周瀅月,張 智,李 蕾,楊屏錦,王小銘,彭緒亞
底物對厭氧消化系統EPS產生及起泡的影響
周瀅月,張 智,李 蕾*,楊屏錦,王小銘,彭緒亞
(重慶大學,三峽庫區生態環境教育部重點實驗室,重慶 400045)
為明確底物成分對厭氧消化系統胞外聚合物(EPS)生成及起泡性能的影響,在批次實驗中引入高碳水、高蛋白和高油脂3種廚余垃圾,檢測了不同試驗組EPS的產生特性(濃度、組成、結構、官能團等),及各類EPS和污泥的起泡特性參數(粘度、表面張力和相對疏水性)和起泡潛能參數(起泡趨勢、泡沫穩定性、泡沫直徑和液膜厚度),并分析了EPS特性與污泥特性的相關性.結果表明,底物不同的試驗組產生了性質各異的EPS.底物組分越均衡越傾向于產氣利用,而高碳水及對照組因碳水化合物含量過多,EPS總濃度顯著高于其余實驗組.碳水化合物、蛋白質和油脂分別會通過改變中間代謝產物、影響微生物產酶情況和增殖情況而改變EPS形態及組分.EPS結構方面,碳水組和對照組在高碳水化合物條件下,產生的EPS類腐殖質更多.官能團方面,高碳水底物下烷基含量減少,高蛋白底物下會產生更多親水性含氮官能團,高油脂下羧酸含量增加,且3個試驗組的EPS相對疏水性較對照組均有不同程度降低.相關性分析發現,污泥起泡能力與EPS類指標的相關性明顯強于底物類別.污泥起泡趨勢(FP)與松散結合型EPS(<0.01,=0.979)和溶解型EPS(<0.05,=0.678)相關性最強;EPS粘度對FP與泡沫穩定性(FS)也均具有積極作用(<0.05),EPS表面張力增加有利于FS (<0.05).底物對起泡的作用方面,碳水化合物可能是通過提高EPS粘度和親水性,使污泥產生直徑更大、穩定性更強的泡沫.蛋白質利用酶作用EPS表面張力下降,由此產生直徑更小穩定性更差的泡沫,起泡現象得以緩解.油脂使松散結合型EPS減少(<0.05,=-0.649),同時分解產生的LCFA改變了緊密結合型EPS粘度(<0.01,=0.788)共同提高了FP.
厭氧消化;廚余垃圾;起泡;胞外聚合物
廚余垃圾(FW)是生活垃圾的重要組成部分,具有含水率高、焚燒效率低、有機物含量豐富等特點[1-2],厭氧消化(AD)技術可通過厭氧微生物將其降解并生成生物質沼氣能源,實現廚余垃圾減量化、資源化、無害化[3].目前AD已廣泛應用于我國廚余垃圾的處理[4].然而,AD系統中常發生起泡現象,在廚余垃圾AD系統中該現象尤為嚴重[5].早前研究發現工程中很多起泡案例都是底物結構變化造成的,其中大多情況源于高蛋白/高油脂底物的引入[6],也有少量因碳水底物引起起泡的案例[7].但底物成分與起泡的相關性難以界定,因為特定成分的引入并不一定會引起起泡.本團隊近期在廚余垃圾AD系統中發現不同擾動引起的起泡現象都與胞外聚合物(EPS)相關,即EPS總量與系統泡沫高度具有極顯著的相關性[5],可見EPS可能是決定起泡現象的關鍵因素.
EPS是復雜高分子量聚合物的混合物質,主要由胞外多糖(PS)、胞外蛋白(PN)、腐殖質(HU)和核酸(DNA)構成.其中,DNA是細胞裂解后胞內核酸釋放到胞外被EPS絮體捕捉吸附而來,其余三類組分則由微生物降解底物產生.如PS和PN分別是底物中碳水化合物和蛋白質被微生物轉化為高聚糖和結構功能性蛋白后分泌至胞外生成;HU是有機物水解產物.由此可見,EPS的產生與底物息息相關[8],底物組分的改變很可能會影響EPS的產生特性,進而引發消化液起泡性能的變化.目前已有研究探索過底物對EPS濃度與組成的影響,一方面,底物類型變化將影響微生物代謝活動,在不同碳源或氮源下產生的EPS濃度和組成均有所差異[9].另一方面,底物中某一組分波動也將影響EPS產生過程.例如,當底物中碳水化合物減少時,PS傾向于為形成新細胞供能而不是儲存在EPS中,導致EPS PS的減少[10];底物蛋白質過高時,微生物遭到迫脅,生產更多EPS以抵抗不利環境[11].然而,在改變起泡性能方面,EPS可能更多的是作為生物表面活性劑影響消化液起泡特征,因此其官能團、結構、流體特性以及自身起泡潛能也是消化液起泡性能評價中需關注的參數,但前期尚未有研究探索過底物對EPS上述特性及起泡潛能的影響,更未有研究基于此探索底物對消化液起泡性能的影響.
基于此,本文將碳水化合物、蛋白質和油脂引入模化垃圾中,模擬不同成分的廚余垃圾進行厭氧消化,分析底物差異對EPS濃度、組成、結構等特性的影響,并開展EPS特性參數與消化液起泡特性參數的相關性分析,以探究不同底物組成對EPS衍生規律及其起泡性能的影響.
接種污泥取自重慶市某農村戶用沼氣池,使用前首先過10目篩以去除其中的無機大顆粒物、秸稈等,并在37℃下預孵化2周,消耗殘留于其中的底物,待觀察到產氣停止后完成預孵化.隨后投入廚余垃圾,在2.5gVS/(L·d)的有機負荷(OLR)及30d的水力停留時間(HRT)下馴化60d得到接種污泥.此時接種物pH值為(7.49±0.2),含固率(TS)為(9.68±0.03)%,揮發性固體含量(VS)為(5.44±0.05)%,揮發性脂肪酸(VFAs)為(125±4.15)mg/L,總氨氮(TAN)為(2690.00±7.93)mg/L,總堿度(TA)為(13622.95±1662.45)mg/L.
