999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

抗性淀粉防病保健功能研究進(jìn)展

2023-03-26 10:49:59賴雙定劉炳霄楊林
糧食科技與經(jīng)濟(jì) 2023年6期

賴雙定 劉炳霄 楊林

摘要:膳食纖維因具有防病保健功效、能夠促進(jìn)人類健康而日益受到廣泛關(guān)注。抗性淀粉不會(huì)被小腸快速消化吸收,易被結(jié)腸中微生物菌群分解發(fā)酵,因此,現(xiàn)已成為新型膳食纖維的重要來源。除提供營(yíng)養(yǎng)功能外,抗性淀粉還具有有益的生理調(diào)控作用,可以有效預(yù)防和緩解諸多疾病,具有巨大的開發(fā)價(jià)值和應(yīng)用潛力。為了深入探究抗性淀粉的防病保健功效,文章綜述了抗性淀粉有效調(diào)控腸道疾病、高脂血癥、糖尿病與肥胖癥等的最新研究進(jìn)展,分析了抗性淀粉代謝等分子作用機(jī)制,并展望了抗性淀粉防病保健應(yīng)用的發(fā)展方向。

關(guān)鍵詞:抗性淀粉;防病;保健;代謝

中圖分類號(hào):TS231 文獻(xiàn)標(biāo)志碼:A DOI:10.16465/j.gste.cn431252ts.20230626

基金項(xiàng)目:國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFF1300504)。

Research progress on disease prevention and health care function of resistant starch

Lai Shuangding, Liu Bingxiao, Yang Lin

( School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001 )

Abstract: Dietary fiber has been paid more and more attention because of its function of preventing disease and promoting human health. Resistant starch is not quickly digested and absorbed by the small intestine, and is easily decomposed and fermented by the microbial flora in the colon, so it has become an important source of new dietary fiber. In addition to providing nutritional function, resistant starch also has beneficial physiological regulation effects, can effectively prevent and alleviate many diseases, and has great development value and application potential. In order to further explore the efficacy of resistant starch in disease prevention and health care, this article reviewed the latest research progress on the effective regulation of resistant starch in intestinal diseases, hyperlipidemia, diabetes and obesity, analyzed the molecular mechanism of resistant starch metabolism, and prospected the development direction of resistant starch in disease prevention and health care application.

Key words: resistant starch, disease prevention, health and fitness, metabolism

抗性淀粉(resistant starch,RS)是種新型的膳食纖維成分,既具有不溶性膳食纖維的安全性,又具有可溶性膳食纖維的特性和優(yōu)勢(shì),經(jīng)過腸道菌群發(fā)酵后能產(chǎn)生短鏈脂肪酸(short chain fatty acids,SCFAs)等發(fā)酵分解產(chǎn)物[1]。此外,RS具有飽腹感強(qiáng)、消化率低、血糖生成指數(shù)(glycemic index,GI)低等特點(diǎn)[2],能夠有效預(yù)防和控制腸道疾病、高脂血癥、糖尿病與肥胖癥等嚴(yán)重危害人類健康的慢性疾病。因此,作為淀粉的優(yōu)化產(chǎn)品,RS因其優(yōu)良的加工特性及重要的生理保健功能成為功能性食品領(lǐng)域的研究熱點(diǎn)[3]。

本文擬概述RS的相關(guān)內(nèi)容,重點(diǎn)綜述RS在防病保健方面的功效,并探討其作用機(jī)制,以期為RS的精深研究及開發(fā)利用提供參考依據(jù)。

1 抗性淀粉的分類與理化性質(zhì)

RS最初由Englyst等[4]發(fā)現(xiàn),是指在健康人體內(nèi)不被小腸消化分解的淀粉及其分解物的總稱。根據(jù)淀粉的消化速度和營(yíng)養(yǎng)特性可將其分為三大類:快消化淀粉(rapidly digestible starch,RDS)、慢消化淀粉(slowly digestible starch,SDS)和RS。根據(jù)來源、結(jié)構(gòu)特性和酶解性質(zhì)等不同,研究者通常將RS分為以下五類:① 物理包埋淀粉(physically trapped starch,RS1)主要存在于部分研磨的谷物和豆類種子中,因其被蛋白質(zhì)或細(xì)胞壁包裹,不能充分膨脹或分散,從而難以被淀粉酶接近[5];② 抗酶解的天然淀粉顆粒(resistant starch granules,RS2)主要存在于生馬鈴薯、青香蕉和高直鏈玉米淀粉中,具有高度致密性或特殊結(jié)晶結(jié)構(gòu),難以被酶解消化[6];③ 回生淀粉(retrograded starch,RS3)是指糊化的淀粉在冷卻或存儲(chǔ)過程中,分子重排結(jié)晶形成的高度致密的聚合物淀粉,不容易被淀粉酶水解[7];④ 化學(xué)改性淀粉(chemically modified starch,RS4)是指經(jīng)化學(xué)改性引入新官能團(tuán)或改變淀粉分子結(jié)構(gòu)而產(chǎn)生的抗酶解淀粉[8];⑤ 直鏈淀粉—脂類復(fù)合物(amylose-lipid complexed starch,RS5)是淀粉與脂質(zhì)相互作用形成的單螺旋復(fù)合物,具有高度的熱穩(wěn)定性,且難以與淀粉酶結(jié)合[9]。

在大多數(shù)情況下,RS1和RS2作為天然淀粉,在食品加工過程中會(huì)失去對(duì)消化的抵抗力,而RS3、RS4與RS5的熱穩(wěn)定性高,經(jīng)蒸煮等高溫處理后仍能保持一定抗消化特性[10]。RS難溶于水,但可以在2 mol/L KOH或DMSO溶液中溶解。其平均聚合度為30~200,相對(duì)分子質(zhì)量分布范圍為104~108,淀粉顆粒結(jié)晶結(jié)構(gòu)穩(wěn)定[2]。相比于傳統(tǒng)的膳食纖維,RS具有高耐熱性、低持水性與色白味淡等特點(diǎn),這使得在處理過程中RS能夠提供良好的加工性,并改善最終產(chǎn)品的質(zhì)地。

