張靈菲,馬壘,李玉東,鄭福麗,魏建林,譚德水,崔秀敏,李燕
有機物料與化肥長期配施對小麥玉米輪作潮土細菌群落和酶活性的影響

1山東農業大學資源與環境學院,山東泰安 271018;2山東省農業科學院農業資源與環境研究所,濟南 250100
【目的】研究有機物料與化肥長期配施對土壤細菌群落和酶活性的影響,揭示土壤養分、胞外酶活性與細菌群落之間關系,為制定潮土區小麥玉米輪作制度下長期且合理的施肥策略提供理論依據。【方法】連續10年的定位試驗,設置不施肥 (NF)、單施化肥(NPK)、化肥配合秸稈還田(NPKS)、50%的化肥配施6 000 kg·hm-2豬糞(NPKP)和50%的化肥配施6 000 kg·hm-2牛糞(NPKC)等5個處理。【結果】(1)有機物料與化肥長期配施(NPKS、NPKP和NPKC)可顯著提高土壤肥力和胞外酶活性,其中NPKC處理提升效果最為顯著,土壤有機質、全氮、堿解氮、有效磷含量和堿性磷酸酶活性較NPK處理提升幅度為13.8%—15.4%、9.7%—15.5%、7.2%—15.9%、13.6%—38.5%和2.5%—13.1%。(2)有機物料與化肥長期配施顯著改變了細菌群落結構和組成。與NPK處理相比,小麥季NPKS處理顯著上調物種為和,NPKP處理顯著提高、和豐度,NPKC處理僅豐度顯著升高。玉米季NPKS處理顯著上調的物種為和,NPKP處理顯著提高豐度;NPKC處理和豐度顯著升高。(3)功能預測結果表明,長期有機物料與化肥配施較單施化肥對土壤碳、氮循環功能有促進作用,尤其NPKC處理對硝化作用、尿素溶解、芳香族化合物的降解、木聚糖分解、纖維素降解作用均有較強的影響。(4)蒙特爾分析表明,土壤pH是潮土細菌群落結構和生態功能的主要調控因素。【結論】有機物料與化肥長期配施(尤其是化肥配施牛糞)可提高土壤肥力和胞外酶活性,增加有益菌群豐度,顯著改變細菌群落結構和組成,有利于碳、氮、磷循環,從而促進潮土形成適合作物和細菌生長的環境。
小麥玉米輪作;有機物料;化肥;長期施肥;細菌群落;酶活性;土壤養分;潮土
【研究意義】土壤細菌可通過調節碳、氮、磷等胞外酶活性,參與有機質降解和養分運轉,對維持農田生態系統功能具有重要作用[1]。然而土壤細菌對其生存環境變化極為敏感[2],受土壤耕作措施的深刻影響。有機無機肥配施可以提升土壤養分,促進團聚體結構形成,是一項綠色可持續農業發展措施。研究有機無機肥配施對細菌群落的影響,揭示細菌與土壤理化性質關系,為黃淮海潮土區土壤地力提升和有機廢棄物的綜合利用提供理論依據。【前人研究進展】有機無機肥配施對土壤細菌群落影響已有大量研究,大多數研究發現配施有機肥可顯著提高細菌群落多樣性并改善細菌群落結構。SCHMID 等[3]發現長期有機無機肥配施提高細菌多樣性。LI等[4]通過25年定位試驗發現,有機無機肥配施可顯著提高變形菌門和放線菌門等R-策略型物種(偏好高養分生態位,具有較快的生長速率)豐度。LIU等[5]研究表明,有機無機肥配施通過增加土壤不穩定碳含量的方式,刺激地桿菌和厭氧菌介導土壤氮循環。但也有研究表明,有機無機肥配施增加了假單胞菌屬和梭狀芽孢桿菌屬等病原菌的相對豐度,并且引入了新的病原菌鏈球菌屬[6]。有機無機肥配施對微生物的影響主要是通過改變土壤酸堿度[7]、增加有機物質庫和養分的可用性[8],還可以促進有機顆粒與礦物結合形成大團聚體[9],為微生物生長繁殖提供穩定的生存空間。有機無機肥配施對細菌的影響與土壤類型密切相關[10]:敖金成等[11]發現pH是黃壤細菌多樣性的主要決定因素;LI等[8]發現潮土中有機無機肥配施主要通過增加有機碳和全氮改變細菌群落組成;而CUI等[12]則發現有機無機配施后,土壤有機碳和堿解氮是影響水稻土形成細菌群落的關鍵驅動因素。此外,不同有機物種類對細菌群落的影響也存在較大差異。MEI等[13]長達40年對黑鈣土研究可知,化肥配施糞肥較配施秸稈顯著提高細菌多樣性。SUN等[7]則發現畜禽糞便(豬糞、牛糞)較秸稈更有利于細菌群落的穩定性。FAN等[14]則發現相較于豬糞和秸稈,化肥配施牛糞是降低潛在病原菌風險最有效的措施。