范彬,張立,汪逸,胡秀平,徐良
膿毒癥患者腸道短鏈脂肪酸的變化及臨床意義分析
范彬,張立,汪逸,胡秀平,徐良
浙江省人民醫院(杭州醫學院附屬人民醫院)急診重癥中心重癥醫學科,浙江杭州 310014
探討膿毒癥腸道短鏈脂肪酸(short-chain fatty acid,SCFA)的變化及臨床意義。采用觀察性研究方法,選擇2019年1月至2022年6月浙江省人民醫院ICU收治的膿毒癥患者 50例,根據28d后轉歸情況分為存活組和死亡組,記錄入科時患者的急性生理學與慢性健康狀況評分Ⅱ(acute physiology and chronic health evaluation Ⅱ,APACHE Ⅱ)和序貫器官衰竭評分(sequential organ failure assessment,SOFA),測定患者入科時超敏C反應蛋白(C-reactive protein,CRP)、降鈣素原(procalcitonin,PCT)及第1次糞便樣品的乙酸、丙酸、丁酸含量,比較存活組和死亡組患者的APACHE Ⅱ、SOFA、CRP、PCT、乙酸、丙酸、丁酸的差異。死亡組患者的APACHE Ⅱ、SOFA、PCT均高于存活組,差異有統計學意義(<0.05),CRP差異無統計學意義(>0.05);死亡組患者的乙酸、丙酸、丁酸含量較存活組明顯降低,差異有統計學意義(<0.05)。Logistic回歸分析提示,APACHE Ⅱ評分、乙酸、丙酸、丁酸是膿毒癥患者28d死亡的獨立危險因素(<0.05)。膿毒癥患者腸道的乙酸、丙酸、丁酸含量明顯降低,提示腸道功能失衡,可作為評估預后的指標。
膿毒癥;腸道;短鏈脂肪酸
膿毒癥是指由感染所致的一種全身性炎癥反應綜合征,是宿主對感染的反應失調而導致危及生命的器官功能障礙[1]。膿毒癥休克是指膿毒癥患者經充分的液體復蘇仍存在持續的低血壓,需要使用升壓藥物維持血壓,同時血乳酸檢測結果在2mmol/L以上,膿毒癥休克的病死率高達40%~70%,特別是高齡人口的增加,發病率呈不斷上升趨勢[2]。
膿毒癥在臨床上的表現常缺乏特異性,而感染的病原菌培養通常需數天后才能得出結果,且檢出率相對較低,一定程度上延誤診療時機。早期正確及時有效地診斷膿毒癥病情和感染程度在臨床上尤為重要。目前常用的疾病嚴重程度評價指標有急性生理與慢性健康評分(acute physiology and chronic health evaluation Ⅱ,APACHE Ⅱ)和序貫器官衰竭評分(sequential organ failure assessment,SOFA)等。腸道菌群結構失衡,如膿毒癥患者腸道α-多樣性的降低、宿主免疫反應的改變、腸道微生物的代謝產物短鏈脂肪酸(short-chain fatty acid,SCFA)產生的減少等,在膿毒癥發病過程中起作用[3-4]。特定的腸道菌群特征可預測膿毒癥的發展方向,也能監測膿毒癥的治療效果、早期診斷及評估預后等[5]。在臨床實踐中,需要有敏感的非侵入性且易于測量的早期腸道損傷生物標志物以指導早期藥理干預,預防或恢復腸道損傷,并改善結局[6]。
目前膿毒癥患者糞便中SCFA的含量未見有研究報道,特別是SCFA和膿毒癥患者的預后關系也沒有報道。SCFA是腸道菌群的代謝產物,在維持腸道黏膜健康方面發揮非常重要的生理作用[7]。本研究旨在檢測膿毒癥腸道菌群的SCFA含量,并分析其臨床意義。
收集2019年1月至2022年6月浙江省人民醫院ICU收治的膿毒癥患者的住院資料。入選標準:年齡≥18歲,診斷符合2016年《膿毒癥和膿毒癥休克國際共識定義》[8]診斷標準,不符合上述入選標準的予以排除,最終納入患者共50例,本研究僅對樣本數據進行分析。本研究經浙江省人民醫院醫學倫理委員會審批通過[倫理審批號:浙人醫倫審2022研第(015)號]。
收集入選病例的年齡、性別等資料,記錄入科后即刻的APACHE Ⅱ評分和SOFA評分,由兩名評分者在互不干擾的情況下分別評分,取平均值。
留取入科后的第1次糞便樣品,采用氣相色譜法進行SCFA檢測,包括乙酸、丙酸、丁酸等。留取入科后24h內抽取的血樣品進行檢測,記錄超敏C反應蛋白(C-reactive protein,CRP)、降鈣素原(procalcitonin,PCT)等資料。其中CRP采用免疫比濁法;血清PCT采用羅氏電化學發光法檢測。
