999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一類新型糾纏混沌系統的電路設計及在圖像加密中的應用

2023-06-12 16:46:48代文鵬陳恒焦方桐李勇興顏廷洋

代文鵬 陳恒 焦方桐 李勇興 顏廷洋

【摘? ?要】? ?首先根據糾纏混沌系統的構建方法,構建了一類含有指數及正余弦項的糾纏混沌系統,運用Matlab對該系統的李雅普諾夫指數、分岔圖及功率譜圖等動力學特性進行理論分析和數值仿真,結果表明該系統具有較高的參數敏感特性。基于電路仿真軟件Multisim14進行實驗仿真電路的制作,證明提出的糾纏混沌系統電路在電路原理上的可實現性,從而驗證了該糾纏混沌系統的豐富動力學能力。最后利用DNA算法及糾纏系統混沌序列對圖像加密,進行加密直方圖、信息熵及相鄰像素相關性分析。分析結果證明,提出的混沌系統具有較強的復雜性,應用于圖像加密具有較高的保密安全性能。

【關鍵詞】? ?糾纏混沌系統;電路仿真;圖像信息熵

The Circuit Design of A New Kind of Chaotic System with Entanglement

and It′s Application in Image Encryption

Dai Wenpeng1, Chen Heng2*, Jiao Fangtong3,Li Yongxing2,Yan Tingyang4

(1. Yantai Institute of Science and Technology, Yantai 265600, China;

2. Xijing University, Xi′an 710123, China;

3. Geely Commercial Vehicle Zibo Base, Zibo 255100, China;

4. Qilu Institute of Technology, Jinan 250200, China)

【Abstract】? ? Firstly, according to the construction method of entangled chaotic system, a class of entangled chaotic system with exponent and sine-cosine term is constructed, the dynamic characteristics of the system, such as Lyapunov exponent, bifurcation diagram and power spectrum, are analyzed and simulated by MATLAB. Based on the circuit simulation software Multisim14, the experimental circuit is made, and the feasibility of the circuit in circuit principle is proved, the abundant dynamics capability of the system is verified. At last, the image is encrypted by using DNA algorithm and chaotic sequence of entanglement system. The histogram of encryption, information entropy and correlation of adjacent pixels are analyzed. The analysis results show that the proposed chaotic system has strong complexity and has high security performance when applied to image encryption.

【Key words】? ? ?entanglement chaotic system; circuit simulation; image information entropy

〔中圖分類號〕? ?TN601? ? ? ? ? ? ? ?〔文獻標識碼〕? A ? ? ? ? ? ? ?〔文章編號〕 1674 - 3229(2023)01- 0022 - 07

0? ? ? 引言

近幾十年來,新的混沌系統不斷被提出與發現[1],目前,混沌系統都是在經典混沌模型上構建的,已從經典低維混沌模型發展到高維、多翼、多渦卷、時滯、切換、分數階等混沌模型系統。那么,能否構建一類混沌系統作為線性系統與非線性系統的橋梁呢?根據量子糾纏的相關內容,多個線性系統通過非線性的有界函數糅合進行糾纏,量子糾纏的提出為新混沌系統的構建提供了一種有意義的借鑒思想。可根據此理論,將多個線性系統引入有界糾纏項從而為構建新的糾纏混沌系統提供了一種新的思路。

混沌理論在圖像加密數據傳輸[2]、電機控制系統等各個領域得到了應用[3]。數字圖像具有數據量大且像素之間相關性強的特點[4],混沌系統具有隨機性及敏感性,因此混沌系統應用到圖像加密中具有一定的優勢[5]。在糾纏混沌系統上,為采用糾纏混沌系統與DNA加密算法相結合對圖像進行加密提供了新思路。

首先,為驗證該糾纏混沌系統的豐富動力學能力,Matlab將對該系統進行理論分析及數值仿真。其次,為驗證混沌電路可實現性,Multisim14將進行電路搭建。最后,為驗證該系統的應用價值,利用DNA算法及糾纏系統混沌序列對圖像進行加密實現。

1? ? ?糾纏混沌系統

[x=-ax+byy=-ay-bx] (1)