2 抗性淀粉的防病保健性

近年來,大量的動(dòng)物和人體實(shí)驗(yàn)證明,攝入RS可以有效改善動(dòng)物和人體的代謝紊亂,預(yù)防或輔助治療多種慢性代謝疾病,包括腸道疾病、高脂血癥、糖尿病與肥胖癥等。

2.1 抗性淀粉與腸道疾病

RS具有抵抗小腸中淀粉酶消化的特性,在結(jié)腸被微生物發(fā)酵產(chǎn)生SCFAs,主要包括乙酸、丙酸和丁酸等。這些代謝產(chǎn)物可以通過多種機(jī)制發(fā)揮多重抗炎和抑癌等生理作用,包括調(diào)節(jié)腫瘤壞死因子α(tumor necrosis factor α,TNF-α)信號(hào)傳導(dǎo)、miRNA表達(dá)和氧化應(yīng)激相關(guān)途徑等[11-12]。同時(shí),SCFAs能作為組蛋白去乙酰化酶(histone deacetylase,HDAC)抑制劑[13],并且還能夠抑制Wnt信號(hào)通路的活性[14]。此外,RS能減少氨等毒素的吸收[15],保護(hù)結(jié)腸細(xì)胞DNA免受膳食蛋白質(zhì)引起的損傷[16-17]。這些作用有助于減少腸道功能失調(diào),并降低結(jié)腸癌等疾病的患病風(fēng)險(xiǎn)。

RS能夠通過調(diào)節(jié)腸道微生物群落的組成和代謝產(chǎn)物來影響免疫功能,降低腸道疾病的發(fā)病率。Koay等[18]報(bào)道了喂食RS的小鼠腸道微生物群落代謝產(chǎn)物的種類和數(shù)量顯著增加,如吲哚-3-丙酸,并促進(jìn)有益菌群異桿菌屬(Allobaculum)和雙歧桿菌屬(Bifidobacterium)等的生長(zhǎng)。梁?jiǎn)蝃19]發(fā)現(xiàn)馬鈴薯RS可以增加益生菌乳酸桿菌屬(Lactobacillus)等菌屬豐度,促進(jìn)SCFAs的產(chǎn)生,還能提高結(jié)腸緊密連接蛋白Occludin和ZO-1的表達(dá),降低血清中的炎癥因子和脂多糖水平,從而維護(hù)腸道的屏障功能。Li等[20]報(bào)道了RS對(duì)腸道微生物群落結(jié)構(gòu)的影響,發(fā)現(xiàn)其可以促進(jìn)瘤胃球菌屬(Ruminococcus)等有益菌群的增殖,抑制腸球菌屬(Enterococcus)等有害菌群的生長(zhǎng)。RS含量高的稻米可促進(jìn)SCFAs大量合成,增加益生菌普雷沃氏菌(Prevotellaceae)和抗炎糞桿菌(Faecalibacterium)的豐度,并降低腸道微生物群落失衡標(biāo)志菌變形桿菌(Proteobacteria)和巨單胞菌(Megamonas)的豐度,對(duì)腸黏膜具有抗炎和調(diào)節(jié)作用[21]。

RS還可以調(diào)節(jié)腸道免疫防御和炎癥反應(yīng),改變某些致癌基因或它們產(chǎn)物的表達(dá),從而抑制結(jié)腸癌、結(jié)腸炎等疾病的發(fā)展。飼喂RS的結(jié)腸癌小鼠其總SCFAs、乙酸、丙酸、丁酸濃度明顯升高,同時(shí)凋亡酶Caspase-3的水平上調(diào),結(jié)腸炎癥和氧化應(yīng)激指標(biāo)中的β-葡萄糖醛酸酶和丙二醛水平降低[22]。含有改性秈稻RS的飲食可以減少結(jié)腸癌小鼠體內(nèi)隱窩異常病灶的數(shù)量,并促進(jìn)抑癌基因(antigen presenting cell,APC)的表達(dá),抑制癌基因(B-cell lymphoma-2,Bcl-2)的表達(dá),上調(diào)凋亡蛋白Bax的作用,誘導(dǎo)早期結(jié)腸癌小鼠細(xì)胞凋亡[23]。Wang等[24]報(bào)道,RS飲食干預(yù)通過上調(diào)結(jié)腸癌小鼠體內(nèi)真核起始因子(eukaryotic initiation factor 2α,elF2α)與內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)激酶(protein kinase RNA-like ER kinase,PERK)的表達(dá)水平,抑制致癌相關(guān)代表基因的表達(dá),從而促進(jìn)結(jié)腸腫瘤細(xì)胞的凋亡和自噬。為了探究RS對(duì)炎癥性腸病的影響,Valcheva等[25]通過結(jié)腸炎模型小鼠實(shí)驗(yàn)證實(shí),喂食RS的小鼠結(jié)腸分泌的炎癥因子IL-6和趨化因子CXCL1顯著降低,有效減輕結(jié)腸炎小鼠腸細(xì)胞損傷。Hartog等[26]發(fā)現(xiàn)含有RS的多種纖維混合物增加了抗炎因子IL-10的水平,并且增加了腸系膜淋巴結(jié)中調(diào)節(jié)性T細(xì)胞的相對(duì)數(shù)量,從而改善結(jié)腸炎模型小鼠的臨床癥狀。

2.2 抗性淀粉與高脂血癥

高脂血癥是由脂質(zhì)代謝紊亂引起的代謝性疾病,也是導(dǎo)致肝病、心腦血管疾病的主要原因之一[27]。其主要表現(xiàn)是血液膽固醇(total cholesterol,TC)、甘油三酯(total glyceride,TG)和低密度脂蛋白膽固醇(low density lipoprotein cholesterol,LDL-C)升高,高密度脂蛋白膽固醇(high density lipoprotein cholesterol,HDL-C)降低[28]。RS可以作為飲食干預(yù)以多種方式參與調(diào)控機(jī)體脂質(zhì)代謝。