記錄患者第28天的轉歸情況,分為存活組及死亡組。

根據患者住院28d的結局,將入組病例分為存活組(=20)和死亡組(=30)。兩組患者的年齡、性別等一般資料比較,差異無統計學意義(>0.05),見表1。

表1 兩組患者的一般資料比較
死亡組患者入科時的APACHE Ⅱ、SOFA評分及PCT均高于存活組,差異有統計學意義(<0.05);CRP差異無統計學意義(>0.05),見表2。

表2 兩組患者入科時的實驗室指標比較()
存活組患者糞便樣品中的SCFA(包括乙酸、丙酸、丁酸)含量均高于死亡組,差異有統計學意義(<0.05),見表3。

表3 兩組患者入科時糞便樣品的SCFA含量比較(,μmol/g)
將轉歸作為因變量,APACHE Ⅱ評分、乙酸、丙酸、丁酸作為自變量,Logistics回歸分析顯示,APACHE Ⅱ評分、乙酸、丙酸、丁酸均是患者28d死亡的獨立危險因素(<0.05),見表4。

表4 膿毒癥死亡危險因素的Logistics回歸分析
膿毒癥的發病機制包含炎癥、免疫、凝血等方面[9]。感染是膿毒癥發生的必需條件,細菌的內毒素在膿毒癥的發病機制中具有促進作用[10]。近年來研究發現,腸功能障礙及菌群紊亂在膿毒癥的發生及發展過程中起十分重要的作用[11]。腸道菌群與宿主之間存在穩態關系,腸道菌群除保護腸上皮免受損傷外,還參與腸道免疫防御,通過產生抗生素等代謝產物,或通過競爭管腔營養物和附著位點,抵御腸道病原體的侵襲[12]。腸道功能及腸道菌群的變化不僅影響個體的生理變化,而且會通過改變免疫應答影響宿主對感染的易感性[13]。營養和飲食在腸道菌群的組成和宿主的免疫狀態中起重要作用。重癥患者受腸內營養、抑酸藥物、抗生素、機械通氣等多種因素影響,腸道菌群多樣性顯著降低,腸道微生態紊亂與不良預后相關[14]。
CRP對炎癥反應的敏感性很高,但缺乏特異性,非感染引起的全身炎癥反應綜合征CRP 水平也明顯升高,同時CRP 受外界因素的干擾比較大[15]。PCT相比CRP更能反映感染的嚴重性及預后[16]。Anaraki等[17]研究得出,與重癥成年患者使用常規抗生素治療相比,使用PCT指導的抗生素治療可有效縮短重癥患者的治療時間。本研究納入的患者年齡為66~80歲,與年齡相仿的正常人群相比,膿毒癥存活組患者糞便中的SCFA含量明顯降低[18]。SCFA是腸道菌群的代謝產物,一方面為結腸上皮細胞提供能量,加強腸道屏障作用;另一方面依賴G 蛋白偶聯受體(G protein-coupled receptors,GPCR)43/41,通過絲裂原活化蛋白激酶信號通路發揮免疫調節作用,通過核因子κB(nuclear factor-κB,NF-κB)途徑發揮抗炎作用[7]。此外,丁酸可通過增強組蛋白H3在Foxp3 啟動子中的乙酰化作用,增強調節T細胞的分化,發揮抗炎作用[19]。年齡是影響糞便中SCFA含量的因素之一,隨著年齡的增長,糞便中的SCFA含量呈降低趨勢[18]。膳食纖維是一種多糖,既不能被胃腸道消化吸收,也不能產生能量,一度被認為是一種無營養的物質。隨著研究進一步發現,膳食纖維可在腸道有益菌作用下產生SCFA,并發揮重要的生理作用,因而膳食纖維被認為是“第七營養素”[20]。乙酸、丙酸、丁酸含量的減低提示腸道功能失衡,且這種失衡在病情較重的患者中表現更為明顯,通過添加膳食纖維,可增加腸道SCFA含量[21]。早期實驗室指標推斷預后,符合重癥醫學的“早期目標導向治療”,臨床上常用的膿毒癥生物標記物有APACHE Ⅱ、SOFA、PCT、CRP等。對患者進行膿毒癥的癥狀、體征和實驗室檢查篩查,有助于早期發現和干預,因此可將膿毒癥患者腸道的乙酸、丙酸、丁酸含量納入篩查的范圍,作為評估預后的指標之一[22]。
綜上所述,膿毒癥患者腸道的乙酸、丙酸、丁酸含量明顯降低,存在腸道菌群失衡和功能下降,在代謝水平上反映膿毒癥腸道存在變化,提示膿毒癥的嚴重程度及預后,也表明可使用一些干預手段來改善腸道的功能,從而可能發現針對性治療膿毒癥的新靶點,為臨床新藥開發提供新的思路。本研究存在一定的局限性:①為單中心研究,樣本量偏小;②僅在代謝水平上分析,未進一步在更深層次上揭示具體的代謝通路及發生機制。未來需要多中心、前瞻性、大樣本臨床隨機對照實驗研究不斷驗證和完善。