結合文獻中廚余垃圾的組分報道[14],按照蔬菜:果皮:肉:米飯的濕重比例40%:20%:5%:25%來配制模化垃圾,用粉碎機粉碎并混合均勻后分裝于密封袋中于–20℃冰箱中冷凍保存,用前1d于4℃冰箱中解凍.為避免底物劇烈波動對反應器造成嚴重脅迫而導致其運行徹底失敗,結合前期研究中各組分對反應器造成抑制的閾值[15],按質量比將95%模化垃圾和5%淀粉、蛋白胨或油脂混合均勻后依次作為高碳水、高蛋白和高油脂的底物,各組底物理化指標見表1.

表1 消化底物理化指標
采用模化垃圾、高碳水、高蛋白質和高油脂廚余垃圾為底物進行批次厭氧消化,4個實驗組分別命名為對照組(MG)、碳水組(CG)、蛋白組(PG)和油脂組(LG),以探究不同組分對廚余垃圾厭氧消化系統中EPS衍生規律以及污泥起泡性能的影響.實驗選用1L血清瓶作為反應容器,按照0.5的食微比(S/I)向血清瓶中添加底物和接種污泥,再加入純水將TS調至15%,最后充入氮氣以保證血清瓶內的厭氧環境,并放置于(37±1)°C的恒溫水浴鍋中,反應器每日手動搖晃2次.在累積產甲烷量達到理論產甲烷量20%、40%、60%和80%時采樣測定VFAs和EPS組成成分.考慮到產氣量達到理論產氣的80%時反應器內的底物已被大量消化降解,產生并累積了豐富的EPS,而后若厭氧消化繼續進行,微生物將逐漸分解EPS作為營養來源,導致EPS損耗,不利于后續分析測試,因此此時停止實驗.實驗停止后立即進行污泥起泡潛能實驗,測定污泥粘度和表面張力,并將所剩污泥至于-4℃冷凍以備其余污泥特性指標的測定以及EPS的分類提取和其結構、官能團、起泡潛能等的測定.
日甲烷產量采用排氫氧化鈉法測定.pH值、TS、VS、TA、TAN采用標準方法測定,VFAs采用氣象色譜儀(7890A,Agilent,美國)測定,底物的脂肪和蛋白質含量分別采用索氏提取法和凱氏定氮法測定,碳水化合物用VS與前兩者差減得出.表面張力采用全自動表面張力儀(美國Kino,A101Plus)測定,粘度采用旋轉數字式粘度計(上海尼潤LDV-2+Pro)測定,測定時剪切速率為100s-1.EPS的提取采用熱提法[12],采取修正Lowry法測定EPS中的蛋白質和腐殖質[13],多糖和核酸分別采取苯酚-硫酸法和二苯胺法測定[14],相對疏水性采用DAX-8樹脂吸附法[15].EPS結構采用熒光分光光度計(日立F-7000)測定,官能團檢測利用傅里葉紅外變換光譜法(Nicolet iS50).起泡趨勢與泡沫穩定性的測定采用泡騰片法[16],泡沫直徑與液膜厚度采用體視顯微鏡(SZX16)進行觀測.
單個泡沫尺寸采用等容粒徑(ep)表征,泡沫群直徑采用索特爾平均直徑(32)表示,計算公式如下[17]:


式中:1和2分別代表氣泡的最小經線直徑和最大經線直徑,mm.
基礎數據采用Excel、Orign進行整理和繪圖,利用SPSS進行Duncan顯著性分析.采用OMNIC進行紅外光譜基線校正與官能團峰面積測量.各參數間交互作用采用R Studio進行Spearman相關性分析計算,值小于0.05時為顯著相關,小于0.01時為極顯著相關,利用Gephi繪制污泥與EPS參數間的網絡關系圖.
2.1.1 產氣情況 如圖1所示,MG組累積甲烷產率最低,達到理論產甲烷量80%所用的時間最長,其VFAs含量隨著AD進程逐漸減少.CG組中淀粉被水解酸化產生了更多VFAs,使碳水組在消化末期VFAs仍保持在(6243.75±375.69)mg/L,酸積累現象較明顯.PG組在AD前期VFAs濃度高達21078mg/L,這可能是由于模化垃圾C/N僅為12.50,低于AD適宜C/N范圍(20~30)[18],底物蛋白質的增加導致C/N進一步下降,PG組氨氮濃度達到(2848.34± 176.59)mg/L,造成系統氨抑制,加劇了VFAs積累.然而,后期PG組VFAs濃度急劇下降,產甲烷速率提高,僅19d便到達反應終點.LG組累積甲烷產率遠超其余組,這是由于油脂本身的甲烷產率遠高于碳水化合物和蛋白質[19].

圖1 厭氧消化過程累積甲烷產率、VFAs和TAN的變化情況
2.1.2 污泥特性 由表2可見,起泡趨勢和泡沫穩定性分別代表產生泡沫的難易程度和穩定程度,可表征污泥起泡潛能.起泡趨勢越高污泥能夠產生的泡沫體積越大;泡沫穩定性越強意味著泡沫越不易破裂消失,易積聚引起起泡事件.LG組起泡趨勢最高,表明油脂可以促使污泥產生更多泡沫,部分學者也觀察到了同樣的現象[5],但這也與部分研究指出的油脂可用于消泡截然相反[20].CG和MG組起泡趨勢次于LG組,但泡沫穩定性顯著高于其余組,指示高碳水化合物也可能在維持泡沫穩定中發揮重要作用.前期Stoyanova等[21]也發現甜菜厭氧消化系統中所產生的高粘性果膠是起泡的主要原因.意外的是,PG組的起泡趨勢和泡沫穩定都處于較低狀態,顯著小于其余組(<0.05).這與前期研究指出的蛋白質加劇了AD系統起泡現象存在矛盾[22].本研究與前期部分研究的不一致性可能恰恰說明底物本身并不是影響污泥起泡性能的關鍵.