富含RS的高粱食物能顯著降低糖尿病患者的空腹血糖和體重指數(shù),同時(shí)降低TC、LDL-C和TG的水平[29]。李濤等[30]發(fā)現(xiàn),紫山藥RS可有效減輕高脂血癥金黃地鼠內(nèi)臟的脂肪質(zhì)量,調(diào)節(jié)血脂指標(biāo),改善腸道菌群的失衡,進(jìn)而緩解肝臟脂肪病變。

膽汁酸維持體內(nèi)脂質(zhì)代謝平衡,膽固醇是合成初級(jí)膽汁酸的原料。初級(jí)膽汁酸在腸道轉(zhuǎn)化為次級(jí)膽汁酸,然后大部分膽汁酸被肝臟重吸收利用,這一過程被稱為膽汁酸循環(huán)。研究[31-33]表明,RS可以通過調(diào)節(jié)腸道菌群的組成,改變機(jī)體循環(huán)膽汁酸的組成和代謝,促進(jìn)膽固醇的分解形成膽汁酸,從而調(diào)節(jié)血脂。Lei等[34]發(fā)現(xiàn),蓮子RS減緩了高脂血癥大鼠體重增加和肝指數(shù)升高,緩解了脂肪肝癥狀,抑制了肝臟對(duì)次級(jí)膽汁酸的重吸收,影響膽汁酸循環(huán)。Aribas等[35]研究發(fā)現(xiàn),RS結(jié)合了高血脂癥大鼠中的次級(jí)膽汁酸,并促進(jìn)其在糞便中排泄,從而改善了高脂血癥大鼠的血脂代謝。此外,Liu等[36]報(bào)道,蓮子RS和乳酸鈉復(fù)合物通過多種代謝途徑如亞油酸代謝、鞘脂代謝和甘油磷脂代謝等,協(xié)同調(diào)節(jié)高脂血癥大鼠血清氨基酸、磷脂和有機(jī)酸水平,從而改善血脂水平,降低脂肪肝疾病的風(fēng)險(xiǎn)。

RS飲食干預(yù)能通過發(fā)酵產(chǎn)生的SCFAs激活腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)的活性,進(jìn)而顯著抑制肝臟中固醇調(diào)節(jié)元件結(jié)合蛋白(sterol regulatory element binding peptide-1,SREBP-1)的表達(dá)水平,激活下游過氧化物酶體增殖物激活受體α(peroxisome proliferator activated receptor α,PPARα),進(jìn)而增強(qiáng)胰島素誘導(dǎo)基因1(insulin inducible gene-1,Insig-1)與胰島素誘導(dǎo)基因2(insulin inducible gene-2, Insig-2)的表達(dá),抑制脂肪酸合成酶(fatty acid synthetase,F(xiàn)AS)與乙酰輔酶A羧化酶(acetyl coenzyme A carboxylase,ACC)等的表達(dá),從而抑制脂質(zhì)的積累和游離脂肪酸的合成[37-39]。Shang等[40]報(bào)道,在肥胖小鼠高脂飼料中添加RS與低聚果糖復(fù)合物,可以富集PPARα信號(hào)通路,上調(diào)膽固醇7α-羥化酶(cholesterol 7α hydroxylase,CYP7A1)基因表達(dá),促使膽固醇加速轉(zhuǎn)化為膽汁酸。Xu等[41]研究發(fā)現(xiàn),RS能提高肥胖大鼠體內(nèi)抗氧化酶活性,改善肝臟脂代謝酶活性,同時(shí)顯著下調(diào)SREBP-1和膽固醇合成基因3-羥基-3-甲基戊二酰輔酶A還原酶(3-hydroxy-3-methylglutarylcoenzyme A reductase,HMGCR)的表達(dá),上調(diào)脂質(zhì)氧化基因過氧化物酶體酰基輔酶A氧化酶(peroxisomal acyl-coenzyme A oxidase,ACOX)與肝功能基因的表達(dá)。這些改變?cè)鰪?qiáng)了脂質(zhì)分解代謝,抑制了脂質(zhì)的合成代謝,有效預(yù)防和緩解高脂血癥等脂質(zhì)代謝異常疾病,如圖1所示。

2.3 抗性淀粉與糖尿病

根據(jù)國(guó)際糖尿病聯(lián)盟(IDF)的統(tǒng)計(jì),2021年全球20~79歲糖尿病患病人數(shù)約為5.366億人,預(yù)計(jì)到2045年將上升至約7.832億人[42]。糖尿病是目前最嚴(yán)重和最常見的慢性疾病之一,飲食治療是其最為基礎(chǔ)的治療方法。

普通的食用淀粉在消化過程中會(huì)迅速轉(zhuǎn)化為葡萄糖,導(dǎo)致血糖急劇上升。RS具有低GI值和熱值,可以提高飽腹感,并延緩餐后血糖的上升,從而有效緩解和控制糖尿病患者的病情[43-44]。王蕾蕾等[45]發(fā)現(xiàn)相比于普通大米,食用高RS的大米能夠降低糖尿病患者餐后2 h血糖水平和空腹血糖水平。Strozyk等[46]發(fā)現(xiàn),通過冷卻米飯產(chǎn)生的RS可以縮短1型糖尿病患者血糖達(dá)到峰值的時(shí)間,減少餐后血糖的增加,延遲的血糖峰值的出現(xiàn),表明RS對(duì)血糖控制有益,可能更好地與短效胰島素類似物的最高活性相匹配。

研究[47]發(fā)現(xiàn),與表面光滑的圓粒豌豆相比,表面帶褶皺的自然變異豌豆含有更多的RS,直接食用這種褶皺豌豆或以面粉的形式加入到食物中,能顯著降低血糖,減輕胰島素抵抗,降低患2型糖尿病的風(fēng)險(xiǎn)。Bindels等[48]報(bào)道,RS可以獨(dú)立于腸道菌群改善胰島素敏感性,降低無菌和常規(guī)小鼠中脂肪組織巨噬細(xì)胞標(biāo)志物的基因表達(dá)。Karimi等[49]研究發(fā)現(xiàn),2型糖尿病患者補(bǔ)充RS2可以顯著降低糖化血紅蛋白(glycated hemoglobin,HbA1c)和內(nèi)毒素水平,降低餐后血糖和胰島素反應(yīng)。RS發(fā)酵產(chǎn)物SCFAs能與G蛋白偶聯(lián)受體(G-protein coupled receptors,GPRs)GPCR41/43相互作用,誘導(dǎo)腸道產(chǎn)生胰高血糖素樣肽-1(glucagon-like peptide-1,GLP-1)和腸肽YY(peptides YY,PYY)等腸道激素,降低機(jī)體的體脂肪含量,提高胰島素敏感性,并保護(hù)胰腺β細(xì)胞的功能[50-52]。

