江金魚 何浩宇 黃磊 吳振鵬 董博聞
摘 要:采用模壓成型技術制備了太陽能電池陣用碳纖維增強環氧樹脂(CF/EP)復合板材,并通過光學顯微鏡、SEM及XRD對其宏觀、微觀結構進行表征。基于多物理場耦合計算軟件Comsol建立了CF/EP復合板的固體傳熱數值模型,借助曲線坐標系轉換算法揭示了熱量于復合板碳纖維中優先沿纖維軸向傳導,進而解釋了碳纖維對CF/EP復合板導熱性能提升的作用機制。并基于有限元計算軟件Abaqus,建立了CF/EP的軸向應力-應變模型。研究發現在CF/EP的彈性變形過程中,沿平行于應力方向排列的碳纖維承擔了絕大部分應力,且當應變率升至1%時,軸向碳纖維的內部應力最高可達54.1 MPa。
關鍵詞:太陽能電池陣;碳纖維增強環氧樹脂(CF/EP);曲線坐標;固體傳熱;彈性變形
中圖分類號:TB33
文獻標志碼:A
文章編號:1009-265X(2023)04-0111-08
收稿日期:2022-11-24
網絡出版日期:2023-02-23
基金項目:國家自然科學基金項目(52201038),湖北省重點實驗室開放課題(2021XY104),省級大學生創新創業項目(S202210920021)
作者簡介:江金魚(1983—),女,安徽池州人,副教授,碩士,主要從事非金屬材料的性能分析方面的研究。
碳纖維增強環氧樹脂(CF/EP)是以環氧樹脂(EP)作為基體相,以碳纖維(CF)作為增強相復合制備得到的復合材料,具有高比模量、高比強度、低熱膨脹系數及優良導電導熱性等優異性能,是太陽能電池陣、人造衛星、電子儀表等電子器件中不可缺少的結構材料[1-3]。然而,CF/EP中的碳纖維在導熱系數、彈性模量等方面均呈現明顯的各向異性,導致其排列方向將顯著影響CF/EP復合材料的導熱及力學性能[4-6]。目前,相關學者圍繞CF/EP復合材料的性能優化開展了大量基礎研究[7-8],分別探究了材料結構(例如增韌相濃度)、材料缺陷(例如孔隙、夾雜及裂紋)、纖維增強方式(例如纖維表面改性)及固化工藝對復合材料力學性能的影響,然而卻極少關注CF的各向異性對材料性能的影響機制。同時,受服役條件變化及環境因素影響,CF/EP復合材料的各向異性也將對其傳熱、承載等性能產生更為顯著的影響。因此,研究CF/EP復合材料中CF各向異性對材料性能的影響機制具有十分重要的意義。
鑒于此,本文擬針對實驗制備的CF/EP復合板材,基于數值仿真技術進行相關復合板材的熱傳導及靜力學分析,揭示CF在導熱系數及彈性模量方面的各向異性對復合板材相關性能的影響機制。
1 實 驗
1.1 實驗材料
本文涉及的實驗材料參數如表1所示。
1.2 實驗方法
1.2.1 碳纖維預處理
首先將待使用的T-300型號PAN基碳纖維置于體積比1∶1的乙醇/丙酮溶液中進行回流處理,靜置72 h以達到清潔碳纖維表面并脫除碳纖維表層上漿劑的效果;隨后將碳纖維取出并用丙酮洗凈置于干燥箱中干燥至恒重;進一步將干燥后的碳纖維置于50 ℃的去離子水中進行4 h的超聲處理;最后將處理好的碳纖維置于干燥箱中于60 ℃干燥至恒重。
1.2.2 CF/EP復合板材制備
本實驗采用正交刷搭配模壓成型技術制備CF/EP復合材料,用作太陽能電池陣(見圖1(a))的結構材料。將上一步中經過預處理的碳纖維平紋布剪裁成200 mm×150 mm尺寸并置于干燥箱中于60 ℃烘干并稱重。以碳纖維:環氧樹脂質量比3∶2的比例稱取環氧樹脂,并將樹脂通過丙酮稀釋至40%后向溶液中加入質量分數為12%的苯二胺,通過磁力攪拌器將溶液攪拌均勻。將以上配置好的樹脂膠溶液通過正交刷涂的方式均勻涂覆到碳纖維平紋布表面,并將平紋布疊層排布(共4層)。將鋪展好的碳纖維平紋布放置于平面模壓模具中在變溫條件下靜置:室溫(4~6 h)80 ℃(3 h)120 ℃(3 h)180 ℃(3 h),隨后于加熱器中自然冷卻至25 ℃。靜置固化過程中需每1.5 h進行一次加壓,將產品最終厚度控制為2 mm。
1.3 CF/EP宏觀、微觀結構表征
首先通過線切割對上一步中制備的CF/EP復合材料(見圖1(b))進行取樣,通過MEF-4A徠卡光學顯微鏡(Optical microscope, OM)對樣品進行宏觀結構表征;通過X射線衍射儀(XRD-6000)對CF/EP復合材料進行物相分析,掃描速率為2 (°)/min,掃描角度范圍設置為20~70 ℃,隨后通過MDI JADE 6晶體分析軟件對材料進行物相分析(見圖1(c));最后通過ZEISS場發射掃描電子顯微鏡對碳纖維進行二次電子成像。