泡沫直徑可代表泡沫的大小,液膜厚度表示相鄰氣泡間存在的流動液相的厚度,均可作為起泡潛能的參數指標.理論上泡沫直徑越大、液膜越厚,泡沫受到的擠壓力越大,穩定性越弱[23].由表2可以看出,CG組泡沫直徑顯著大于其余組(<0.05),液膜厚度最小,表明碳水化合物能夠改變泡沫結構,產生更穩定的泡沫.PG組泡沫液膜最厚,所產生的擠壓力使泡沫更容易破裂.這些現象與起泡趨勢和泡沫穩定性完全一致.表面張力和污泥粘度常用于表征污泥的表面特性和流動特性,兩者均是起泡特征最常見的表征指標.從表2可知,各組表面張力無顯著性差異,說明底物的小幅差異可能不足以改變污泥的表面特性.但PG組和MG組的污泥粘度顯著高于另外兩組,這與PG組最小的起泡趨勢和泡沫穩定性存在矛盾,指示底物對起泡性能的影響可能不是通過簡單的改變表面或流動特性造成的.鑒于此,本研究進一步解析底物成分對EPS產生特性的影響,以期明確底物變化引發起泡現象改變的作用機制.

表2 污泥起泡特征與起泡潛能參數
注:采用Duncan多重比較分析,同列標有小寫字母表示組間存在顯著性差異(<0.05,=3)
2.2.1 EPS濃度及組分 由圖2可見, EPS整體含量呈上升趨勢,這與前期研究指出的微生物在營養物質充足的環境下會快速生長繁殖代謝,不斷分泌代謝產物至胞外,使EPS濃度不斷增加是一致的[8].盡管整體變化趨勢相同,在不同底物下EPS總濃度顯現出明顯的差距.具體而言,MG組EPS總含量一直保持在最高水平,CG和PG組次之,LG組EPS總含量最低.前期不少研究指出蛋白質和油脂引入會引起氨氮和長鏈脂肪酸(LCFA)脅迫,惡化微生物生境,使EPS含量增加[5].但本研究結果并不支持這一論斷,可能是因為盡管添加了蛋白質或油脂,但各組S/I僅維持在0.5,由此隨底物引入的抑制物有限,使得各類抑制的程度都不高,甚至是可逆的.以PG組為例,前期張虹等[24]就在類似的氨氮濃度(3000mg/L)下發現氨脅迫可通過長期運行而緩解.相比之下,碳水化合物含量更高、底物成分更單一的MG和CG組EPS濃度更高,這也許意味著更均衡的底物成分傾向于產氣利用,而底物的不均衡會造成微生物代謝物即EPS的增長.各組產氣規律也支持這一推論.

圖2 厭氧消化過程中不同試驗組的EPS的變化情況
從不同EPS形態上分析,溶解型EPS(S-EPS)濃度在消化過程中一直維持在最高水平且呈不斷上升趨勢,占比最高可達(66.81±4.14)%,松散結合型EPS(LB-EPS)含量最低,緊密結合型EPS(TB-EPS)濃度處于兩者之間,且LB-EPS和TB-EPS的濃度呈上下波動狀態.各形態EPS的差異可能與其生成先后順序相關.微生物分泌聚合物至胞外首先生成與細胞緊密黏附的TB-EPS,TB-EPS被新產生的聚合物擠至外層并逐漸演化為結構松散的LB-EPS[25], LB-EPS在溶解、水解或剪切力作用下生成S- EPS[26].S-EPS的逐漸累積致使其濃度遠高于結合型EPS(B-EPS),而B-EPS不斷地被分解轉化則導致了其濃度的上下起伏狀態.以反應末期的樣品作為代表,比較不同底物中的EPS形態差異可知,MG組S-EPS與TB-EPS濃度高于其余組,LB-EPS濃度低于PG和CG組,這表明相較于CG和PG組,MG組LB-EPS能更快向S-EPS轉化.PG組TB-EPS濃度最低,LB-EPS濃度卻最高,意味著蛋白質可以促進TB-EPS向LB-EPS的演化.LG組各形態EPS濃度均維持在低水平,這與其總EPS的規律相一致.
從組成成分上看,PS總含量在各組的產氣過程中總體呈下降趨勢,這是由于碳水化合物能夠被微生物優先降解并生成胞外PS,當微生物快速增長時,PS又將被分解利用為微生物提供能量.PN、HU和DNA組分含量則在EPS中不斷增加,在營養物質豐富的條件下微生物不會將功能性與結構性蛋白作為營養物質消化分解,因此PN在EPS中逐漸累積.HU因具有難降解性進而在EPS中不斷的堆積.AD系統中細胞不斷死亡裂解并將胞內物質釋放至胞外,因此EPS中DNA含量也呈逐漸上升趨勢.同樣以末期樣品為代表比較不同底物對EPS組分的影響可知,MG和CG組PN含量較PG組有小幅度提高,這可能與PG組含氮量高導致其C/N更低有關.前期諸多研究也證實了在高氮條件下EPS PN含量更低[27].還有學者指出這是因為高C/N下微生物對碳源的利用和同化大于氮源,而低C/N下微生物傾向于利用多余的氮合成蛋白質和核酸等物質,而非儲存于EPS中[10]. PG組PS總量明顯低于其余組,這是由于氮源豐富的環境下微生物的產酶能力提高[17,28],其中的多糖裂解酶在細胞裂解時被釋放到胞外促進PS分解[29].LG組PN含量為4組內最低,PS和DNA含量卻為4組中最高.DNA含量的上升可能是由于微生物總量增加,有理論認為當微生物快速增殖時EPS的產量會減少[26],因此高油脂底物可能促進了微生物增長繁殖,從而使EPS產量下降.同時,PS的代謝過程受到抑制導致系統中PS的累積;微生物增長繁殖加快氮源被用于合成新細胞導致EPS中PN減少.