RS主要通過調(diào)節(jié)胰島素信號(hào)轉(zhuǎn)導(dǎo)的磷脂酰肌醇-3-激酶/蛋白激酶B信號(hào)途徑(phosphatidylinositol-3-kinase/protein kinase B,PI3K/ Akt),調(diào)節(jié)下游底物受體和糖原合成相關(guān)酶的表達(dá),從而調(diào)控血糖。具體而言,RS可以降低磷酸烯醇丙酮酸羧化激酶(phosphoenolpyruvate carboxy kinase,PEPCK)和葡萄糖-6-磷酸酶(glucose-6-phosphatase,G6Pase)的表達(dá),抑制糖原異生的過程[53-54]。糖尿病模型大鼠攝入RS后,與糖原合成相關(guān)基因的表達(dá)上調(diào),如糖原蛋白1(glycogenin 1,GYG1)和糖原合酶2(glycogen synthesis 2,GS2),而與糖異生相關(guān)基因的表達(dá)下調(diào)[37]。此外,還有研究[55-57]觀察到,攝入RS后胰腺十二指腸同源異型盒因子-1(pancreas/duodenum homeobox-1,PDX-1)、葡萄糖激酶(glucokinase,GK)、葡萄糖轉(zhuǎn)運(yùn)蛋白2(glucose transporter 2,GLUT2)以及胰島素受體底物1(insulin receptor substrate 1,IRS1)和2(insulin receptor substrate 2,IRS2)的表達(dá)上調(diào),改善了胰島素的敏感性。總之,RS可以改善與胰島素分泌和血糖信號(hào)傳遞相關(guān)基因的表達(dá),調(diào)節(jié)糖代謝,有助于緩解糖尿病癥狀,如圖2所示。

2.4 抗性淀粉與體重、肥胖控制

當(dāng)攝入的熱量高于消耗的熱量時(shí),會(huì)造成脂肪堆積,進(jìn)而引起體重增加并導(dǎo)致肥胖。現(xiàn)有研究[58-59]表明,RS具有促進(jìn)脂質(zhì)排出、延長(zhǎng)飽腹感和減少熱量攝入的作用,從而有助于體重管理和減肥。Huang等[60]研究發(fā)現(xiàn),與RS4和RS2相比,RS3具有更強(qiáng)的飽腹感效果,飽腹感與RS的溶脹能力呈正相關(guān)。胃中形成的RS凝膠可以導(dǎo)致胃持續(xù)擴(kuò)張和胃排空延遲,從而通過減少食物攝入量、增加能量消耗等機(jī)制控制體重。經(jīng)過物化特性的優(yōu)化,RS殼寡糖復(fù)合物對(duì)高脂飲食大鼠具有減肥和降脂作用[61]。

厚壁菌門(Firmicutes)與擬桿菌門(Bacteroidetes)的比值稱為F/B值,據(jù)報(bào)道[62],較高F/B值與肥胖風(fēng)險(xiǎn)增加有關(guān)。膳食中RS水平的增加導(dǎo)致肥胖相關(guān)菌種豐度下降,降低F/B值,并恢復(fù)了瘦素敏感性,減緩脂肪組織重量和脂肪細(xì)胞大小的增加[63]。另有研究[64]表明,RS能上調(diào)血管生成素樣蛋白(angiopoietin-like protein 4,ANGPTL4)的表達(dá),從而抑制胰脂肪酶的生成,顯著降低超重和肥胖受試者的體重和體脂,并改善腹內(nèi)和皮下脂肪面積。

2.5 抗性淀粉的其他生理功能

除了上述的防病保健功能之外,RS還具有其他眾多生理活性功能。RS在結(jié)腸的發(fā)酵產(chǎn)生大量的SCFAs,對(duì)腸細(xì)胞起營(yíng)養(yǎng)作用,并降低腸道內(nèi)的pH值,這增加了礦物質(zhì)的溶解度,提高了鈣、鐵、鎂等礦物質(zhì)吸收利用[65-66]。Correa等[67]研究發(fā)現(xiàn),攝入RS的大鼠,其骨礦物質(zhì)和骨密度相關(guān)的標(biāo)志物增加,這有助于維持骨骼的健康。此外,RS可加速卵巢切除小鼠盲腸中的發(fā)酵過程,降低破骨細(xì)胞因子RANKL的表達(dá),從而緩解骨質(zhì)流失[68]。研究人員[69-70]還發(fā)現(xiàn),將RS加入到口服補(bǔ)液鹽(oral rehydration salt,ORS)中,能增強(qiáng)鈉的吸收,減少排泄物中液體的流失,提高ORS對(duì)急性腹瀉的療效。蓮子RS的飲食干預(yù)通過改善輔助性T細(xì)胞Th1/Th2失衡,降低卵清蛋白特異性免疫球蛋白和過敏相關(guān)細(xì)胞因子的血清濃度,從而緩解卵清蛋白誘導(dǎo)的食物過敏小鼠的不良癥狀[71]。相比可消化淀粉,RS可以減少膽固醇的合成來降低膽結(jié)石的發(fā)生率[72]。高RS飲食可以通過多種機(jī)制緩解慢性腎病癥狀,包括顯著降低慢性腎病大鼠的血清尿素和肌酐水平,減輕炎癥的程度等[73]。此外,Esgalhado等[74]報(bào)道,慢性腎病患者補(bǔ)充富含RS2的餅干可以顯著增加核因子E2相關(guān)因子2(nuclear factor erythroid E2 related factor 2,Nrf2)和醌氧化還原酶1(quinone oxidoreductase 1,NQO1)的表達(dá),降低尿毒癥毒素和炎癥水平。