[z=-czw=-dw]? ? (2)

(1)與(2)進行系統糾纏,得到一類新的糾纏混沌系統,其動力學方程為:

[x=-ax+by+k(sinw)ecoswy=-ay-bx+ksinzz=-cz+kcosxw=-dw+kcosy] (3)

其中[x,y,z,w]為系統變量,系統的參數為[a],[b],[c],[d],[k],糾纏項為[(sinw)ecosw],[sinz],[cosx],[cosy]。當 [a=2],[b=3],[c=0.1],[d=1],[k=10],畫出系統(3)的相圖,發現系統中存在典型的混沌吸引子如圖1所示。經過Matlab數值計算得到Lyapunov指數為[λ1=2.19],[λ2=0.47],[λ3=-3.15],[λ3=-4.6],系統含有兩個正的指數,具有超混沌特性[6]。

2? ? ?耗散性及功率譜

2.1? ?耗散性

[?V=?x?x+?y?y+?z?z+?w?w=-2a-c-d] ? ?(4)

[a=2],[b=3],[c=0.1],[d=1],[k=10]時,由(4)得[a+b-d+e=-5.1<0],系統(3)是一個耗散系統,體積元收斂為[dVdt=e-5.1t]即體積元[V0]以指數收斂,t時刻體積元為[V0e-5.1t],當t→∞時體積元收斂到零,漸進運動圍繞在一個吸引子上[7]。

2.2? ?功率譜

周期信號的功率譜是離散譜,非周期信號的功率譜是連續譜。混沌信號是非周期信號,所以其功率譜也應為連續譜[8]。圖2為系統(3)的功率譜,觀察到是連續譜,可見該系統為混沌系統。

3? ? ?參數影響

從系統(3)四個方向的Lyapunov指數譜及分岔圖,可觀察出系統運動狀態[9]。當[a∈0,10],[b=3],[c=0.1],[d=1],[k=10],如圖3所示的Lyapunov指數和分岔圖,得出系統是由混沌狀態逐漸進入周期狀態,經過短暫的陣發混沌后再進入周期狀態的反復過程,區間[a∈0,5.5?7,8]為混沌態,[a∈5.5,7?8,10]處于周期狀態,說明系統參數[a]對系統動力學行為具有一定的影響。

當[a=2],[b∈0,15],[c=0.1],[d=1],[k=10],如圖4所示為系統(3)的Lyapunov指數和分岔圖,[b∈0,7.5]為混沌態,其他區域為混沌與周期交替狀態,由倒倍周期分岔過渡到混沌,[b∈0,7.5?8,9?9.5,11?12,12.5?14,15],看出對應的LE譜為(-,-,0,+),該區間處于混沌態,[b∈7.5,8?9,9.5?11,12?12.5,14],最大LE等于0,說明該區間處于周期態。

同理,[a=2],[b=3],[c∈[0,8]],[d=1],[k=10],圖5為系統(3)四個方向的Lyapunov指數和分岔圖,觀察發現系統整體上為混沌狀態,在[a=2.5],[a=8]附近出現了弱混沌狀態,在[a=6]附近出現了倍周期態。

同理,[a=2],[b=3],[c=0.1],[d∈[0,10]],[k=10],圖6所示為系統(3)四個方向的Lyapunov指數和分岔圖,經過觀察發現LE譜為(-,-,0,+),系統為混沌狀態。[d∈[0,5]]的LE大于[d∈[5,6]]的LE指數,說明[d∈[0,5]]區間混沌復雜度更強。

同理,當[a=2],[b=3],[c=0.1],[d=1],[k∈0,15],如圖7所示為系統(3)的Lyapunov指數和分岔圖。系統由倍周期分岔進入到混沌系統,[k∈0,6]為周期態,其他區域為混沌態。

4? ? ?系統電路原理圖及方程

利用集成運放LM741、模擬乘法器AD633及電容和電阻等設計出相應的混沌電路圖,如圖8所示,利用Multisim14驗證系統(3)方程的電路仿真。

根據以上電路圖 ,電路振蕩方程為:

[dxdt=R6C1R5R7-R4R1x+R4R2y+R4R3sinw(ecosw)dydt=R13C2R12R14-R11R8x-R11R9y+R11R10sinzdzdt=R19C3R18R20R17R15cosx-R17R16zdwdt=R25C4R24R26R23R21cosy-R23R22w](5)? ? ? ? ? ?通過電路振蕩方程與混沌系統(3)的狀態方程對比,理論數值一一對應。為了驗證該混沌電路的正確性,利用Multisim14對混沌電路進行了電路仿真,將電路的[x],[y],[z],[w]端的輸出電壓實時顯示在示波器上,如圖9所示。

仿真驗證,該電路精簡且易于實現,證明了提出的糾纏混沌系統在電路原理上的可實現性。

5? ? ?圖像加密仿真

基于糾纏混沌系統產生的混沌吸引子, 用于DNA加密的混合圖像加密。采用Matlab 16仿真實現, 選 256×256的Lena灰度圖作為初始圖像如圖10(a), 混沌加密信號采用糾纏混沌信號加密后圖像如圖 10(b), 解密圖像如圖 10(c)。

5.1? ?信息熵分析

信息熵反映了加密后密文圖像的像素值隨機分布信息,由表 1可以看出,加密后的信息熵皆達到了7.9994,接近理想值8,加密效果較好,其算法相比于其他算法加密信息熵處于較高水平。

5.2? ?灰度直方圖

圖11(a)(b)分別為原始圖像和加密圖像的灰度直方圖。加密前,圖像像素非均勻分布,加密后,可以看出, 混合加密圖像的灰度均勻性明顯高于原始圖像, 加密圖像的安全性更高。

5.3? ?相鄰像素的相關系數

圖像相鄰像素的相關性與圖像加密的安全性呈反比[14],如公式(6)相關性計算。

[ρx,y=cov(x,y)D(x)+D(y)] (6)

其中:

[E(x)=1Ni=1Nxi]

[D(x)=1Ni=1N[xi-E(x)]2]

[cov(x,y)=E[(x-E(x))(y-E(y))]]

選取[N=10000],經計算得出加密圖像的水平方向、垂直方向及對角方向像素之間的相關系數分別為0.0078、0.0363及0.0053,說明像素之間沒有相關性,驗證了算法的有效性。

圖12(a)(c)(e)為原始圖像像素水平、垂直及對角方向像素之間的相關性,原始圖像像素之間呈線性關系,圖12(b)(d)(f)為改進的混合加密圖像像素間的相關性,說明像素之間沒有相關性。

從表2 可看出其算法相比于其他算法加密的信息相關性較低。

6? ? ? 結論

本文構建一種糾纏項含有指數及正余弦項的新型糾纏混沌系統,分析混沌系統的Lyapunov指數譜、分岔圖及功率譜等,驗證了系統豐富的動力學特性。在系統理論分析基礎上, 基于電路仿真軟件Multisim14設計了該混沌電路,電路仿真結果與數值計算結果的統一性驗證了該方法的可實現性。最后,將糾纏混沌系統應用于混合圖像加密算法中,并對其進行了數值仿真,仿真結果驗證了該混合加密算法在實際工程中有很好的應用價值。

[參考文獻]

[1] 陳 恒,代文鵬,李勇興,等.Liu混沌系統的電路設計及自適應控制研究[J].廊坊師范學院學報(自然科學版),2022,22(3):29-34.

[2] 付 正, 李 嶸. 基于新型切換Lorenz混沌系統的圖像加密算法研究[J]. 計算機與數字工程, 2020, 48(1): 170-173.

[3] 李付鵬,劉敬彪,王光義,等. 基于混沌集的圖像加密算法[J].電子與信息學報,2020,42(4):981-987.

[4] 屈雙惠,楊志宏,容旭巍,等. 一個新憶阻混沌系統及其在圖像加密中的應用[J].系統仿真學,2019,31(5):984-991.

[5] 趙 鳳,梁 靜.一種混合級聯混沌的偽隨機序列生成方法[J].洛陽師范學院學報,2019,38(8):8-11.

[6] 李志軍,曾以成.基于文氏振蕩器的憶阻混沌電路[J].電子與信息學報,2014,36(1):88–93.