綜上所述,有機無機肥配施對細菌的影響因素多種多樣,應結合當地環境條件、有機物料特性選擇最佳施肥模式。【本研究切入點】添加有機物料是改善土壤質量,解決秸稈和畜禽糞便等有機廢棄物資源化利用問題的有效措施,然而不同有機物料施用下潮土細菌群落的變化情況,及其與土壤養分和酶活性的互作機理尚不明確。【擬解決的關鍵問題】本研究基于連續10年有機無機肥配施長期定位試驗,采用高通量測序技術,測定細菌群落結構和組成,研究其與土壤生化指標互作關系,研究結果將為黃淮海潮土區有機廢棄物的資源化利用,制定綠色高效的施肥模式提供理論依據。
田間試驗始于2010年10月,位于山東省德州市德城區哨馬營村(116°17′44 E,37°30′34 N)。該地屬溫帶大陸性氣候,年均氣溫13.1 ℃,年均降水556.2 mm,年平均日照時數2 592 h,日照率為60%,無霜期208 d,供試土壤為潮土。試驗前土壤養分含量為:pH 8.3,有機質(SOM)20.3 g·kg-1,全氮(TN)1.2 g·kg-1,全磷(TP)0.83 g·kg-1,全鉀20.8 g·kg-1,有效磷(AP)37.4 mg·kg-1,速效鉀(AK)282 mg·kg-1。冬小麥-夏玉米輪作,小麥品種為濟麥22、玉米品種為鄭單958。
試驗采用隨機區組設計,4次重復;每個小區長10 m,寬5 m,總面積為50 m2。設置5個處理:①不施肥(NF);②單施化肥(NPK);③化肥配合秸稈還田(NPKS);④50%化肥配施6 000 kg·hm-2豬糞(NPKP);⑤50%化肥配施6 000 kg·hm-2牛糞(NPKC)。各處理養分投入如表1所示,NPK處理小麥季施用氮肥(N)300 kg·hm-2,磷肥(P2O5)120 kg·hm-2,鉀肥(K2O)100 kg·hm-2;玉米季施用氮肥(N)250 kg·hm-2,磷肥(P2O5)45 kg·hm-2,鉀肥(K2O)45 kg·hm-2。NPKS處理小麥和玉米秸稈均粉碎后還田,其他處理小麥和玉米秸稈全部移除。NPKP處理小麥季和玉米季均施入6 000 kg·hm-2豬糞(養分含量:N 1.63%、P2O52.51%、K2O 1.01%)、NPKC處理小麥季和玉米季均施入6 000 kg·hm-2牛糞(養分含量N:1.64%、P2O52.58%、K2O 0.96%)。糞肥含水率為30%。小麥季和玉米季所有處理的氮肥基追比均為5﹕5,磷肥、鉀肥和有機肥作為底肥在小麥和玉米播種整地前一次性施用。

表1 各處理養分投入情況
除NF和NPKS處理外,其余處理氮磷鉀總投入量相同
Except for the NF and NPKS treatments, the total input of nitrogen, phosphorus and potassium in the rest of the treatments is the same
土壤樣品采集時間為2021年小麥灌漿期和玉米灌漿期。采用“S”形采樣法,每個小區取0—20 cm土層土樣7鉆,充分混勻。將土樣置于含有冰袋的保溫箱運回實驗室。立即過2 mm篩,一部分置于4 ℃冰箱保存測土壤酶,另一部分置于-80 ℃冰箱保存測微生物,剩余土樣風干后測定土壤pH及養分含量。
土壤養分參照《土壤農化分析》[15]測定:pH按水土比5﹕1用pH計測定;SOM采用重鉻酸鉀容量法(外加熱法)測定;土壤TN采用全自動凱氏定氮儀測定;土壤TP采用酸溶-鉬銻抗比色法測定;堿解氮(AN)采用堿解擴散法測定;AP采用0.5 mol·L-1碳酸氫鈉浸提鉬銻抗比色法測定;AK采用醋酸銨浸提火焰光度法測定。土壤酶活性采用北京索萊寶科技有限公司試劑盒測定,β-葡萄糖苷酶(β-GC)采用對硝基酚比色法;脫氫酶(DHA)采用氯化三苯基四氮唑還原法;脲酶(UE)采用靛酚藍比色法;堿性磷酸酶(ALP)采用磷酸苯二鈉比色法。