3 抗性淀粉的應(yīng)用和發(fā)展前景

RS由于其潛在的生理功能、特殊的物理性質(zhì)以及優(yōu)良的加工性能,在食品、醫(yī)藥和保健品等領(lǐng)域發(fā)揮重要作用。

RS作為食品添加劑在食品工業(yè)中被廣泛應(yīng)用。RS可作為功能性纖維添加到面包等食品中,對(duì)其感官品質(zhì)和質(zhì)構(gòu)產(chǎn)生積極影響,使消費(fèi)者在享受美味食品的同時(shí),獲得健康和營(yíng)養(yǎng)[75-76]。RS具有良好的黏度穩(wěn)定性和流變特性,可以作為液體和固體飲料食品中的增稠劑使用,而不會(huì)影響其口感。添加羥丙基化淀粉這種RS4能夠改善魚糜制品的凝膠品質(zhì)與蛋白構(gòu)象[77]。此外,在油炸洋蔥條中添加RS可以改善油炸洋蔥條的含油量、硬度、斷裂性和脆度等性能,而且不會(huì)顯著改變感官屬性[78]。

RS還可以應(yīng)用于生物活性載體和生物降解食用包裝膜的研發(fā)。采用以RS為壁材的微膠囊包埋技術(shù)可以建立食品中生物功能活性成分的靶向傳遞系統(tǒng),有效解決生物功能活性物質(zhì)在體內(nèi)利用率低和穩(wěn)定性差等問題[79]。直鏈淀粉-脂質(zhì)復(fù)合物的含量對(duì)可食膜的物理、機(jī)械和阻隔特性有顯著影響,可以用于調(diào)節(jié)可食膜特性[80]。此外,RS的開發(fā)利用還聚焦在以其為主要原料來開發(fā)高品質(zhì)的功能性保健品和藥品。

4 結(jié)論與展望

抗性淀粉作為一種藥食兩用的天然安全食品資源,具有優(yōu)良的食品加工性能和重要的生理功能,對(duì)人體健康有益。同時(shí),抗性淀粉還彌補(bǔ)了傳統(tǒng)膳食纖維的不足之處,為功能食品研究開辟了新的方向,并具有重要的工業(yè)應(yīng)用價(jià)值。因此,抗性淀粉的研究和應(yīng)用具有廣闊的前景和發(fā)展空間。研究已經(jīng)證實(shí)抗性淀粉具有預(yù)防和緩解腸道疾病、高脂血癥、糖尿病與肥胖癥等疾癥的作用。隨著研究手段的不斷發(fā)展,越來越多關(guān)于抗性淀粉的健康益處將會(huì)被發(fā)現(xiàn)和關(guān)注。然而,抗性淀粉的防病保健效應(yīng)缺乏標(biāo)準(zhǔn)化,受到抗性淀粉類型、來源、劑量和實(shí)驗(yàn)對(duì)象、設(shè)計(jì)等因素的影響。目前,已經(jīng)有抗性淀粉相關(guān)產(chǎn)品上市,但是抗性淀粉的功能性、營(yíng)養(yǎng)性、制備及構(gòu)造、定量分析以及在食品和保健品中的應(yīng)用等方面仍需深入、系統(tǒng)化的研究。因此,需要進(jìn)一步研究抗性淀粉的分子結(jié)構(gòu)和功能,確定其在機(jī)體內(nèi)的作用機(jī)制,并制定抗性淀粉相關(guān)標(biāo)準(zhǔn),以發(fā)揮其在日常膳食中的營(yíng)養(yǎng)與保健功能。

參 考 文 獻(xiàn)

[1] SILVA Y P, BERNARDI A, FROZZA R L. The role of shortchain fatty acids from gut microbiota in gut-brain communication[J]. Frontiers in Endocrinology, 2020,11:25.

[2] JIANG F, DU C W, JIANG W Q, et al. The preparation, formation, fermentability, and applications of resistant starch[J]. International Journal of Biological Macromolecules, 2020,150:1155-1161.

[3] HOMAYOUNI A, AMINI A, KESHTIBAN A K, et al. Resistant starch in food industry: a changing outlook for consumer and producer[J]. Starch-St?rke, 2014,66(1/2):102-114.

[4] ENGLYST H N, KINGMAN S M, CUMMINGS J H. Classification and measurement of nutritionally important starch fractions[J]. European Journal of Clinical Nutrition, 1992,46(Suppl 2):S33-S50.

[5] SAJILATA M G, SINGHAL R S, KULKARNI P R. Resistant starch-a review[J]. Comprehensive Reviews in Food Science and Food Safety, 2006,5(1):1-17.

[6] LESZCZY?SKI W. Resistant starch-classification, structure, production[J]. Polish Journal of Food and Nutrition Sciences, 2004,13(54):37-50.

[7] 馮鑠涵,闞建全.壓熱酸解法制備玉米抗性淀粉的工藝優(yōu)化[J].糧食科技與經(jīng)濟(jì),2011,36(6):38-42.

[8] 萬成,李濤,劉燦燦,等.辛烯基琥珀酸酐改性淀粉的研究進(jìn)展[J].糧食科技與經(jīng)濟(jì),2017,42(6):73-76.

[9] LI L, LIU Z D, ZHANG W H, et al. Production and applications of amylose-lipid complexes as resistant starch: recent approaches[J]. Starch-St?rke, 2021,73(5/6):2000249.

[10] BIRT D F, BOYLSTON T, HENDRICH S, et al. Resistant starch: promise for improving human health[J]. Advances in Nutrition, 2013,4(6):587-601.

[11] VANHOUTVIN S A, TROOST F J, HAMER H M, et al. Butyrate-induced transcriptional changes in human colonic mucosa[J]. PloS One, 2009,4(8):e6759.

[12] HUMPHREYS K J, CONLON M A, YOUNG G P, et al. Dietary manipulation of oncogenic microRNA expression in human rectal mucosa: a randomized trial[J]. Cancer Prevention Research, 2014,7(8):786-795.

[13] VANAMALA J K P. Potatoes for targeting colon cancer stem cells[J]. American Journal of Potato Research, 2019,96(2):177-182.