圖3 厭氧消化末期EPS三維熒光光譜圖
進一步分析各形態EPS組分變化可知,厭氧消化前期PS在S-EPS中占比最高可達(50.02± 4.61)%,LB-EPS和TB-EPS中PS占比遠低于S-EPS,這是碳水化合物優先降解,生成更多溶解性產物的結果,但當微生物快速繁殖時,PS又將作為能源物質被分解利用,導致PS在不同形態EPS中含量均出現波動或下降. DNA也在S-EPS中有最高含量,可達(188.44±13.22)mg/L,而TB-EPS中低至(38.89± 6.03)mg/L,這可能是因為細胞裂解釋放的胞內DNA等物質將溶于S-EPS,而TB-EPS多為完整或有活性的細胞.盡管隨著消化的進行,S-EPS PS濃度出現下降,但PN、HU和DNA的累積使S-EPS整體仍呈上升趨勢,B-EPS的濃度波動主要歸因于其中PN和PS含量的變化.具體看不同組間的差異可知,CG組TB-EPS和S-EPS中PS含量均低于MG組,而LB-EPS PS卻高于CG組,這表明MG組LB-EPS PS能更快的轉化為S-EPS.Ye等[30]分別以乙酸、葡萄糖和淀粉作為底物探究不同碳水化合物對EPS的影響,發現乙酸可直接進入三羧酸循環,而淀粉和葡萄糖則需要先降解為丙酮酸,氧化形成乙酰輔酶A才能進入三羧酸循環.因此底物中淀粉的增加產生了更多中間代謝產物,直接導致LB-EPS中PS的累積.PG組S-EPS和LB-EPS的PN/PS分別為(2.03± 0.05)和(2.45±0.11),MG組分別為(1.52±0.03)和(1.14±0.06),與之相反的是PG組TB-EPS的PN/PS僅為(0.90±0.03),而MG組則高達(1.63±0.17). TB-EPS PN快速轉化為LB-EPS和S-EPS的PN ,導致PG組S-EPS和LB-EPS的PN含量增加, TB-EPS PN含量驟減,這同樣是由于PG組酶含量更豐富,加速了聚合物的裂解.LG組各形態EPS的PN/PS均為最低,這也再次證明油脂導致PN分泌減少,與總EPS規律一致.
2.2.2 EPS的結構特征 EPS中含有大量的熒光特性物質,圖3展示了在厭氧消化反應產氣達到理論產甲烷量80%時采樣測得的各形態EPS三維熒光光譜圖.Peak A為產甲烷菌特有的輔酶F420的熒光峰x/m=(420nm/475nm),可用于衡量污泥產甲烷活性[31],各組都有著明顯的輔酶F420熒光峰,說明在甲烷實際產量達到理論產量80%時污泥中的產甲烷菌仍有著較強的活性.TB-EPS輔酶F420熒光峰最弱,表明在TB-EPS中產甲烷菌的活性弱于S-EPS和LB-EPS,這可能是由于TB-EPS的主要成分是微生物直接分泌的高聚合物,需進一步分解和乙酸化才能被產甲烷菌利用[32],因此其產甲烷活性低.Peak C表示類色氨酸(x/m=275~280nm/335~345nm)[33],該峰熒光強度在S-EPS中最弱,目前已有研究也證實了類色氨酸在B-EPS中的累積具有明顯優勢[34]. Peak B為類腐殖質熒光(x/m=220~400nm/380~ 500nm)[35],該峰在MG組與CG組中的熒光強度明顯高于PG組與LG組.關于腐殖質的形成,目前主流觀點認為木質素和氨基酸是構成腐殖質的核心[36],在PG和LG組中,微生物利用蛋白質合成更多結構與功能性蛋白,因此所生成的類腐殖質更少.
2.2.3 EPS的官能團和疏水性 EPS官能團的變化情況可進一步明確不同底物和不同形態下EPS組成結構的差異.EPS官能團分布情況見圖4,對各官能團峰面積進行測量,結果如表3所示.
EPS中-OH與N-H峰面積最大,其中-OH主要來自PS,N-H主要為PN的官能團.C=C的峰面積僅次于-OH與N-H,有研究認為C=C主要來源于PN[37].C-O-C主要對應PS與DNA,C-H主要對應PS.進一步分析各形態EPS官能團分布差異可知,S-EPS官能團種類更加多樣,這可能是由于VFAs等物質多以溶解態形式存在,使得S-EPS含有大量烷基.TB-EPS疏水性官能團的峰面積大于S-EPS和LB-EPS,表明TB-EPS擁有更多疏水性官能團,親/疏水官能團在各形態EPS中分布存在差異性.

圖4 厭氧消化末期EPS紅外光譜圖
特征峰A和B對應的氮氫鍵(N-H),特征峰A和D對應的羥基(-OH),特征峰C和L對應碳X氫鍵(C-H),特征峰E和F對應的碳碳雙鍵(C=C),特征峰G和K對應的碳氮鍵(C-N),H特征峰對應的烷基(-CH2、-CH3),I特征峰對應羧基(COO-),J峰對應醚鍵(C-O-C),M特征峰對應(-NH2)
從不同底物角度分析,圖4可觀察到MG與CG組的特征峰數量低于PG和LG組,CG組烷基數量最低,且不含有-NH2,表明在高碳水底物中EPS的組成結構更加單一.MG組-OH與N-H峰面積在LB-EPS中高于其余組,在TB-EPS中最低,意味著底物能夠影響官能團在各形態中的分布情況.LG組中COO-和C=C特征峰總面積遠高于其余組,并主要集中在B-EPS,大量COO-和C=C可能源于底物中油脂分解產生的LCFA.PG組S-EPS和LB-EPS在880cm-1和705cm-1出現了C-N和-NH2的振動特征峰,在高蛋白底物下EPS具有更多含氮官能團且集中分布在S-EPS和LB-EPS,這與PG組不同形態EPS PN分布情況相符.

表3 EPS官能團峰面積

表4 胞外聚合物起泡特征與起泡潛能參數
注:采用Duncan多重比較分析,同列標有小寫字母表示組間存在顯著性差異(<0.05,=3).