每個土壤樣品稱0.50 g鮮土,根據Fast DNA Spin Kit for Soil 試劑盒(MP Biomedicals,Santa Ana,CA,USA)說明書提取DNA。對土壤細菌16SrRNA V4-V5區進行PCR擴增。擴增引物為515F(GTGYCAGC MGCCGCGGTAA)、907R(CCGYCAATTYMTTT RAGTTT);擴增條件為94 ℃預變性5 min,30 個循環(90 ℃變性60 s,55 ℃退火60 s,72 ℃延伸75 s),72 ℃延伸10 min。利用QIA quick PCR Purification Kit(Qiagen)純化2%瓊脂糖凝膠回收的PCR產物。根據熒光定量結果和樣品的測序量,將PCR擴增產物按比例混合,采用Illumina MiSeq 進行細菌測序。
土壤細菌高通量測序數據處理步驟:檢驗序列質量,合并雙端序列;篩選高質量序列(質量分數>20),并切除擴增引物;去冗余,聚類(UNOISE算法聚類生成ASV);剔除嵌合體;利用RDP數據庫(http://rdp.cme.msu.edu/)對序列進行物種分類注釋。
使用R 4.2.0中的“vegan”包進行計算Bray-curtis距離進行主坐標分析(PCoA);使用STAMP 2.1.3 軟件進行ASV水平差異物種分析,組間差異顯示95%的置信區間,并只顯示Welch’s t-test經FDR校正后q<0.05的部分;使用 FAPROTAX 數據庫預測土壤細菌生態功能;使用 Mantel 檢驗計算細菌β-多樣性、功能結構與土壤生化指標之間的相關關系;使用Microsoft Excel 2019 、SPSS 25.0、Origin 2022軟件進行數據處理和繪圖。
連續10年有機無機肥配施顯著提高了土壤肥力(表2)。在小麥季,與NPK處理相比,NPKS處理土壤有機質(SOM)和堿解氮(AN)分別提升 9.2%和12.0%(<0.05);NPKP處理AP提升33.8%;NPKC處理顯著提高SOM、TN、AN和AP含量,分別為13.8%、15.5%、15.9%和38.5%。在玉米季,與NPK處理相比,NPKS處理SOM顯著升高9.5%;NPKP處理SOM、TN、AN和AP含量分別提升9.1%、7.3%、6.5%和26.6%,pH則降低0.08個單位;NPKC處理SOM、TN、AN和AP含量分別提高15.4%、9.7%、7.2%和13.6%。

表2 不同有機物料與化肥長期配施對土壤養分的影響
NF:不施肥,NPK:單施化肥,NPKS:化肥配合秸稈還田,NPKP:50%化肥配施6 000 kg·hm-2豬糞,NPKC:50%化肥配施6 000 kg ·hm-2牛糞;同列數據后小寫字母表示處理間差異顯著(<0.05)
NF: No fertilization, NPK: Chemical fertilizer, NPKS: Chemical fertilizer with straw return, NPKP: 50% chemical fertilizer with 6 000 kg·hm-2pig manure, NPKC: 50% chemical fertilizer with 6 000 kg·hm-2cow manure; Values followed by different letters in same column indicate significant difference among treatments (<0.05)
長期有機無機肥配施可顯著提高土壤酶活性(圖1)。在小麥季,與NPK處理相比,NPKS處理β-GC和DHA分別顯著提高17.1%和37.2%;NPKP處理提高DHA、UE和ALP活性3.9%、2.0%和1.6%;NPKC處理提高DHA、UE和ALP活性分別為3.9%、14.5%和2.5%。在玉米季,與NPK處理相比,NPKS處理提高β-GC、UE和ALP活性,分別為2.0%、1.0%和12.5%,其中β-GC在該處理中最高值為75.05 μg·h-1;NPKP處理可提高UE和ALP活性0.8%和13.3%;NPKC處理提高β-GC、UE和ALP活性1.2%、5.9%和13.1%。