[14] NELSON B, CRAY N, AI Y, et al. Effect of dietary-resistant starch on inhibition of colonic preneoplasia and Wnt signaling in azoxymethane-induced rodent models[J]. Nutrition and Cancer, 2016,68(6):1052-1063.

[15] WUTZKE K D, TISZTL M, SALEWSKI B, et al. Dietary fibre-rich resistant starches promote ammonia detoxification in the human colon as measured by lactose-[15N2] ureide[J]. Isotopes in Environmental and Health Studies, 2015,51(4):488-496.

[16] BAJKA B H, CLARKE J M, COBIAC L, et al. Butyrylated starch protects colonocyte DNA against dietary protein-induced damage in rats[J]. Carcinogenesis, 2008,29(11):2169-2174.

[17] NAVARRO S D, MAURO M O, PESARINI J R, et al. Resistant starch: a functional food that prevents DNA damage and chemical carcinogenesis[J]. Genetics and Molecular Research, 2015,14(1):1679-1691.

[18] KOAY Y C, WALI J A, LUK A W S, et al. Ingestion of resistant starch by mice markedly increases microbiome-derived metabolites[J]. The Faseb Journal, 2019,33(7):8033-8042.

[19] 梁?jiǎn)?馬鈴薯抗性淀粉調(diào)節(jié)腸道菌群及改善肥胖的作用機(jī)制[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2021:39-56.

[20] LI X, CHEN W, GAO J Y, et al. Structural changes of butyrylated lotus seed starch and its impact on the gut microbiota of rat in vitro fermentation[J]. Food Hydrocolloids, 2023,139:108501.

[21] LI Z T, HU G A, ZHU L, et al. In vitro digestion and fecal fermentation of highly resistant starch rice and its effect on the gut microbiota[J]. Food Chemistry, 2021,361:130095.

[22] AFIFAH D N, PURNAMASARI F, KHUSNA L, et al. Musa balbisiana and Musa paradisiaca starches increase SCFA and Caspase-3 as well as decrease β-glucuronidase and MDA of mouse model for colon cancer[J]. The Indonesian Biomedical Journal, 2021,13(1):91-96.

[23] YUAN H B, ZHU X P, CHEN D Y, et al. Effects of dual modified resistant indica rice starch on azoxymethane-induced incipient colon cancer in mice[J]. Experimental and Therapeutic Medicine, 2017,13(5):2036-2042.

[24] WANG Q Y, WANG P, XIAO Z G. Resistant starch prevents tumorigenesis of dimethylhydrazine-induced colon tumors via regulation of an ER stress-mediated mitochondrial apoptosis pathway[J]. International Journal of Molecular Medicine, 2018,41(4):1887-1898.

[25] VALCHEVA R, HOTTE N, GILLEVET P, et al. Soluble dextrin fibers alter the intestinal microbiota and reduce proinflammatory cytokine secretion in male IL-10 deficient mice[J]. The Journal of Nutrition, 2015,145(9):2060-2066.

[26] HARTOG A, BELLE F N, BASTIAANS J, et al. A potential role for regulatory T-cells in the amelioration of DSS induced colitis by dietary non-digestible polysaccharides[J]. The Journal of Nutritional Biochemistry, 2015,26(3):227-233.

[27] SHRIVASTAVA A K, THAPA S, SHRESTHA L, et al. Phytochemical screening and the effect of Trichosanthes dioica in high‐fat diet induced atherosclerosis in Wistar rats[J]. Food Frontiers, 2021,2(4):527-536.

[28] LI W Y, YANG C Y, MEI X, et al. Effect of the polyphenol‐rich extract from Allium cepa on hyperlipidemic sprague‐dawley rats[J]. Journal of Food Biochemistry, 2021,45(1):e13565.

[29] HYMAVATHI T V, JYOTHSNA E, ROBERT T P, et al. Effect of resistant starch (RS) rich sorghum food consumption on lipids and glucose levels of diabetic subjects[J]. Journal of Pharmaceutical Research International, 2020,32:86-92.

[30] 李濤,宋洪波,安鳳平,等.紫山藥抗性淀粉調(diào)節(jié)高脂血癥金黃地鼠脂質(zhì)代謝[J].中國(guó)食品學(xué)報(bào),2021,21(3):95-101.

[31] DHAKAL S, DEY M. Resistant starch type-4 intake alters circulating bile acids in human subjects[J]. Frontiers in Nutrition, 2022,9:930414.

[32] LEI S Z, HE S Q, LI X, et al. Effect of lotus seed resistant starch on small intestinal flora and bile acids in hyperlipidemic rats[J]. Food Chemistry, 2023,404:134599.

[33] ZENG H L, HE S Q, XIONG Z X, et al. Gut microbiota-metabolic axis insight into the hyperlipidemic effect of lotus seed resistant starch in hyperlipidemic mice[J]. Carbohydrate Polymers, 2023,314:120939.

[34] LEI S Z, LIU L, YUE P Y, et al. Lotus seed resistant starch decreases the blood lipid and regulates the serum bile acids profiles in hyperlipidemic rats[J]. Journal of Functional Foods, 2022,92:105040.

[35] ARIBAS M, KAHRAMAN K, KOKSEL H. In vitro glycemic index, bile acid binding capacity and mineral bioavailability of spaghetti supplemented with resistant starch type 4 and wheat bran[J]. Journal of Functional Foods, 2020,65:103778.

[36] LIU L, LIN Y J, LEI S Z, et al. Synergistic effects of lotus seed resistant starch and sodium lactate on hypolipidemic function and serum nontargeted metabolites in hyperlipidemic rats[J]. Journal of Agricultural and Food Chemistry, 2021,69(48):14580-14592.

[37] ZHOU Z K, WANG F, REN X C, et al. Resistant starch manipulated hyperglycemia/hyperlipidemia and related genes expression in diabetic rats[J]. International Journal of Biological Macromolecules, 2015,75:316-321.

[38] SHANG W T, SI X, STRAPPE P, et al. Resistant starch attenuates impaired lipid biosynthesis induced by dietary oxidized oil via activation of insulin signaling pathways[J]. Rsc Advances, 2017,7(80):50772-50780.