相對疏水性為EPS的物理特性,也可表征EPS的起泡特征,受到親/疏水性官能團調控.不難觀察到在EPS中親水性官能團占據主導地位,這與目前主流觀點認為的EPS具有高度親水性一致[38].同時諸多研究也證實TB-EPS疏水性最強[39],這與其疏水性官能團含量最高相對應.PS中-OH與PN的-NH對EPS的親水性貢獻最大,部分研究認為PN是EPS中的疏水性物質,PS為親水性物質[40],然而本研究認為PS和PN整體親/疏水性受到官能團影響.結合表4各形態EPS相對疏水性可知,EPS不同形態間相對疏水差異并不顯著.進一步分析不同組變化情況可以發現,CG、PG和LG相對疏水性較MG均有不同程度的降低,CG組各形態EPS相對疏水性均為最低,高碳水底物下強疏水性質的烷基大大減少,降低了EPS相對疏水性.PG和LG組含有更多親水性的N-H、C-N和-NH2,LG組中親水性COO-含量最高,可能是相對疏水性降低的重要原因.底物結構可以改變微生物代謝產物的化學結構,EPS官能團的含量和類型發生變化,進而對EPS相對疏水性產生重要影響.
2.2.4 EPS的起泡特征及起泡潛能參數 提取消化末期不同反應器中各類EPS,測定其起泡特征及起泡潛能相關表征參數(表4),發現不同試驗組,EPS粘度和表面張力均表現出顯著的差異性(<0.05),表明EPS粘度和表面張力對于EPS的變化非常敏感.各組中S-EPS粘度均為最高,TB-EPS粘度處于最低水平.S-EPS是溶解性代謝產物(SMP)中基質代謝產物(UAP)部分[41],目前SMP對粘度的積極作用已受到普遍認可[42].進一步分析不同組差異可知,各形態EPS粘度中CG組均為4組中的最高值,PG組均為最低值,同時PG組各形態EPS表面張力也為最低.微生物分泌的糖水解酶可以降低EPS粘度[43],高蛋白底物下更高的酶含量促使EPS粘度下降.此外有學者認為結合酶與解聚酶等同樣可以改變EPS組成結構[26,29],影響EPS粘度和表面張力.因此蛋白質可通過影響微生物產酶以改變EPS的界面和流體特性.
從表4可知,不同形態EPS起泡趨勢的差異沒有明顯規律,表明EPS形態并非影響起泡趨勢的原因.泡沫穩定性表現出顯著的差異性(<0.05),S-EPS和LB-EPS泡沫穩定性較差,而TB-EPS的泡沫具有較強的泡沫穩定性,這可能是因為TB-EPS是由微生物直接分泌的高聚合物,較其他形態EPS具有更高的分子量,諸多研究均證實更高的分子量有助于泡沫的穩定性[44].對比不同組起泡趨勢可觀察到,CG和LG組的起泡趨勢較MG均有不同程度的提高,碳水化合物增加有助于泡沫的產生,油脂產生的LCFA主要分布在B-EPS中,對B-EPS起泡趨勢的提高作用更明顯.PG組S-EPS和LB-EPS起泡趨勢為4組最低,TB-EPS卻為最高,表明蛋白質對各形態EPS起泡趨勢的作用存在差異性.對比泡沫穩定性可知,CG組TB-EPS泡沫穩定性高于其余4組(<0.05),碳水化合物對提高TB-EPS泡沫穩定性效果明顯.蛋白質和油脂對泡沫穩定性的影響與起泡趨勢相似,蛋白質不利于S-EPS和LB-EPS泡沫的穩定,但在TB-EPS中具有積極作用;油脂能夠提高B-EPS的泡沫穩定性.EPS的泡沫直徑與液膜厚度均無明顯差異性,EPS泡沫結構不受底物和形態影 響.
2.3.1 EPS特性與污泥起泡性能的相關性 底物與EPS組成成分、EPS及污泥的起泡特征參數、起泡潛能參數的相關性如圖5所示.從整體上看,污泥起泡趨勢與LB-EPS起泡趨勢正相關性最強(<0.01,=0.979),其次為S-EPS起泡趨勢(<0.05,=0.678),污泥泡沫穩定性與S-EPS泡沫穩定性具有極顯著正相關關系(<0.01,=0.942),表明S-EPS和LB-EPS對污泥起泡現象起主導作用.進一步分析可知,B-EPS粘度對污泥起泡趨勢具有積極作用, (LB-EPS<0.05,=0.600)、(TB-EPS<0.01,= 0.891),S-EPS粘度(<0.05,=0.696)和LB-EPS粘度(<0.01,=0.732)能提高污泥泡沫穩定性.EPS表面張力能提高污泥泡沫穩定性(S-EPS<0.05,= 0.651)、(LB-EPS<0.01,=0.711)、(TB-EPS<0.01,=0.915),而S-EPS相對疏水性升高不利于泡沫穩定性(<0.01,=-0.714).此外,LB-EPS濃度越高對污泥起泡趨勢的抑制作用越明顯(<0.01,=-0.734).EPS對污泥起泡潛能參數影響更加明確,其中EPS粘度、表面張力及LB-EPS濃度作用明顯.
S,LB,TB分別代表EPS的形態.Carbonhydrates代表碳水化合物,Protein代表蛋白質,Lipid代表油脂.FP為起泡趨勢,FS為泡沫穩定性,FD代表泡沫直徑,FT代表液膜厚度.粘度表示為Vi,表面張力表示為Su,相對疏水性表示為Hy.淺灰色曲線代表參數之間為正相關關系,黑色曲線代表參數間為負相關關系.線條粗細表征兩參數間的相關性強弱
從泡沫結構分析,EPS粘度與污泥泡沫直徑呈極顯著正相關關系(S-EPS<0.01,=0.963)、(LB- EPS<0.01,=0.942)、(TB-EPS<0.01,=0.797),與液膜厚度存在負相關性(S-EPS<0.05,=-0.657)、(LB-EPS<0.01,=-0.836).EPS表面張力與污泥泡沫液膜厚度呈極顯著負相關關系(S-EPS<0.01,=-0.889)、(LB-EPS<0.01,=-0.940)、(TB-EPS<0.01,=-0.998).S-EPS相對疏水性與污泥泡沫直徑具有極顯著正相關關系(<0.01,=-0.781).由此可見,EPS表面張力越高,S-EPS相對疏水性越低,越能夠產生直徑更大,液膜更薄的泡沫,進而提高泡沫穩定性,加劇污泥起泡現象.
