鮑曼不動桿菌、銅綠假單胞菌、嗜麥芽窄食單胞菌等100%獲得臨床及時關注并進行查房討論,關注略低的大腸埃希菌和產酸克雷伯菌,分別為75.0%和85.0%,可能與其多為非多重耐藥菌有關。而藥物調整僅為27.7%,分析原因可能與臨床經驗抗感染藥物覆蓋了該菌株的耐藥譜,最終74.1%的患者取得良好的臨床療效。革蘭陽性菌藥物調整為26.8%,與革蘭陰性菌相似,臨床療效良好占比71.6%。本研究發現短時固相培養鑒定方法可快速鑒定出細菌種類,及時指導臨床有針對性使用抗生素,能有效改善患者預后。
綜上所述,MALDI-TOF MS技術結合短時固相培養方法可有效提高血流感染病原菌鑒定準確率,且簡便易行,有效改善血流感染患者抗菌藥物治療時機。
[1] 宋啟飛, 劉敏雪, 李夢嬌, 等. 質譜快速鑒定血培養陽性標本的方法研究[J]. 中國現代醫學雜志, 2018, 28(35): 23-26.
[2] JOHNSSON A T A, WONG A Y W, ?ZENCI V. The impact of delayed analysis of positive blood cultures on the performance of short-term culture followed by MALDI-TOF MS[J]. J Microbiol Methods, 2020, 177: 106027.
[3] 吳富煒, 王圓圓, 楊靖嫻. 短時固相培養法聯合MALDI-TOF MS快速鑒定含活性炭陽性血培養標本[J]. 標記免疫分析與臨床, 2020, 27(12): 2176-2180.
[4] 周道紅, 黎敏, 魯衛平. 利用MALDI-TOF MS快速鑒定經固體培養基短時培養的陽性血培養物中的病原菌[J]. 國際檢驗醫學雜志, 2018, 39(22): 2746-2749, 2755.
[5] 上海醫學會檢驗醫學專科委員會臨床微生物學組, 上海市微生物學會臨床微生物專業委員會. 上海地區陽性血培養直接質譜快速檢測規范[J]. 中華檢驗醫學雜志, 2017, 40(3): 165-168.
[6] 馬立艷, 孫偉, 蘇建榮. MALDI-TOF MS結合短時培養法在陽性血培養病原菌鑒定中的臨床應用[J]. 臨床和實驗醫學雜志, 2020, 19(2): 223-225.
[7] TSUCHIDA S, UMEMURA H, NAKAYAMA T. Current status of matrix-assisted laser desorption/ ionization-time-of-flight mass spectrometry (MALDI- TOF MS) in clinical diagnostic microbiology[J]. Molecules, 2020, 25(20): 4775.
[8] WANG Y, JIN Y, BAI Y, et al. Rapid method for direct identification of positive blood cultures by MALDI-TOF MS[J]. Exp Ther Med, 2020, 20(6): 235.
[9] LUETHY P M, JOHNSON J K. The use of matrix- assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of pathogens causing sepsis[J]. J Appl Lab Med, 2019, 3(4): 675-685.
[10] WU S, XU J, QIU C, et al. Direct antimicrobial susceptibility tests of bacteria and yeasts from positive blood cultures by using serum separator gel tubes and MALDI-TOF MS[J]. J Microbiol Methods, 2019, 157: 16-20.
[11] RODRíGUEZ-SáNCHEZ B, CERCENADO E, COSTE A T, et al. Review of the impact of MALDI-TOF MS in public health and hospital hygiene, 2018[J]. Euro Surveill, 2019, 24(4): 1800193.
[12] 潘宏偉, 孫恩華. MALDI-TOF MS直接鑒定陽性血培養病原菌的前處理方法選擇[J]. 中華檢驗醫學雜志, 2018, 41(8): 563-566.