[39] CHANG D N, HU X Z, MA Z. Pea-resistant starch with different multi-scale structural features attenuates the obesity-related physiological changes in high-fat diet mice[J]. Journal of Agricultural and Food Chemistry, 2022,70(36):11377-11390.

[40] SHANG W T, SI X, ZHOU Z K, et al. Studies on the unique properties of resistant starch and chito-oligosaccharide complexes for reducing high-fat diet-induced obesity and dyslipidemia in rats[J]. Journal of Functional Foods, 2017,38:20-27.

[41] XU S, ZHOU Z K, STRAPPE P, et al. A comparison of RS4-type resistant starch to RS2-type resistant starch in suppressing oxidative stress in high-fat-diet-induced obese rats[J]. Food & Function, 2017,8(1):232-240.

[42] SUN H, SAEEDI P, KARURANGA S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Research and Clinical Practice, 2022,183:109119.

[43] RANHOTRA G S, GELROTH J A, GLASER B K. Energy value of resistant starch[J]. Journal of Food Science, 1996,61(2):453-455.

[44] 徐丹鴻,徐紅華.抗性淀粉的制備及其形成影響因素的研究[J].糧食科技與經(jīng)濟(jì),2006(1):50-51.

[45] 王蕾蕾,何芳,樊慧茹,等.高抗性淀粉大米血糖生成指數(shù)測(cè)定及對(duì)糖尿病患者血糖調(diào)控的干預(yù)研究[J].營(yíng)養(yǎng)學(xué)報(bào),2017,39(2):197-199.

[46] STROZYK S, ROGOWICZ-FRONTCZAK A, PILACINSKI S, et al. Influence of resistant starch resulting from the cooling of rice on postprandial glycemia in type 1 diabetes[J]. Nutrition & Diabetes, 2022,12(1):21.

[47] PETROPOULOU K, SALT L J, EDWARDS C H, et al. A natural mutation in Pisum sativum L. (pea) alters starch assembly and improves glucose homeostasis in humans[J]. Nature Food, 2020,1(11):693-704.

[48] BINDELS L B, SEGURA M R, GOMES-NETO J C, et al. Resistant starch can improve insulin sensitivity independently of the gut microbiota[J]. Microbiome, 2017,5(1):12.

[49] KARIMI P, FARHANGI M A, SARMADI B, et al. The therapeutic potential of resistant starch in modulation of insulin resistance, endotoxemia, oxidative stress and antioxidant biomarkers in women with type 2 diabetes: a randomized controlled clinical trial[J]. Annals of Nutrition and Metabolism, 2016,68(2):85-93.

[50] ZHOU J, MARTIN R J, RAGGIO A M, et al. The importance of GLP-1 and PYY in resistant starchs effect on body fat in mice[J]. Molecular Nutrition & Food Research, 2015,59(5):1000-1003.

[51] NILSSON A C, JOHANSSON-BOLL E V, BJ?RCK I M E. Increased gut hormones and insulin sensitivity index following a 3-d intervention with a barley kernel-based product: a randomised cross-over study in healthy middle-aged subjects[J]. British Journal of Nutrition, 2015,114(6):899-907.

[52] HU Y M, LI C, HOU Y Y. Possible regulation of liver glycogen structure through the gut-liver axis by resistant starch: a review[J]. Food & Function, 2021,12(22):11154-11164.

[53] SONG X Q, DONG H H, ZANG Z Z, et al. Kudzu resistant starch: an effective regulator of type 2 diabetes mellitus[J]. Oxidative Medicine and Cellular Longevity, 2021,2021:1-15.

[54] SAKAKIBARA S, YAMAUCHI T, OSHIMA Y, et al. Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice[J]. Biochemical and Biophysical Research Communications, 2006,344(2):597-604.

[55] SUN H, MA X H, ZHANG S Q, et al. Resistant starch produces antidiabetic effects by enhancing glucose metabolism and ameliorating pancreatic dysfunction in type 2 diabetic rats[J]. International Journal of Biological Macromolecules, 2018,110:276-284.

[56] YANG J, BI Y, LIANG S Y, et al. The in vivo digestibility study of banana flour with high content of resistant starch at different ripening stages[J]. Food & Function, 2020,11(12):10945-10953.

[57] WANG Q, ZHENG Y F, ZHUANG W J, et al. Genome-wide transcriptional changes in type 2 diabetic mice supplemented with lotus seed resistant starch[J]. Food Chemistry, 2018,264:427-434.

[58] ZHANG L, LI H T, LI S, et al. Effect of dietary resistant starch on prevention and treatment of obesity-related diseases and its possible mechanisms[J]. Biomedical and Environmental Sciences, 2015,28(4):291-297.

[59] 楊參,闞建全,陳宗道,等.抗性淀粉及其生理功能研究新進(jìn)展[J].糧食科技與經(jīng)濟(jì),2003(3):41-42.

[60] HUANG J T, CHANG R R, MA R R, et al. Effects of structure and physical chemistry of resistant starch on short-term satiety[J]. Food Hydrocolloids, 2022,132:107828.

[61] 周中凱,王俊軒,李瑩.抗性淀粉、殼寡糖及其復(fù)合物對(duì)高脂飲食大鼠糖脂代謝影響[J].食品研究與開發(fā),2017,38(6):189-193.

[62] LIU J, LI Y F, YANG P Y, et al. Gypenosides reduced the risk of overweight and insulin resistance in C57BL/6J mice through modulating adipose thermogenesis and gut microbiota[J]. Journal of Agricultural and Food Chemistry, 2017,65(42):9237-9246.

[63] 萬佳瑋.不同抗性淀粉含量的大米對(duì)高脂飲食小鼠脂質(zhì)代謝和腸道菌群的調(diào)控研究[D].武漢:華中農(nóng)業(yè)大學(xué),2020:64-97.

[64] 張蕾.抗性淀粉對(duì)肥胖的干預(yù)效果和分子機(jī)制研究[D].上海:上海交通大學(xué),2019:41-66.