2.3.2 底物對污泥起泡性能的影響機制解析 碳水化合物對EPS粘度具有明顯提高作用(S-EPS<0.01,=0.718)、(TB-EPS<0.05,=0.621),油脂能提高TB-EPS粘度(<0.01,=0.788).EPS表面張力僅受蛋白質影響,兩者呈極顯著負相關關系(S-EPS<0.01,=-0.999)、(LB-EPS<0.05,=-0.993)、(TB-EPS<0.01,=-0.848).S-EPS相對疏水性在碳水化合物增加時明顯降低(<0.05,=-0.631). LB- EPS濃度僅與油脂具有顯著負相關關系(<0.05,=-0.649).當碳水化合物增加時,S-EPS粘度提高,促使污泥泡沫直徑增大,液膜厚度降低,提高了污泥泡沫穩定性,同時TB-EPS粘度增加使污泥起泡趨勢升高.S-EPS疏水官能團-CH2和-CH3減少,相對疏水性降低,同樣具有增加泡沫直徑、提高泡沫穩定性的作用.因此高碳水底物通過改變EPS粘度和S-EPS相對疏水性,影響了污泥泡沫結構,對提高污泥泡沫穩定性具有明顯作用.當蛋白質含量增加時,微生物產酶發生變化從而對EPS特性造成影響,LB-EPS粘度下降對起泡趨勢產生負面作用,EPS表面張力下降使液膜厚度增加,泡沫所受擠壓力增強,導致其穩定性更差.當油脂增加時,LB-EPS濃度下降,大量分布的C=C提高了TB-PS粘度,對污泥起泡趨勢產生了正面作用,因此油脂主要通過調節B- EPS對污泥起泡現象產生影響.
3.1 底物對厭氧消化系統EPS濃度、組分、形態、結構、官能團等均具有直接影響.底物結構均衡時EPS產量更少.碳水化合物影響中間代謝產物從而導致各形態EPS濃度變化;蛋白質主要通過影響微生物的產酶情況,從而改變EPS的組成結構,油脂能夠加快微生物增殖,降低EPS PN/PS.
3.2 EPS參數不僅對底物變化敏感,還與污泥起泡潛能參數間有明確的相關性.S-EPS和LB-EPS對污泥起泡趨勢和泡沫穩定性起到主導作用.EPS粘度可以提高污泥起泡趨勢和泡沫穩定性(<0.01),EPS表面張力有助于污泥泡沫的穩定(<0.01),S-EPS相對疏水性不利于泡沫穩定性(<0.01,=-0.714). LB- EPS濃度越高對污泥起泡趨勢抑制作用越明顯(<0.01,=-0.734).
3.3 底物、EPS特性及污泥起泡性能的交互分析表明,碳水組降低S-EPS粘度(<0.01,=0.718)和相對疏水性(<0.05,=-0.631),使EPS結構松散,有助于產生直徑更大的穩定泡沫.蛋白質通過影響微生物產酶降低了LB-EPS粘度、抑制污泥起泡現象,還通過降低EPS表面張力使污泥泡沫液膜增厚,泡沫穩定性變差.油脂主要通過影響B-EPS以提高污泥的起泡趨勢.
[1] 李 蕾,黃 茜,楊屏錦,等.有機垃圾厭氧消化泡沫產生機理及控制方法[J]. 中國環境科學, 2020,8(40):3475-3485.Li L, Huang Q, Yang P J, et al. Occurrence mechanisms and control methods of foaming in anaerobic digesters treating organic wastes [J]. China Environmental Sciences, 2020,40(8):3475-3485.
[2] 靳晨曦,孫士強,盛維杰,等.中國廚余垃圾處理技術及資源化方案選擇[J]. 中國環境科學, 2022,42(3):1240-1251.Jin C X, Sun S Q, Sheng W J, et al. Food waste treatment technology and resource solution options in China [J]. China Environmental Sciences, 2022,42(3):1240-1251.
[3] 張星星,焦彭博,楊匯瑩,等.剩余污泥與餐廚垃圾協同厭氧消化研究進展[J]. 中國環境科學, 2022,42(5):2179-2194.Zhang X X, Jio P B, Yang H Y, et al. Recent advances in anaerobic co-digestion of excess sludge and food waste [J]. China Environmental Sciences, 2022,42(5):2179-2194.
[4] Meng Y, Li S, Yuan H, et al. Effect of lipase addition on hydrolysis and biomethane production of Chinese food waste [J]. Bioresource Technology, 2015,179:452-459.
[5] Yang P, Peng Y, Liu H, et al. Multi-scale analysis of the foaming mechanism in anaerobic digestion of food waste: From physicochemical parameter, microbial community to metabolite response [J]. Water Research, 2022,218:118482.
[6] Lienen T, Kleyb?cker A, Verstraete W, et al. Foam formation in a downstream digester of a cascade running full-scale biogas plant: Influence of fat, oil and grease addition and abundance of the filamentous bacterium[J]. Bioresource Technology, 2014,153:1-7.
[7] Moeller L, Lehnig M, Schenk J, et al. Foam formation in biogas plants caused by anaerobic digestion of sugar beet [J]. Bioresource Technology, 2015,178:270-277.
[8] Nouha K, Kumar R S, Balasubramanian S, et al. Critical review of EPS production, synthesis and composition for sludge flocculation [J]. Journal of Environmental Sciences, 2018,66:225-245.