圖中箱體代表酶活性范圍,箱體中短線代表酶活性均值,箱體上誤差棒代表酶活性變異大小,方柱上不同字母表示不同處理間差異顯著(P<0.05)
2.3.1 土壤細菌群落結構 基于ASV水平的Bray- Curtis距離進行主坐標軸分析(圖2),結果發現主坐標第一軸解釋了28.97%的群落差異,并將小麥季和玉米季細菌群落分開;第二軸解釋了5.68%的群落差異,并將不同施肥處理分開。ADONIS多元方差分析結果表明,不同作物生長季(2=0.29,=0.0001)和施肥處理(2=0.12,=0.0050)間細菌群落結構差異均達到極顯著水平。

圖2 長期不同有機物料與化肥配施對細菌群落結構的影響
2.3.2 土壤細菌群落組成 不同施肥處理土壤細菌群落組成如圖3所示。變形菌門(Proteobacteria)是土壤中的優勢菌門,其相對豐度在33.5%— 46.6%之間,其余相對豐度大于1%的物種包括酸桿菌門(Acidobacteria)(12.4%—16.6%)、放線菌門(Actinobacteria)(8.4%—11.5%)、浮霉菌門(Planctomycetes)(4.6%—5.4%)、擬桿菌門(Bacteroidetes)(2.8%—6.3%)、綠彎菌門(Chloroflexi)(2.0%—2.8%)和厚壁菌門(Firmicutes)(1.8%—2.4%)。小麥季,與NPK處理相比,有機無機肥配施處理(尤其是NPKP處理)提高了酸桿菌門、厚壁菌門相對豐度,分別為15.6%—23.7%、18.6%—24.9%,但變形菌門、擬桿菌門、綠彎菌門相對豐度則分別降低4.1%—7.8%、13.3%—24.3%和0.8%—22.1%。玉米季,與NPK處理相比,有機無機肥配施處理提高浮霉菌門相對豐度0.7%—10.7%,降低了綠彎菌門相對豐度1.8%—11.3%,其他物種差異未達顯著水平。

圖3 長期不同有機物料與化肥配施對細菌群落組成的影響
采用Welch’s t-test,在屬水平進行差異物種分析,結果如圖4所示。在小麥季,與NPK處理相比,NPKS處理顯著上調的物種為ASV4672()和ASV7953(),而顯著下調的物種為ASV7233()和ASV11505()。NPKP處理顯著提高ASV10744()、ASV8921()和ASV6409()物種豐度,顯著降低ASV12167()、ASV7233()、ASV11505()和ASV3070()物種豐度。NPKC處理中ASV2758()豐度顯著升高,ASV11505()豐度則顯著降低。在玉米季,NPKS處理顯著上調的物種為ASV5891()和ASV12277(),而顯著下調的物種為ASV10358()和ASV7525()。NPKP處理顯著提高ASV11154()物種豐度,而顯著降低ASV10358()、ASV7462()、ASV6569()和ASV9072()物種豐度。NPKC處理中ASV10805()和ASV5548()物種豐度顯著提高,ASV10515()、ASV8136()和ASV9072()物種豐度則顯著降低。
2.3.3 土壤細菌功能預測 采用FAPROTAX對細菌群落功能進行預測,共篩選出10個與土壤碳、氮循環相關功能(圖5)。小麥季,與NPK處理相比,NPKS處理提升硝酸鹽還原作用、硝化作用、反硝化作用和石油烴降解功能;NPKP處理提高硝酸鹽還原作用、反硝化作用、木聚糖分解和石油烴降解功能;NPKC處理則提升硝酸鹽還原作用、硝化作用、反硝化作用和石油烴降解功能。玉米季時,與NPK處理相比,NPKS處理提升硝酸鹽還原作用、固氮作用、硝化作用、反硝化作用、纖維素降解作用和石油烴降解功能;NPKP處理提高硝化作用、尿素溶解、反硝化作用、芳香族化合物降解、纖維素降解作用和石油烴降解功能;NPKC處理則提升固氮作用、尿素溶解、反硝化作用、芳香族化合物降解、纖維素降解作用和石油烴降解功能。

圖4 不同有機物料與化肥長期配施差異物種分析