2 結果及分析
2.1 CF/EP復合板各向異性傳熱分析
基于圖2中CF/EP的宏觀、微觀結構表征結果,通過三維建模軟件CREO構建如圖2所示的單層碳纖維對應的CF/EP復合材料三維幾何模型,并將其帶入到后續有限元計算軟件中,模型中碳纖維直徑為15 μm,長度約300 μm,CF/EP復合板尺寸為300 μm×300 μm×40 μm。同時,由于所構建的三維模型尺度遠小于實際CF/EP復合板尺寸,為減小模型邊界造成的計算誤差及與實際情況的偏差,需在傳熱計算前對模型邊界區域劃分無限元域,如圖2(a)所示。
各樣品的三維幾何模型如圖3所示,將圖3中的單層碳纖維及環氧樹脂基體模型合并后代入有限元計算軟件Comsol中,基于固體傳熱數值模型進行傳熱分析。各樣品傳熱分析模型相關物性參數如表2所示[10],由于碳纖維的導熱系數呈明顯的各向異性趨勢,即沿纖維軸向的傳熱系數遠高于徑向,因此其各向異性導熱系數k需用式(1)中的二階張量表示[9]:
k=kxxkxykxzkyxkyykyzkzxkzykzz=6000040004(1)
受碳纖維的各向異性導熱系數及其于空間中的不規則形狀影響如圖3(b)所示,碳纖維的軸向非單一水平或垂直方向,常規笛卡爾坐標系不再適用于此處CF/EP的傳熱分析,需首先基于擴散方法求解纖維的方向矢量場(見圖4(a))將笛卡爾坐標系轉化為能反映纖維軸向、徑向特征的曲面坐標系(見圖4(b))。CF/EP熱分析過程的邊界條件如圖5所示,首先于CF/EP上表面定義一直徑約30 μm、功率為1×105 W/m2的激光熱源(見圖5(a),模擬光線聚焦生熱),隨后于上下兩表面設置對流換熱區域以模擬空氣對流散熱(見圖5(b)),將圖5(c)中4個無限元域端面設置為恒溫293.15 K以降低由于邊界限制導致的誤差,最后將圖5(d)中無限元域表面設置為熱絕緣區域以簡化計算。熱傳導數值計算模型見式(2)和式(3)[11]:
Tt=a22Tx2+2Ty2+2Tz2(2)
a2=k/cρ(3)
式中:T為溫度,K;t為時間,s;k為導熱系數,W/(m·K);c為恒壓熱容,J/(kg·(K)-1);ρ為密度,kg/m3。
CF/EP復合板在局部光源加熱條件下的傳熱過程計算結果如圖6所示,由圖6(a)可見復合板上表面首先于光斑聚焦區域升溫(光斑直徑約為30 μm),上表面局部最高溫度高于380 K,而遠離光斑區域溫度接近室溫(293.15 K,初始值)。如圖6(b)所示
為碳纖維內部溫度場計算結果,可見熱量由表層光斑區域傳至碳纖維,進而沿碳纖維軸向優先傳遞,導致碳纖維軸向區域升溫效果強于徑向,即證明受碳纖維各向異性熱傳導系數影響,碳纖維中的熱量會優先沿軸向傳導。圖6(c)-(d)所示為CF/EP復合板中間橫截面溫度場場及全局溫度等值面計算結果,可見高溫區域(圖6(c)中黃色區域)主要沿著靠近光斑處碳纖維軸向分布。
碳纖維平紋布內部熱通量如圖7所示,從圖7中可明顯觀測到熱量優先沿著碳纖維的軸向方向傳遞,其徑向方向熱通量較低(與軸向熱通量數值相差較大,因此未顯示),這進一步證明了CF/EP復合板在局部受熱條件下熱量會優先沿碳纖維軸向方向傳遞至遠離熱源的低溫區域,即揭示了碳纖維對于CF/EP導熱性能提升方面的作用機制。
2.2 CF/EP復合板彈性變形分析
將2.1中建立的CF/EP復合板幾何模型進一步代入到有限元計算軟件Abaqus中進行靜力學分析。采用C3D10四面體網格對相關幾何模型進行網格劃分,如圖8為網格劃分結果,隨后于復合板一端面設置固定邊界以模擬實際拉伸實驗中的固定端,同時在與固定端面平行面設置模型邊長1%的軸向應變率以模擬CF/EP復合板的實際拉伸實驗。
如圖9所示分別為不同應變率下EP基體和CF增強相中的應力分布計算結果,可以發現隨著應變率增加,EP基體和CF增強相中均出現局部應力集中現象,但兩者應力最大值相差較大,EP基體由于彈性模量低(約1 GPa),其上應力峰值小于0.7 MPa。而對于彈性模量較高的CF(T-300的拉伸模量約為240 GPa,壓縮及剪切模量約8 GPa),在拉伸過程中的應力峰值高于50 MPa,且應力集中區域(即主要承擔應力的部分)主要位于軸向與拉伸方向平行的CF上,而軸向與拉伸方向垂直的CF增強相承擔的應力較低。由此可見,碳纖維的各相異性對CF/EP的導熱及力學性能均會造成顯著影響。