[9] Yuksekdag Z N, Aslim B. Influence of different carbon sources on exopolysaccharide production bysp.(B3, G12)(W22) [J]. Brazilian Archives of Biology and Technology, 2008,51(3):581-585.
[10] Arshad Z, Maqbool T, Shin K H, et al. Using stable isotope probing and fluorescence spectroscopy to examine the roles of substrate and soluble microbial products in extracellular polymeric substance formation in activated sludge process [J]. Science of the Total Environment, 2021,788:147875.
[11] Le C, Stuckey D C. Influence of Feed Composition on the monomeric structure of free bacterial extracellular polysaccharides in anaerobic digestion [J]. Environmental Science & Technology, 2017,51(12): 7009-7017.
[12] Chen X, Zhou W, Li G, et al. Anaerobic biodegradation of soybean-process wastewater: Operation strategy and sludge bed characteristics of a high-performance Spiral Symmetric Stream Anaerobic Bioreactor [J]. Water Research, 2021,197:117095.
[13] Frolund B, Griebe T, Nielsen P H. Enzymatic activity in the activated-sludge floc matrix [J]. Applied Microbiology and Biotechnology, 1995, 43(4):755-761.
[14] Boleij M, Pabst M, Neu T R, et al. Identification of glycoproteins isolated from extracellular polymeric substances of full-scale anammox granular sludge [J]. Environmental Science & Technology, 2018,52(22): 13127-13135.
[15] Cao F, Bourven I, Lens P N L, et al. Hydrophobic features of EPS extracted from anaerobic granular sludge: an investigation based on DAX-8resin fractionation and size exclusion chromatography [J]. Applied Microbiology and Biotechnology, 2017,101(8):3427-3438.
[16] 李 蕾,張 智,黃 茜,等.廚余垃圾厭氧消化反應器起泡的驅動因子[J]. 中國環境科學,2023,43(3):1244-1255.Li L, Zhang Z, Huang Q, et al. Driving factors of foaming in anaerobic digestion of food waste [J]. China Environmental Sciences, 2023,43(3): 1244-1255.
[17] Grau R A, Heiskanen K. Visual technique for measuring bubble size in flotation machines [J]. Minerals Engineering, 2002,15(7):507-513.
[18] 張靖雪,李盼盼,于 洋,等.基于固液分離預處理的餐廚垃圾厭氧發酵[J]. 中國環境科學, 2022,42(3):1252-1258.Zhang Q X, Li P P, Yu Y, et al. Study on anaerobic digestion of kitchen waste based on solid-liquid separation pretreatment [J]. China Environmental Sciences, 2022,42(3):1252-1258.
[19] Wang S, Yang Q Q, Shi W X, et al. Performance and evaluation of aerobic granular sludge in oily wastewater treatment [J]. Desalination and Water Treatment, 2017,72:112-118.
[20] Kougias P G, Boe K, Einarsdottir E S, et al. Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents [J]. Water Research, 2015,79:119-127.
[21] Stoyanova E, Forsthuber B, Pohn S, et al. Reducing the risk of foaming and decreasing viscosity by two-stage anaerobic digestion of sugar beet pressed pulp [J]. Biodegradation, 2014,25(2):277-289.
[22] He Q, Li L, Zhao X, et al. Investigation of foaming causes in three mesophilic food waste digesters: reactor performance and microbial analysis [J]. Scientific Reports, 2017,7:13701.
[23] 蘇 燕,趙勇勝,李璐璐,等.多孔介質中泡沫的遷移特性和影響因素研究[J]. 中國環境科學, 2015,35(3):817-824.Su Y, Zhao Y S, Li L L, et al. Study on transport characteristics of foams and affecting factors in porous media [J]. China Environmental Sciences, 2015,35(3):817-824.
[24] 張 虹,李 蕾,彭 韻,等.氨氮對餐廚垃圾厭氧消化性能及微生物群落的影響[J]. 中國環境科學, 2020,40(8):3465-3474.Zhang H, Li L, Peng Y, et al. Effects of ammonia on anaerobic digestion of food waste: Process performance and microbial community [J]. China Environmental Sciences, 2020,40(8):3465- 3474.
[25] 胡小兵,葉 星,周元凱,等.胞外聚合物對活性污泥吸附生活污水碳源的影響[J]. 環境科學學報, 2016,36(11):4062-4069.Hu X B, Ye X, Zhou Y K, et al. The effect of extracellular polymeric substances on adsorption of the carbon source in sewage by activated sludge [J]. Acta Scientiae Circumstantiae, 2016,36(11):4062-4069.
[26] Laspidou C S, Rittmann B E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass [J]. Water research (Oxford), 2002,36(11):2711-2720.
[27] Pt H, L N, C V. The effect of nutrients on extracellular polymeric substance production and its influence on sludge properties [J]. Water SA, 2022,29(4):437-442.
[28] Hargreaves S K, Hofmockel K S. Physiological shifts in the microbial community drive changes in enzyme activity in a perennial agroecosystem [J]. Biogeochemistry, 2014,117(1):67-79.
[29] Li W, Liao X, Guo J, et al. New insights into filamentous sludge bulking: The potential role of extracellular polymeric substances in sludge bulking in the activated sludge process [J]. Chemosphere, 2020,248: 126012.
[30] Ye F, Peng G, Li Y. Influences of influent carbon source on extracellular polymeric substances (EPS) and physicochemical properties of activated sludge [J]. Chemosphere, 2011,84(9):1250-1255.
[31] Deng Y, Li W, Ruan W, et al. Applying EEM- PARAFAC analysis with quantitative real-time PCR to monitor methanogenic activity of high- solid anaerobic digestion of rice straw [J]. Frontiers in Microbiology, 2021,12.
[32] Wei D, Yan T, Zhang K, et al. Qualitative and quantitative analysis of extracellular polymeric substances in partial nitrification and full nitrification reactors [J]. Bioresource Technology, 2017,240:171-176.
[33] Zhang Y, Liu Y, Zhou A, et al. Identification of groundwater pollution from livestock farming using fluorescence spectroscopy coupled with multivariate statistical methods [J]. Water Research, 2021,206:117754.
