999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于聯合損失函數的語音增強深度學習算法

2023-07-10 13:21:42楊玲玲
電子產品世界 2023年6期

楊玲玲

關鍵詞:語音增強;聯合損失函數;聽覺;語音失真

DNN 根據獲取的語音特征對學習目標參數進行準確估計,目前已被廣泛應用于語音增強的研究中[1-2]。各類聲學特征也對語音增強方面存在差異。根據傳統語音特征進行分析并不能充分反饋語音內部信息,也不能獲得音幀和幀快速轉換的結果,因此該模型并不能準確預測時頻掩蔽結果,導致實際語音增強性能較差[3-4]。在背景噪聲濾除方面,時頻掩模值發揮著關鍵作用,以常規時頻掩模值進行處理時并未針對語音相位進行分析,語音相位譜則對改善語音可懂性具有關鍵作用[5]。

根據上述研究結果,本文優化了以語音增強實現的網絡模型與損失函數[6]。為確保代價函數能夠根據人耳感知特點開展分析過程,在上述基礎上設計了一種聯合損失函數。針對損失函數計算過程加入關于人耳聽覺的數據。

1 聯合損失函數

進行深度學習時,需要利用均方誤差損失函數(MSE)對神經網絡實施優化處理,而MSE 只對增強語音與純凈語音誤差進行簡單數據分析,并未考慮誤差正負因素的影響,也未加入人耳感知的信號。此時只以MSE 構建損失函數不能確保增強語音達到理想的算法處理效果[7]。

采用頻域加權分段的信噪分析方法可以對語音可懂度進行預測。以下為頻域加權分段信噪比表達式:

上述系數與時頻單元信噪比存在直接關聯,SNR(l,k) 表示第l 幀第k 個頻帶對應的信噪比數據,同時根據各時頻單元信噪比獲得相應的動態系數,處于較高信噪比條件下時,動態系數接近1。

在聯合代價函數中融合了人耳心理聲學感知的內容[8],以此訓練網絡來實現性能優化的目標,在確保提升話音質量的前提下使增強話音具備更高可懂度。

2基于聯合損失函數的語音增強算法

以聯合損失函數建立語音增強算法經多次重復訓練后,能夠從含噪語音幅度譜內獲得估計增強語音幅度譜。圖1給出了系統框圖。

時頻掩蔽因素是對神經網絡產生影響而引起語音增強性能差異的重要條件,采用傳統學習方法進行處理時只需對語音幅度進行分析。確定混合特征參數與學習目標后,再對神經網絡開展輸入、輸出訓練,同時利用最小均方誤差優化網絡算法。再以BP算法反向傳遞方式完成網絡參數的修正。從每次訓練的結果中選擇最優性能的網絡模型進行記錄后建立測試網絡模型。

本文選擇聯合損失函數對兩者差異進行評價,記錄最優性能的網絡模型參數。進行測試時,先將含噪語音幅度譜加入經過訓練的模型內,之后通過模型對增強語音幅度譜進行預測,最后以語音相位參數完成信號重構。

3實驗結果分析

3.1實驗數據的選取

以上語音數據都是由IEEE語音數據庫提供,之后從NOISEX-92噪聲庫內提取Pink、Factory與White三種噪聲信號,這些信號保持一致頻率。按照同樣信噪比把剩余50條純凈語音與噪聲后半段進行混合后建立測試集。

本文設定語音頻率為16 kHz,并以語音幅度譜作為輸入語音特征。各項網絡參數見表1。

3.2對比實驗分析

為了對本文建立的聯合損失函數與自注意力機制進行有效性驗證,構建得到表2的對比算法。

從表3~5中可以看到各噪聲條件下的PESQ值。其中,表3顯示,信噪比等于-5dB的情況下,根據算法1與2測試結果可以發現,在各類噪聲條件下,PESQ值提升均值達到0.13,同時STOI值提升了0.01的均值水平。比較算法2與3可以發現,PESQ值提升了0.07,STOI提升了0.01。

表4顯示,帶噪語音信噪比等于0 dB的條件下,根據算法1 與2 可以發現,各噪聲下的PESQ 值都提升了0.11,此時STOI 值提升0.02。比較算法2 與3 可以發現,PESQ 值提升0.09,STOI 提升0.01。