[13] PONDERAND L, PAVESE P, MAUBON D, et al. Evaluation of Rapid Sepsityper?protocol and specific MBT-Sepsityper module (Bruker Daltonics) for the rapid diagnosis of bacteremia and fungemia by MALDI-TOF MS[J]. Ann Clin Microbiol Antimicrob, 2020, 19(1): 60.
[14] AZRAD M, KENESS Y, NITZAN O, et al. Cheap and rapid in-house method for direct identification of positive blood cultures by MALDI-TOF MS technology[J]. BMC Infect Dis, 2019, 19(1): 72.
[15] CHERKAOUI A, RENZI G, AZAM N, et al. Rapid identification by MALDI-TOF MS and antimicrobial disk diffusion susceptibility testing for positive blood cultures after a short incubation on the WASPLab[J]. Eur J Clin Microbiol Infect Dis, 2020, 39(6): 1063-1070.
[16] BELLANGER A P, GBAGUIDI-HAORE H, LIAPIS E, et al. Rapid identification of Candida sp. by MALDI- TOF mass spectrometry subsequent to short-term incubation on a solid medium[J]. APMIS, 2019, 127(4): 217-221.
[17] 余德基, 周鳳英, 陳思穎. 利用MALDI-TOF MS對血流感染病原菌快速鑒定的準確性評價[J]. 中國實用醫藥, 2020, 15(7): 197-198.
[18] MORENO E, MILLER E, MILLER E, et al. A novel liquid media mycobacteria extraction method for MALDI-TOF MS identification using VITEK?MS[J]. J Microbiol Methods, 2018, 144: 128-133.
[19] UCHIDA-FUJII E, NIWA H, KINOSHITA Y, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for identification of bacterial isolates from horses[J]. J Equine Vet Sci, 2020, 95: 103276.
[20] NOLL C, NASRUDDIN-YEKTA A, STERNISEK P, et al. Rapid direct detection of pathogens for diagnosis of joint infections by MALDI-TOF MS after liquid enrichment in the BacT/Alert blood culture system[J]. PLoS One, 2020, 15(12): e0243790.
Application of MALDI-TOF MS in rapid identification of pathogenic bacteria of bloodstream infection
Clinical Laboratory, the Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
To investigate the clinical diagnostic value of matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) combined with short-time culture in rapid identification of pathogenic bacteria of bloodstream infection.From November 2020 to December 2021, the positive blood culture samples in the Microbiology Room of the Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University were classified by Gram staining, and the pathogenic bacteria were rapidly identified by 4h and 6h short-time culture method and MALDI-TOF MS technique and reported to the ward unit in real time.There were 351 strains of Gram-negative bacteria in 4h culture, 339 (96.6%) strains were identified to the species level, which was the same as 24h identification, 11 strains were not identified and 1 strain were identified incorrectly. A total of 216 Gram-positive strains were cultured at 6h, 212 (98.1%) strains were identified to the species level, which was the same with 24h identification, 3 strains were not identified and 1 strain were identified incorrectly. Clinical feedback of 321 strains of Gram-negative bacteria were followed, 287 (89.4%) cases received clinical attention, 89 (27.7%) cases received drug adjustment, 238 (74.1%) cases received good clinical effect. Clinical feedback of 183 strains of Gram-positive bacteria were followed, 150 (82.0%) cases received clinical attention, 49 (26.8%) cases received drug adjustment, 131 (71.6%) cases had good clinical effect.MALDI-TOF MS technology combined with short-time culture method can effectively improve the identification accuracy of pathogenic bacteria of bloodstream infection, which is effectively improving the timing of antimicrobial treatment for patients with bloodstream infection.
Matrix-assisted laser desorption/ionization time of flight mass spectrometry; Short-term culture; Rapid identification; Bloodstream infection
R446.5
A
10.3969/j.issn.1673-9701.2023.01.019
唐朝貴,電子信箱:hayytcg@163.com
(2022–07–14)
(2022–12–26)