劉 現*,鄭華偉
(1.福建省農業科學院數字農業研究所,福建 福州;2.福建農林大學計算機與信息學院,福建 福州)
翠冠梨屬砂梨系,品質上等[1-2],是福建三明市建寧縣的特色水果。我國果品普遍存在分級、包裝、商標等商品化處理能力差的弊端,降低了在國際和國內市場競爭中的優勢[3]。梨的分級是梨采后一個十分重要的環節,建立完整的分級制度可促進果品優質優價,助力產業化進一步發展[4]。
支持向量機(Support Vector Machine,SVM)理論最初來源于對數據分類問題的處理[5],適合分析小樣本和多維數據,常被用于分類和預測[6]。胡曉依等[7]結合SVM 分類器搭建適用滾動軸承故障診斷的改進型深度卷積神經網絡模型,極大提升了軸承故障識別準確率、模型收斂速度及泛化能力。時雷等[8]基于支持向量機和灰色BP 神經網絡提出冬小麥晚霜凍害預測模型,預測結果與實際情況基本一致;張冬至等[9]提出通過麻雀搜索算法對支持向量機的關鍵參數尋優,對瓶蓋裝配進行檢測,準確率達到98.33%。
綜上所述,支持向量機已在工業與農業中加以應用,但未見在翠冠梨分級上的研究報道。翠冠梨是福建三明市建寧縣的特色水果,研究它的分級進而實現它的分類計價,可助力翠冠梨果業進一步發展。本研究立足于當前研究現狀,構建翠冠梨大小分類圖像數據集,利用支持向量機技術搭建翠冠梨大小等級評定模型,并與貝葉斯分類、決策樹算法所構建的分類模型進行對比,評判模型的分類效果與性能。
1.1.1 供試材料
本試驗所使用的翠冠梨采購自福建福州市永輝超市。
1.1.2 試驗平臺
本單位自主構建了一套圖像獲取試驗平臺,如圖1 所示。平臺包括1 臺吉農牌計算機分選機(型號TN-68A)、3 個CCD 工業相機(型號MV-SUA1600,分辨率4 608 px×3 456 px,鏡頭焦距8 mm)、筆記本計算機1 臺(Acer Aspire V15 T5000)、LED 光源(功率128 W)、機器視覺檢測光源(功率17 W)3 盞等部件,圖像采集組件安裝于黑色暗箱內。平臺內圖像采集箱正中央果盤下方安裝有重量傳感器,當翠冠梨經由傳送帶向前輸送時,傳感器可獲取翠冠梨重量數據。參照福建地方標準[10]與獲取的重量數據將翠冠梨分為大果與小果兩類,單果重≥250 g 屬于大果類,除此之外為小果類。使用本單位自主研發的圖像獲取試驗平臺獲取兩個類別的翠冠梨圖像,獲取的圖像分辨率為4 608 px×3 456 px,分別從正上方、側前方、右側方三個方向獲取圖像。于2022 年8 月在30 ℃下采集了1 600 張圖片,其中含1 000 張大果類圖片,600 張小果類圖片。獲取的翠冠梨圖像見圖2。

圖1 試驗平臺結構

圖2 獲取的翠冠梨圖像
1.1.3 硬件設備
本研究模型訓練使用的深度學習服務器為AMD EPYC 7763 64-Core Processor*2 CPU,64GB*16 內存,GeForce RTX 3090 BULK*8 GPU,Ubuntu 20.04系統,Pytorch 1.12.1 深度學習框架。
本研究基于翠冠梨大小圖像數據集采用支持向量機算法(Support Vector Machine, SVM)構建翠冠梨大小等級評定模型并分別使用決策樹(Decision Tree)與貝葉斯(Bayes)算法構建模型,作為對比參照。翠冠梨大小等級評定模型構建與評估流程見圖3。

圖3 翠冠梨大小等級評定模型構建與評估流程
1.2.1 構建翠冠梨大小圖像數據集
將獲取的1 600 張翠冠梨圖像作為數據集并按留出法以8:2 的比例劃分為訓練集和測試集。訓練集含1 280 張圖像,其中大果類800 張,小果類480 張;測試集含320 張圖像,其中大果類200 張,小果類120 張。
1.2.2 基于支持向量機構建翠冠梨大小等級評定模型
采用Python 語言編程,利用深度學習服務器進行模型訓練。先將圖像進行預處理后輸入,然后進行特征提取,使用SVM 算法進行訓練,構建基于SVM 的翠冠梨大小等級評定模型。
1.2.3 與其他算法進行比較
為了評估模型的分類效果與性能,分別使用Decision Tree 與Bayes 算法來構建翠冠梨大小等級評定模型作為對比并重復每一種算法建模過程十次,對比各個模型之間的分類準確率與模型運行耗時。
在數據集上重復三種算法建模過程十次后,得到的結果,見圖4-圖7。

圖4 各個模型運行10 次分類準確率
圖4、圖6 表明SVM 算法構建的模型運行10 次過程中每一次模型分類準確率均高于其他兩種算法,其中最小值、最大值及平均值分別為84.06%、87.81%、85.94%;圖5、圖7 表明SVM 算法在1、4、5、6次的運行耗時小于其他兩種算法,SVM、Bayes 算法運行耗時最小值、最大值以及平均值分別為247.32 s、248.00 s、247.50 s 與234.61 s、248.53 s、246.13 s, 最小值和平均值略高于Bayes 算法。

圖5 各個模型運行10 次耗時

圖6 各個模型分類準確率最小、最大及平均值
試驗結果表明,SVM 算法構建的模型10 次分類準確率均為最高,說明分類效果最好,程序運行耗時最小值和平均值均高于Bayes 算法,但高的很少,特別是平均值才高1.37 s。因此綜合考慮分類效果與性能因素得出使用SVM 算法相比較于其他兩種算法所構建的翠冠梨大小等級評定模型是最佳的。