表5 顯示,帶噪語音信噪比等于5 dB 的情況下,比較算法1 與2 可以發現,各噪聲下的PESQ 值提升達到0.13 的均值,STOI 值提升了0.01。根據算法2 與3的比較結果可知,PESQ 值提升0.07,STOI 提升0.01。

綜合分析表3~5 得到下述結果:

1)通過對比算法1 與2 測試結果得到:當噪聲與信噪比都不同的情況下,以聯合損失函數實現的增強語音PESQ 值提高0.12,STOI 提高0.01。根據算法1 與2 可知,本文設計的混合損失函數實現增強語音質量的明顯優化。

2)對比算法2 與3 結果可以發現,為神經網絡模型設置注意力機制后,可以使增強語音PESQ 值提高0.08,STOI 提高0.01。同時根據算法2 與3 結果可以推斷,加入注意力機制后能夠促進背景噪音的進一步減弱,從而獲得更高可懂度。

3)比較算法1 與3 結果可知:以聯合損失函數對神經網絡開展訓練時,同時加入自注意力機制來分析理神經網絡特征的情況下能夠實現增強語音質量的顯著改善,此時PESQ 值提升0.2,STOI 提升0.03。

4 結束語

1)本文設計的混合損失函數實現增強語音質量的明顯優化。加入注意力機制后能夠促進背景噪音的進一步減弱,從而獲得更高可懂度。

2)綜合運用聯合損失函數并融合注意力機制后,可以使神經網絡獲得更優質量增強語音。利用注意力機制提取特征參數以及結合聯合損失函數進行神經網絡優化能夠促進增強語音質量的提升并達到更高的可懂度。

主站蜘蛛池模板: 国产电话自拍伊人| 亚洲日韩久久综合中文字幕| 黄色网站不卡无码| 青青草原国产精品啪啪视频| 18禁影院亚洲专区| 亚洲三级影院| 人妻丰满熟妇啪啪| 国产精品综合久久久 | 人妻91无码色偷偷色噜噜噜| 欧美精品亚洲精品日韩专| 欧美成人二区| 国产精品私拍99pans大尺度 | 在线高清亚洲精品二区| 女人爽到高潮免费视频大全| 手机精品视频在线观看免费| 中文字幕不卡免费高清视频| 午夜激情福利视频| 亚洲无线一二三四区男男| 91视频国产高清| 午夜视频在线观看免费网站 | 亚洲一区二区日韩欧美gif| 亚洲第一福利视频导航| 手机在线免费毛片| 国产人妖视频一区在线观看| vvvv98国产成人综合青青| 婷婷色一二三区波多野衣| 欧美三级视频在线播放| 亚洲综合一区国产精品| 91色在线视频| 亚洲综合极品香蕉久久网| 搞黄网站免费观看| 狠狠色狠狠色综合久久第一次| 色爽网免费视频| 亚洲精品男人天堂| 欧美不卡视频一区发布| 婷婷六月综合网| 亚洲福利一区二区三区| 妇女自拍偷自拍亚洲精品| 久久久久亚洲av成人网人人软件| 日韩一区二区在线电影| 午夜福利免费视频| 国产真实乱子伦精品视手机观看 | 青青青国产免费线在| 国产精品原创不卡在线| 91无码人妻精品一区| 青青操视频在线| 国产欧美日韩资源在线观看| 真实国产乱子伦高清| 国产另类乱子伦精品免费女| 亚洲精品福利网站| 91无码视频在线观看| 日韩一区二区三免费高清| 色国产视频| 亚洲精品第五页| 日本不卡在线播放| 亚洲中文无码h在线观看| 在线免费观看a视频| 福利在线不卡| 2020亚洲精品无码| 国产精品久线在线观看| 国产精品无码久久久久AV| 亚洲天堂视频在线播放| 国产精品福利尤物youwu | 国产在线观看一区精品| 青青青国产视频手机| 中文字幕免费视频| 亚洲天堂福利视频| 狠狠色丁香婷婷综合| 中国精品久久| a级毛片免费网站| 国产av无码日韩av无码网站| 自慰高潮喷白浆在线观看| 亚洲一区二区三区在线视频| 女同国产精品一区二区| 欧美日韩在线国产| 久久久久亚洲AV成人人电影软件| 免费一级成人毛片| 午夜视频日本| 国产欧美日韩91| 成人一级黄色毛片| jizz国产视频| 亚洲欧洲日产国产无码AV|