[7] 朱從旭,胡玉平,孫克輝. 基于超混沌系統和密文交錯 擴散的圖像加密新算法[J].電子與信息學報,2012,34(7):1735-1743.

[8] 黃 沄,羅明偉,張 鵬.一種含有常數項的新超混沌系統及其FPGA 實現[J].重慶師范大學學報(自然科學版), 2015,32(1): 116-120.

[9] 陳昌川.一種多翼超混沌系統及其 FPGA實現[J].微電子學, 2011, 41(4): 562-566.

[10] 張勛才,劉奕杉,崔光照.基于 DNA 編碼和超混沌系統的圖像加密算法[J].計算機應用研究, 2019, 36(4): 1139- 1143.

[11] 曾祥秋,葉瑞松.基于改進 Logistic映射的混沌圖像加密算法[J].計算機工程, 2021, 47(11): 158-165.

[12] LI W, CHANG X Y, YAN A M, et al. Asymmetric Multiple Image Elliptic Curve Cryptography[J]. Optics and Lasers in Engineering, 2021, 136: 1-10.

[13] FIRDOUS A, UR REHMAN A, SAAD MISSEN M M. A Highly Efficient Color Image Encryption Based on Linear Transformation Using Chaos Theory and SHA-2[J]. Multimedia Tools and Applications, 2019, 78(17): 24809-24835.

[14] KHAN J S, AHMAD J. Chaos Based Efficient Selective Image Encryption[J]. Multidimensional Systems and Signal Processing, 2019, 30(2): 943-961.

主站蜘蛛池模板: 一级黄色网站在线免费看| 青青草91视频| 欧美福利在线| 97国产在线视频| 免费国产在线精品一区 | 国产美女91呻吟求| 一区二区三区国产精品视频| 国产亚洲精品91| 国产男人的天堂| www成人国产在线观看网站| 国产福利免费在线观看| 夜夜爽免费视频| 国产精品自拍露脸视频 | 91尤物国产尤物福利在线| 国产主播在线观看| 精品亚洲欧美中文字幕在线看 | 成人精品视频一区二区在线| 欧美日韩成人在线观看| 在线视频精品一区| 思思99思思久久最新精品| 亚洲综合色区在线播放2019| 污视频日本| 精品国产网| 欧美在线视频不卡| 国产一级在线播放| 国产AV毛片| 国产成人超碰无码| 本亚洲精品网站| 国产精品专区第一页在线观看| 亚洲一级无毛片无码在线免费视频| 思思热精品在线8| 亚洲日本中文字幕天堂网| 色婷婷国产精品视频| 日本成人精品视频| 天天综合色网| 亚洲成AV人手机在线观看网站| 香蕉综合在线视频91| 91青青草视频| 国产大片喷水在线在线视频| 亚洲综合国产一区二区三区| av一区二区人妻无码| 九九精品在线观看| 久久精品最新免费国产成人| 综合亚洲色图| 2020国产精品视频| 波多野结衣一区二区三区四区| 最新亚洲人成网站在线观看| 91精品国产情侣高潮露脸| 精品免费在线视频| 九九热在线视频| 国产无人区一区二区三区| 久久精品国产91久久综合麻豆自制| 在线免费亚洲无码视频| 亚洲欧美日韩动漫| 亚洲第七页| 日韩精品亚洲一区中文字幕| 久久精品人人做人人爽| 亚洲男人天堂久久| 这里只有精品在线| 国产成人av一区二区三区| 国产精品一区二区无码免费看片| 久热精品免费| 欲色天天综合网| 黄片在线永久| 乱系列中文字幕在线视频| 国产精品视频999| 国产激情无码一区二区APP | 精品伊人久久大香线蕉网站| 国产网友愉拍精品| www精品久久| 国产第八页| 国产欧美日韩综合在线第一| 国产毛片高清一级国语| 尤物国产在线| 午夜毛片免费看| 亚洲 成人国产| 亚洲男人的天堂在线观看| 成人国产小视频| 国产亚洲精品精品精品| 国产欧美日韩在线在线不卡视频| 午夜天堂视频| 亚洲天堂日韩av电影|