3 結 論
本文首先采用模壓成型技術制備了太陽能電池陣用碳纖維增強環氧樹脂CF/EP復合板材,并基于相關宏觀、微觀結構表征結果建立了可用于傳熱分析和靜力學分析的數值仿真模型,通過傳熱分析發現在局部加熱條件下CF/EP復合板材中的熱量會優先沿CF的軸向方向由高溫區域傳導至遠離熱源
的低溫區域,從而實現材料散熱并提升復合材料的導熱性能。進一步基于靜力學計算發現在復合板材彈性變形過程中,應力集中優先發生于與拉伸方向平行的CF中,且當應變率升至1%時,軸向碳纖維的內部應力最高可達54.1 MPa,由此證明CF能顯著提升復合板材的力學性能。綜上所述,本文揭示了碳纖維導熱系數及彈性模量的各向異性對CF/EP復合板材的影響機制。
參考文獻:
[1]胡丹麗,付大鵬,張越,等.配副材料對碳纖維增強環氧樹脂復合材料摩擦學性能的影響[J]. 潤滑與密封, 2022, 47(7): 97-103.
HU Danli, FU Dapeng, ZHANG Yue, et al. Effect of tribopair matrials on tribological properties of carbon fiber reinforced epoxy composites[J]. Lubrication Engineering, 2022, 47(7):97-103.
[2]劉熠晨,李穎杰,曹錦鋒,等.碳纖維織物增強環氧樹脂/石墨烯微片復合材料的導熱及摩擦性能[J].塑料,2022,51(4):52-55,59.
LIU Yichen,LI Yingjie, CAO Jinfeng, et al. Preparation and performance research of epoxy resin/graphene microsheet/carbon fiber cloth composite[J]. Plastics, 2022, 51(4): 52-55,59.
[3]李琴.廢舊再生碳纖維增強環氧樹脂復合材料力學性能及界面性能研究[J].塑料科技,2022,50(2):19-22.
LI Qin. Research on mechanical properties and interface properties of waste recycled carbon fiber reinforced epoxy resin composites[J]. Plastics Science and Technology, 2022, 50(2):19-22.
[4]SCHOLLE P, SINAPIUS M. Influence of the electrical anisotropy of unidirectional carbon fiber reinforced plastics on their self strain sensing properties[J]. Composites Part C: Open Access, 2022, 8: 100256.
[5]KHUDIAKOVA A, BERER M, NIEDERMAIR S, et al. Systematic analysis of the mechanical anisotropy of fibre-reinforced polymer specimens produced by laser sintering[J]. Additive Manufacturing, 2020, 36:101671.
[6]張杰,寧榮昌,李紅,等.碳纖維增強環氧樹脂基復合材料的性能研究[J].中國膠粘劑,2009,18(3):21-25.
ZHANG Jie, NING Rongchang, LI Hong, et al. Study on performance of composite material based on epoxy resin reinforced by carbon fiber[J]. China Adhesives, 2009, 18(3):21-25.
[7]羅銳祺,劉勇瓊,廖英強,等.碳纖維增強環氧樹脂復合材料力學性能影響因素的研究進展[J].材料導報,2021,35(S2):558-563.