[65] ALEXANDER C, SWANSON K S, FAHEY G C, et al. Perspective: physiologic importance of short-chain fatty acids from nondigestible carbohydrate fermentation[J]. Advances in Nutrition, 2019,10(4):576-589.

[66] ZENG H L, HUANG C C, LIN S, et al. Lotus seed resistant starch regulates gut microbiota and increases short-chain fatty acids production and mineral absorption in mice[J]. Journal of Agricultural and Food Chemistry, 2017,65(42):9217-9225.

[67] CORREA M J, GIANNUZZI L, WEISSTAUB A R, et al. Chemically modified resistant starch in breadmaking: impact on bone, mineral metabolism and gut health of growing Wistar rats[J]. International Journal of Food Science & Technology, 2019,55(1):239-247.

[68] TOUSEN Y, MATSUMOTO Y, NAGAHATA Y, et al. Resistant starch attenuates bone loss in ovariectomised mice by regulating the intestinal microbiota and bone-marrow inflammation[J]. Nutrients, 2019,11(2):297.

[69] RAMAKRISHNA B S, SUBRAMANIAN V, MOHAN V, et al. A randomized controlled trial of glucose versus amylase resistant starch hypo-osmolar oral rehydration solution for adult acute dehydrating diarrhea[J]. PloS One, 2008,3(2):e1587.

[70] BINDER H J. Role of colonic short-chain fatty acid transport in diarrhea[J]. Annual Review of Physiology, 2010,72(1):297-313.

[71] HU J M, LIN Z J, LI L X, et al. Oral administration of lotus-seed resistant starch protects against food allergy[J]. Foods, 2023,12(4):737.

[72] RAIGOND P, EZEKIEL R, RAIGOND B. Resistant starch in food: a review[J]. Journal of the Science of Food and Agriculture, 2015,95(10):1968-1978.

[73] VAZIRI N D, LIU S M, LAU W L, et al. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease[J]. PloS One, 2014,9(12):e114881.

[74] ESGALHADO M, KEMP J A, de PAIVA B R, et al. Resistant starch type-2 enriched cookies modulate uremic toxins and inflammation in hemodialysis patients: a randomized, double-blind, crossover and placebo-controlled trial[J]. Food & Function, 2020,11(3):2617-2625.

[75] AMINI KHOOZANI A, KEBEDE B, BIRCH J, et al. The effect of bread fortification with whole green banana flour on its physicochemical, nutritional and in vitro digestibility[J]. Foods, 2020,9(2):152.

[76] 葉彩珠.功能性稻米無糖蘇打餅干制作的研究[J].糧食科技與經(jīng)濟(jì),2020,45(12):115-117.

[77] 米紅波,王聰,蘇情,等.變性淀粉對(duì)白鰱魚魚糜凝膠特性和蛋白構(gòu)象的影響[J].中國(guó)食品學(xué)報(bào),2021,21(1):72-80.

[78] BOUE S M, CHEN M H, DAIGLE K W, et al. Changes in fried rice batter with increased resistant starch and effects on sensory quality of battered fried onions[J]. Cereal Chemistry, 2022,99(3):454-466.

[79] 黃雅萍,葉景芬,鄧凱波,等.抗性淀粉用于微膠囊制備的研究進(jìn)展[J].食品研究與開發(fā),2019,40(7):218-224.

[80] THAKUR R, PRISTIJONO P, GOLDING J B, et al. Amylose-lipid complex as a measure of variations in physical, mechanical and barrier attributes of rice starch- ι -carrageenan biodegradable edible film[J]. Food Packaging and Shelf Life, 2017,14:108-115.

主站蜘蛛池模板: 久久人搡人人玩人妻精品| 亚洲日韩AV无码精品| 青青草原国产av福利网站| h视频在线播放| 成人午夜视频网站| 中文字幕2区| 永久免费av网站可以直接看的| 无码一区18禁| 老司机午夜精品视频你懂的| 亚洲第一精品福利| 日本日韩欧美| 天堂中文在线资源| 国产免费久久精品99re丫丫一| 日韩国产黄色网站| 在线欧美a| 毛片在线看网站| 国产亚洲精品97AA片在线播放| 久久久精品久久久久三级| 久久网欧美| 一区二区三区四区日韩| 久久久久免费看成人影片| 亚洲精品无码不卡在线播放| 91色在线视频| 91精品伊人久久大香线蕉| 日本不卡视频在线| 久久久久国产一级毛片高清板| 国产aaaaa一级毛片| 亚洲综合色在线| 国产一级二级三级毛片| 亚洲欧美自拍视频| 日本国产在线| 影音先锋亚洲无码| 色偷偷综合网| 99视频在线观看免费| 18禁高潮出水呻吟娇喘蜜芽| 亚洲精品久综合蜜| 日韩免费毛片| 亚洲三级电影在线播放| 婷婷六月激情综合一区| 国产精品99久久久久久董美香| 亚洲天堂伊人| 亚洲av无码人妻| 无码区日韩专区免费系列| 国产亚洲视频中文字幕视频| 日韩在线影院| 国产主播一区二区三区| 欧美啪啪视频免码| 亚洲人人视频| 国模粉嫩小泬视频在线观看| 久草国产在线观看| 最新日本中文字幕| 成人在线综合| 熟妇人妻无乱码中文字幕真矢织江 | 亚洲日韩AV无码一区二区三区人| 久久一色本道亚洲| 伊人色综合久久天天| 欧美成人二区| 色偷偷一区| 伊人久久综在合线亚洲2019| 免费在线视频a| 欧美精品亚洲二区| 精品国产香蕉在线播出| 五月婷婷激情四射| 国产在线观看第二页| 欧美午夜小视频| 欧美日韩激情在线| 国产视频入口| 日日拍夜夜嗷嗷叫国产| 欧美日本在线观看| 99草精品视频| 日韩a级毛片| 日韩精品无码免费一区二区三区 | 亚洲午夜国产精品无卡| 亚洲乱码在线视频| 国产亚洲精久久久久久无码AV| 四虎国产在线观看| 色成人亚洲| 极品尤物av美乳在线观看| 色亚洲成人| 国产爽妇精品| 欧美三级视频网站| 一级毛片免费的|