采用相關性分析和蒙特爾分析研究土壤養分、酶活性、細菌群落結構和功能之間的互作關系(圖6)。結果表明,β-GC與pH(=0.47)、SOM(=0.42)、TN(=0.39)、AN(=0.53)呈顯著或極顯著正相關,DHA與pH(=0.66)、AN(=0.42)呈極顯著正相關,UE與SOM(=0.45)、TN(=0.47)、TP(=0.46)、AN(=0.55)呈極顯著正相關,ALP與SOM(=0.54)、TN(=0.57)、TP(=0.54)、AN(=0.67)呈極顯著正相關。細菌群落結構與pH(=0.64)、AP(=0.56)、DHA(=0.46)、AK(=0.39)、β-GC(=0.37)、ALP(=0.30)呈極顯著正相關(=0.001);細菌生態功能與pH(=0.62)、DHA(=0.52)、AP(=0.47)、β-GC(=0.41)、AK(=0.34)、ALP(=0.32)、UE(=0.22)呈極顯著正相關(=0.001)。

圖5 基于FAPROTAX預測長期不同有機物料與化肥配施下細菌生態功能
本研究發現,長期施肥降低pH促使土壤酸堿度偏向中性,這與前人研究結果一致[16]。盡管施肥均導致pH下降,但出現這一現象的原因卻存在差異。單施化肥引起pH下降可能由于長期施用化肥發生氮的硝化作用產生H+降低pH[17];而有機無機肥配施則可能由于有機物料(秸稈和有機肥)在分解過程中產生有機酸降低pH[18-19]。有機質是土壤肥力的基礎與核心,對農田系統的長期生產力至關重要[20]。劉國輝等[21]利用meta分析發現,施入有機肥后土壤有機質含量提高33.4%。本研究同樣發現有機無機肥配施土壤有機質增幅為7.5%—15.4%,其中化肥配施牛糞增幅高達13.8%—15.4%;說明長期有機無機肥配施(尤其是牛糞)有助于提高土壤有機質含量。值得注意的是,與NPK處理相比,化肥減量50%的NPKP和NPKC處理的土壤全氮、全磷、堿解氮和有效磷等養分含量顯著升高,這說明糞肥替代50%化肥可提高土壤養分含量及有效性。與NPKS處理相比,NPKC處理顯著提高全氮、堿解氮含量,而NPKP則顯著提高磷含量。這可能是糞肥為土壤提供大量有機氮和有機磷,增加土壤氮、磷含量,且糞肥較秸稈具有較低C/N和C/P,有機質在降解過程中會釋放氮、磷養分,從而提高土壤養分的有效性。
土壤酶參與土壤物質循環和能量流動,是衡量土壤生態功能的重要指標[22]。前人大量研究表明添加有機物料可提高土壤酶活性,但不同有機物料效果存在較大差異[23]。本研究發現化肥配施秸稈可顯著提升β-葡萄糖苷酶活性,這是由于秸稈含有大量纖維素、半纖維素,可為細菌提供更多酶促反應底物,刺激微生物分泌β-葡萄糖苷酶。而化肥配施糞肥均可提升堿性磷酸酶活性。與我們研究結果一致,HU等[24]在10年的田間試驗研究同樣表明,堿性磷酸酶活性和基因在化肥配施糞肥時顯著高于配施秸稈處理。一方面,可能由于糞肥較秸稈含有更多易分解有機組分[25],激發細菌分泌酶執行土壤養分循環功能;另一方面,可能由于長期添加外源糞肥增加細菌多樣性和數量,促進酶分泌。

用Spearman相關系數和方塊大小表示土壤養分與酶活性之間的相關性。***:P<0.001,**:P<0.01,*:P<0.05。方塊由小到大表示相關性由低到高。SOM:土壤有機質,TN:全氮,TP:全磷,AN:堿解氮,AP:速效磷,AK:有效鉀。β-GC:β-葡萄糖苷酶,DHA:脫氫酶,UE:脲酶, ALP:堿性磷酸酶
與前人研究結果一致,變形菌門、酸桿菌門、放線菌門是潮土中的優勢菌門[8]。本研究中,與單施化肥相比,添加有機物料增加了酸桿菌門、厚壁菌門豐度,而降低了綠彎菌門豐度。酸桿菌門可降解根系分泌物和枯枝落葉,穩定土壤有機質[26];厚壁菌門適合在養分均衡的土壤環境中生長[27];綠彎菌門為厭氧菌,是土壤缺氧區多糖的主要降解者[28]。因此,有機無機肥配施下養分均衡的環境更適合酸桿菌門和厚壁菌門的生長。本研究中長期化肥配施秸稈顯著富集、、和;其中可通過分泌酶(β-葡萄糖苷酶、堿性磷酸酶、酸性磷酸酶、萘酚-AS-BI-磷酸水解酶等)參與秸稈內大量纖維素的降解及有機磷的礦化[29];可參與有機質降解與釋放,亦可氧化脂肪酸維持土壤酸堿平衡[30]。