[1] 萬有棟, 朱瑞雪, 潘新亭, 等. 膿毒性休克患者腸道微生態變化臨床研究[J]. 中華急診醫學雜志, 2019, 28(3): 350–355.
[2] DELLINGER R P, LEVY M M, RHODES A, et al. Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock, 2012[J]. Intensive Care Med, 2013, 39(2): 165–228.
[3] GRASPEUNTNER S, WASCHINA S, KüNZEL S, et al. Gut dysbiosis with bacilli dominance and accumulation of fermentation products precedes late-onset sepsis in preterm infants[J]. Clin Infect Dis, 2019, 69(2): 268–277.
[4] RUPPé é, LISBOA T, BARBIER F. The gut microbiota of critically ill patients: First steps in an unexplored world[J]. Intensive Care Med, 2018, 44(9): 1561–1564.
[5] AGUDELO-OCHOA G M, VALDéS-DUQUE B E, GIRALDO-GIRALDO N A, et al. Gut microbiota profiles in critically ill patients, potential biomarkers and risk variables for sepsis[J]. Gut Microbed, 2020, 12(1): 1707610.
[6] SHIMIZU K, YAMADA T, OGURA H, et al. Synbiotics modulate gut microbiota and reduce enteritis and ventilator-associated pneumonia in patients with sepsis: A randomized controlled trial[J]. Critical Care, 2018, 22(1): 239.
[7] MORRISON D J, PRESTON T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes, 2016, 7(3): 189–200.
[8] SINGER M, DEUTSCHMAN C S, SEYMOUR C W, et al. The third international consensus definitions for sepsis and septic shock(Sepsis-3)[J]. JAMA, 2016, 315(8): 801–810.
[9] VINCENT J L, MARSHALL J C, NAMENDYS- SILVA S A, et al. Assessment of the worldwide burden of critical illness: The intensive care over nations(ICON) audit[J]. Lancet, 2014, 2(5): 380–386.
[10] HENRIKSEN D P, LAURSEN C B, JENSEN T G, et al. Incidence rate of community-acquired sepsis among hospitalized acute medical patients-A population-based survey[J]. Crit Care Med, 2015, 43(1): 13–21.
[11] 王慧芳, 王方巖, 常平, 等. 腸道微生態與膿毒癥[J]. 中華危重癥醫學雜志(電子版), 2018, 11(6): 415–419.