[34] Liu S, Lin C, Diao X, et al. Interactions between tetracycline and extracellular polymeric substances in anammox granular sludge [J]. Bioresource Technology, 2019,293:122069.
[35] Zhu L, Zhou J, Lv M, et al. Specific component comparison of extracellular polymeric substances (EPS) in flocs and granular sludge using EEM and SDS-PAGE [J]. Chemosphere, 2015,121:26-32.
[36] Diehl B G, Watts H D, Kubicki J D, et al. Correction to: Towards lignin-protein crosslinking: amino acid adducts of a lignin model quinone methide [J]. Cellulose, 2019,26(11):7025.
[37] Zhang W, Dai X, Dong B, et al. New insights into the effect of sludge proteins on the hydrophilic/hydrophobic properties that improve sludge dewaterability during anaerobic digestion [J]. Water Research, 2020, 173:115503.
[38] Cao B, Zhang T, Zhang W, et al. Enhanced technology based for sewage sludge deep dewatering: A critical review [J]. Water Research, 2021, 189:116650.
[39] Yuan D, Wang Y. Effects of solution conditions on the physicochemical properties of stratification components of extracellular polymeric substances in anaerobic digested sludge [J]. Journal of Environmental Sciences, 2013,25(1):155-162.
[40] Zhang D, Li W, Hou C, et al. Aerobic granulation accelerated by biochar for the treatment of refractory wastewater [J]. Chemical Engineering Journal, 2017,314:88-97.
[41] Tao C, Parker W, Bérubé P. Characterization and modelling of soluble microbial products in activated sludge systems treating municipal wastewater with special emphasis on temperature effect [J]. Science of the Total Environment, 2021,779:146471.
[42] Ekstrand E, Svensson B H, ?afari? L, et al. Viscosity dynamics and the production of extracellular polymeric substances and soluble microbial products during anaerobic digestion of pulp and paper mill wastewater sludges [J]. Bioprocess and Biosystems Engineering, 2020,43(2): 283-291.
[43] Pham P L, Dupont I, Roy D, et al. Production of exopolysaccharide by Lactobacillus rhamnosus R and analysis of its enzymatic degradation during prolonged fermentation [J]. Applied and Environmental Microbiology, 2000, 66(6):2302-2310.
[44] van der Ven C, Gruppen H, de Bont D B A, et al. Correlations between biochemical characteristics and foam-forming and -stabilizing ability of whey and casein hydrolysates [J]. Journal of Agricultural and Food Chemistry, 2002,50(10):2938-2946.
Influence of substrate composition on the production characteristics of extracellular polymers and foaming performance in anaerobic digestion systems.
ZHOU Ying-yue, ZHANG Zhi, LI Lei*, YANG Ping-jin, WANG Xiao-ming, PENG Xu-ya
(Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China)., 2023,43(8):4046~4056
To clarify the influence of substrates composition on the production characteristics and foaming performance of extracellular polymer (EPS) in anaerobic digestion system, three types of food waste, namely high-carbohydrate, high-protein and high-fat, were tested in batch experiments. The EPS production characteristics (concentration, composition, structure, functional groups, etc.), and parameters characterizing the foaming properties (viscosity, surface tension and relative hydrophobicity) and potential (foaming tendency, foam stability, foam diameter and liquid film thickness) of various types of EPS and sludge, were examined in different test groups. The correlation between EPS characteristics and sludge characteristics was also analyzed. The test groups with different substrates produced EPS with different properties. Specifically, the more balanced the substrate composition, the more it tended to be used for gas production, while the high carbohydrate and control groups had significantly higher total EPS concentrations than the rest experimental groups due to the excess carbohydrate content. Carbohydrates, proteins and oils influenced EPS morphology and composition by altering intermediate metabolites, affecting enzyme production and proliferation of microorganisms, respectively. In terms of EPS structure, more humic-like substances were produced under high carbohydrate conditions in the high-carbohydrate and control groups. In terms of functional groups, the alkyl group was reduced in the high-carbohydrate group, the high-protein group produced more hydrophilic nitrogenous functional groups, and the carboxylic acid content increased in the high-fat group. In addition, the relative hydrophobicity of EPS was reduced to varying degrees in all three experimental groups compared to the control group. The correlation analysis revealed that the sludge foaming capacity was significantly more correlated with EPS-related parameters than with substrate categories. Sludge foaming tendency (FP) was strongly correlated with loosely bound EPS (< 0.01,= 0.979) and soluble EPS (< 0.05,= 0.678). EPS viscosity also had a positive effect on both FP and foam stability (FS) (< 0.05), and increased EPS surface tension favored the FS (< 0.05). In terms of the role of substrates on foaming, carbohydrates may be responsible for the production of larger diameter, more stable foams from the sludge by increasing EPS viscosity and hydrophilicity. Proteins use enzymes to reduce the surface tension of EPS, resulting in smaller diameter and less stable foams, and thus alleviated the foaming phenomenon. Fat reduced the loosely bound EPS (< 0.05,= -0.649) and its intermediate metabolite LCFA altered the viscosity of tightly bound EPS (< 0.01,= 0.788), both contributing to increase the FP.
anaerobic digestion;food waste;foaming;EPS
X705
A
1000-6923(2023)08-4046-11
周瀅月(1997-),女,重慶南岸區人,重慶大學碩士研究生,研究方向為固體廢物污染控制與資源化.發表論文1篇.526511631@qq.com.
周瀅月,張 智,李 蕾,等.底物對厭氧消化系統EPS產生及起泡的影響 [J]. 2023,43(8):4046-4056.
Zhou Y Y, Zhang Z, Li L, et al. Influence of substrate composition on the production characteristics of extracellular polymers and foaming performance in anaerobic digestion systems [J]. China Environmental Science, 2023,43(8):4046-4056.
2022-12-21
國家自然科學基金資助項目(52170124)
* 責任作者, 副教授, lileich17@cqu.edu.cn