化肥配施豬糞顯著提高溶磷菌、等物種豐度,可分泌酶礦化有機磷或分泌有機酸活化磷素[31-32],因此NPKP處理中溶磷菌的富集可能是土壤全磷、有效磷和堿性磷酸酶升高的重要原因。、和物種在化肥配施牛糞處理中顯著升高。其中可利用牛糞中的蛋白質作為底物進行化學有機營養生長[33];通過分泌賴氨酸脫羧酶、鳥氨酸脫羧酶等,增強作物抗逆性[34];可將硫酸鹽、亞硫酸鹽和硫代硫酸鹽還原為H2S,維持土壤氧化還原平衡[35]。綜上所述,有機無機肥配施較單施化肥顯著增加有益菌群豐度,改善細菌群落結構。
有機無機肥配施不僅改變了細菌群落組成,還可調控土壤碳、氮循環功能。本研究發現,有機無機肥配施富集的、、、和物種均可參與有機碳的降解[29-30,36-37]。這主要由于碳對大多數細菌有決定性影響,而秸稈和糞肥含有豐富的有機碳,有助于細菌的生長[38],進而可提升碳循環功能。同時,有機無機肥配施提供了充足的低分子有機氮,為微生物氮素轉化提供充足底物,刺激細菌群落進行有機氮礦化、無機氮轉化等過程,增加固氮菌等功能。李勝君等[39]亦發現有機無機肥配施較單施化肥可提升參與有機氮礦化、固氮和氮還原等異養功能菌數量。值得注意的是,與秸稈和豬糞相比,化肥配施牛糞對碳、氮循環均有較強的影響作用。這可能是由于化肥配施牛糞通過提高土壤大團聚體比例協調細菌群落執行生態功能,參與牛糞中不穩定物質的降解,加快養分周轉[40]。
本研究發現pH是土壤細菌群落結構和生態功能的主要影響因素。一方面,大多數細菌對pH較為敏感且最適生長的pH范圍較窄,細微的pH變化可直接影響細菌群落結構,如綠彎菌門與pH呈顯著正相關[11],酸桿菌門中某些亞群與pH呈負相關[41]。另一方面,pH還可通過調節養分的可用性間接改變細菌群落結構[42]。pH不僅在調控細菌群落中發揮重要作用,還可明顯影響生態功能。這可能由于pH驅動細菌群落發生變化,進而改變生態功能[43]。目前,針對細菌群落與生態功能間的聯系已有大量研究。例如,變形菌門中的α-變形菌綱參與碳循環[44];放線菌門中部分群落參與氮循環相關的尿素分解、木質素降解[45]。MUNEER等[46]和DELGADO- BAQUERIZO等[47]亦證明pH是細菌群落結構的主要調控因素,且大多數土壤碳、氮循環受pH影響。由此可見,pH在調控細菌群落結構和生態功能中發揮積極作用。
有機物料與化肥長期配施可顯著提升土壤肥力。不同有機物料與化肥配施對細菌群落影響不同,其中化肥配合秸稈(NPKS)顯著富集、等物種,50%的化肥配施豬糞(NPKP)顯著提高溶磷菌、等物種的豐度,50%的化肥配施牛糞(NPKC)處理顯著提升、r等物種豐度。pH是土壤細菌群落和功能的最主要調控因子。本試驗條件下化肥與有機物料配施(尤其與牛糞配施)有利于土壤形成健康的生態系統,實現可持續利用。
[1] BARDGETT R D, VAN DER PUTTEN W H. Belowground biodiversity and ecosystem functioning. Nature, 2014, 515(7528): 505-511.
[2] BAHRAM M, HILDEBRAND F, FORSLUND S K, ANDERSON J L, SOUDZILOVSKAIA N A, BODEGOM P M, BENGTSSON-PALME J, ANSLAN S, COELHO L P, HAREND H, HUERTA-CEPAS J, MEDEMA M H, MALTZ M R, MUNDRA S, OLSSON P A, PENT M, P?LME S, SUNAGAWA S, RYBERG M, TEDERSOO L, BORK P. Structure and function of the global topsoil microbiome. Nature, 2018, 560(7717): 233-237.