[12] JACOBS M C, HAAK B W, HUGENHOLTZ F, et al. Gut microbiota and host defense in critical illness[J]. Curr Opin Crit Care, 2017, 23(4): 257–263.
[13] ADELMAN M W, WOODWORTH M H, LANGELIER C, et al. The gut microbiome’s role in the development, maintenance, and outcomes of sepsis[J]. Critical Care, 2020, 24(1): 278.
[14] 李雅琳, 李東風. 膿毒癥患者的腸屏障功能損傷變化情況探究[J]. 中國現代醫生, 2021, 59(9): 122–124, 133.
[15] 王勝云, 陳德昌. 降鈣素原和C-反應蛋白與膿毒癥患者病情嚴重程度評分的相關性研究及其對預后的評估價值[J]. 中華危重病急救醫學, 2015, 27(2): 97–101.
[16] 麻微微, 蔣永潑. 降鈣素原對危重癥患者合并膿毒癥早期診斷及預后預測的意義[J]. 中國現代醫生, 2019, 57(7): 133–136.
[17] ANARAKI R M, NOURI-VASKEH M, OSKOUIE A S. Effectiveness of procalcitonin-guided antibiotic therapy to shorten treatment duration in critically-ill patients with bloodstream infections: A systematic review and Meta-analysis[J]. Infez Med, 2020, 28(1): 37–46.
[18] SALAZAR N, ARBOLEYA S, FERNáNDEZ-NAVARRO T, et al. Age-associated changes in gut microbiota and dietary components related with the immune system in adulthood and old age: A cross-sectional study[J]. Nutrients, 2019: 11(8): 1765.
[19] MANCO M, PUTIGNANI L, BOTTAZZO G F. Gut microbiota, lipopolysaccharides, and innate immunity in the pathogenesis of obesity and cardiovascular risk[J]. Endocr Rev, 2010, 31(6): 817–844.
[20] HOLSCHER H D. Dietary fiber and prebiotics and the gastrointestinal microbiota[J]. Gut Microbes, 2017, 8(2): 172–184.
[21] CUERVO A, VALDéS L, SALAZAR N, et al. Pilot study of diet and microbiota: Interactive associations of fibers and polyphenols with human intestinal bacteria[J]. J Agric Food Chem, 2014, 62(23): 5330–5336.
[22] EVANS L, RHODES A, ALHAZZANI W, et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021[J]. Intensive Care Med, 2021, 47(11): 1181–1247.
Changes and clinical significance of intestinal short-chain fatty acid in patients with sepsis
Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang, China
To investigate the changes of short-chain fatty acid (SCFA) in intestinal tract of sepsis and its clinical significance.Fifty patients with sepsis that admitted to ICU of Zhejiang Provincial People’s Hospital from January 2019 to June 2022 were selected, and they were divided into survival group and death group according to the outcome after 28 days. Acute physiology and chronic health evaluation Ⅱ (APACHE Ⅱ) and sequential organ failure assessment(SOFA) were recorded at admission. The contents of hypersensitive C-reactive protein (CRP), procalcitonin (PCT) and acetic acid, propionic acid and butyric acid in the first fecal sample were determined. The differences of APACHE Ⅱ, SOFA, CRP, PCT, acetic acid, propionic acid and butyric acid between survival group and death group were compared.APACHE Ⅱ, SOFA and PCT in death group were higher than those in survival group, the difference was statistically significant (<0.05), CRP was not statistically significant (>0.05), and the contents of acetic acid, propionic acid and butyric acid in death group were significantly lower than those in survival group, the difference was statistically significant (<0.05). Logistic regression analysis indicated that APACHE Ⅱ score, acetic acid, propionic acid and butyric acid were independent risk factors for sepsis death at 28 days (<0.05).The contents of acetic acid, propionic acid and butyric acid in the intestinal tract of sepsis patients were significantly reduced, suggesting that intestinal function was unbalanced and could be used as a prognostic indicator.
Sepsis; Intestinal tract; Short-chain fatty acid
R574
A
10.3969/j.issn.1673-9701.2023.27.005
浙江省衛生健康科技計劃項目(2021KY521)
范彬,電子信箱:fanbinxmu@163.com
(2022–12–13)
(2023–09–04)