LUO Ruiqi, LIU Yongqiong, LIAO Yinqiang, et al. Research progress on the influencing factors of mechanical properties of carbon fiber reinforced epoxy resin composites[J]. Materials Reports, 2021, 35(S2):558-563.
[8]黃遠,何芳,萬怡灶,等.碳纖維增強環氧樹脂基復合材料濕熱殘余應力的微Raman光譜測試表征[J].復合材料學報,2009,26(4):22-28.
HUANG Yuan, HE Fang, WAN Yizhao, et al. Testing and characterization of hygrothermal stresses in carbon-fibers reinforced epoxy composites using Raman spectroscopy[J]. Acta Materiae Compositae Sinica, 2009, 26(4):22-28.
[9]WANG G N, GAO M Y, YANG B, et al. The morphological effect of carbon fibers on the thermal conductive composites[J]. International Journal of Heat and Mass Transfer, 2020, 152:119477.
[10]MAYBOUDI L S. COMSOL Heat Transfer Models[M]. Dulles, Virginia: Mercury Learning and Information, 2020.
[11]LEBON G, MATHIEU P. A numerical calculation of nonlinear transient heat conduction in the fuel elements of a nuclear reactor[J]. International Journal of Heat and Mass Transfer, 1979, 22(8):1187-1198.
Preparation, anisotropic heat transfer and elastic deformation of CF/EP composite plates
JIANG Jinyu1a,1b, HE Haoyu1a, HUANG Lei1a, WU Zhenpeng1a, DONG Bowen1a,2
(1a.School of Mechanical and Electrical Engineering; 1b. Key Laboratory of Intelligent Transportation Technology and
Equipment of Hubei Province, Hubei Polytechnic University, Huangshi 435000, China; 2.School of Materials Science
and Engineering, Dalian University of Technology, Dalian 116000, China)
Abstract:
In this paper, carbon fiber reinforced epoxy (CF/EP) composite plates for solar arrays were prepared by molding technology, and the macrostructure and microstructure were characterized by optical and scanning electron microscopy. Based on the above characterization results, a three-dimensional geometric model of CF/EP composite plates was constructed and substituted into the subsequent heat transfer and mechanical numerical model for solution. Firstly, based on the multi-physics field coupling calculation software Comsol, the solid heat transfer numerical model of CF/EP composite plates was established to reveal the mechanism of the influence of carbon fibers′ anisotropy on the heat transfer behavior of the composite plates. Through the curve coordinate system conversion algorithm, the relevant geometric model was converted from the three-dimensional Cartesian coordinate system to a curve coordinate system which is more suitable to describe the axial/longitudinal properties of carbon fibers, and can simplify the calculation. The actual heat transfer behavior of CF/EP was simulated with the boundary conditions such as surficial heat source region and surface air convection area. A constant temperature area and a thermal insulation area were set to reduce the difficulty of the solution. The above mathematical models were further solved based on the finite element method. Based on the calculated temperature field diagram and the heat vector in CF/EP composite plates, it is found that heat was transmitted preferentially along the axial direction of carbon fibers during heating. However, the thermal conductivity of the fiber in the radial direction was low. The mechanism of carbon fibers in improving the thermal conductivity of CF/EP composite plates was thus revealed.
Further, the CF/EP three-dimensional geometric modelwas substituted into the mechanical numerical model, and the axial stress-strain model of CF/EP was established based on the finite element calculation software Abaqus. The research shows that, in the uniaxial tensile test along the fiber axis, the stress concentration occurs preferentially at the bonding interface between the carbon fiber and the resin matrix. The stress-strain relationship of CF/EP composite plates is calculated. It is found that during the initial elastic deformation of CF/EP, the carbon fibers arranged along the direction parallel to the stress bear most of the stress. When the strain rate rises to 1%, the internal stress of the axial carbon fibers can reach 54.1 MPa at most. It can be seen that the strengthening effect of carbon fiber reinforcement on the mechanical properties also presents obvious anisotropy.
In conclusion, based on the three-dimensional geometric model of the actual CF/EP composite plate, the anisotropic heat transfer and elastic deformation behavior model of CF/EP was constructed by combining the physical properties of carbon fibers and epoxy resins. The finite element method was used to solve the above models. The strengthening mechanism of carbon fibers on the heat transfer and mechanical properties of the epoxy resin matrix was revealed. This work can serve as a positive theoretical significance for the subsequent production, preparation and performance optimization of high-performance CF/EP composites and other carbon fiber-reinforced composites.
Keywords:
solar array; CF/EP; curve coordinate; solid heat transfer; elastic deformation