[3] SCHMID C A O, SCHR?DER P, ARMBRUSTER M, SCHLOTER M. Organic amendments in a long-term field trial-consequences for the bulk soil bacterial community as revealed by network analysis. Microbial Ecology, 2018, 76(1): 226-239.
[4] LI J, COOPER J M, LIN Z A, LI Y T, YANG X D, ZHAO B Q. Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain. Applied Soil Ecology, 2015, 96: 75-87.
[5] LIU D M, ZHANG S R, FEI C, DING X D. Impacts of straw returning and N application on NH4+-N loss, microbially reducible Fe(III) and bacterial community composition in saline-alkaline paddy soils. Applied Soil Ecology, 2021, 168: 104115.
[6] 張雅麗, 郭曉明, 胡慧, 郭暖, 徐小濤, 李建林. 牛糞還田對土壤微生物群落特征的影響. 環境科學, 2023, 44(3): 1792-1800.
ZHANG Y L, GUO X M, HU H, GUO N, XU X T, LI J L. Effects of cow manure application on soil microbial community in farmland. Environmental Science, 2023, 44(3): 1792-1800. (in Chinese)
[7] SUN R B, ZHANG X X, GUO X S, WANG D Z, CHU H Y. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biology and Biochemistry, 2015, 88: 9-18.
[8] LI F, CHEN L, ZHANG J B, YIN J, HUANG S M. Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Frontiers in Microbiology, 2017, 8: 187.
[9] 趙鳳艷, 張勇勇, 張玥琦, 張天實, 張國顯, 張慧, 楊麗娟. 有機物料對設施番茄長期連作土壤細菌群落結構的影響. 生態學雜志, 2019, 38(6): 1732-1740.
ZHAO F Y, ZHANG Y Y, ZHANG Y Q, ZHANG T S, ZHANG G X, ZHANG H, YANG L J. Effects of organic amendments on soil bacterial community structure with long-term tomato planting in greenhouse. Chinese Journal of Ecology, 2019, 38(6): 1732-1740. (in Chinese)
[10] XUN W B, HUANG T, ZHAO J, RAN W, WANG B R, SHEN Q R, ZHANG R F. Environmental conditions rather than microbial inoculum composition determine the bacterial composition, microbial biomass and enzymatic activity of reconstructed soil microbial communities. Soil Biology and Biochemistry, 2015, 90: 10-18.
[11] 敖金成, 李博, 閻凱, 李永梅. 連作對云南典型煙區植煙土壤細菌群落多樣性的影響. 農業資源與環境學報, 2022, 39(1): 46-54.
AO J C, LI B, YAN K, LI Y M. Effects of continuous cropping on tobacco-planting soil bacterial community diversity in typical tobacco-growing areas of Yunnan Province. Journal of Agricultural Resources and Environment, 2022, 39(1): 46-54. (in Chinese)
[12] CUI X W, ZHANG Y Z, GAO J S, PENG F Y, GAO P. Long-term combined application of manure and chemical fertilizer sustained higher nutrient status and rhizospheric bacterial diversity in reddish paddy soil of Central South China. Scientific Reports, 2018, 8: 16554.
[13] MEI N, ZHANG X Z, WANG X Q, PENG C, GAO H J, ZHU P, GU Y. Effects of 40 years applications of inorganic and organic fertilization on soil bacterial community in a maize agroecosystem in northeast China. European Journal of Agronomy, 2021, 130: 126332.
[14] FAN K K, DELGADO-BAQUERIZO M, GUO X S, WANG D Z, ZHU Y G, CHU H Y. Microbial resistance promotes plant production in a four-decade nutrient fertilization experiment. Soil Biology and Biochemistry, 2020, 141: 107679.
[15] 鮑士旦. 土壤農化分析. 3版. 北京: 中國農業出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[16] WEYERS E, STRAWN D G, PEAK D, MOORE A D, BAKER L L, CADE-MENUN B. Phosphorus speciation in calcareous soils following annual dairy manure amendments. Soil Science Society of America Journal, 2016, 80(6): 1531-1542.
[17] GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008-1010.
[18] CHEN X D, OPOKU-KWANOWAA Y, LI J M, WU J G. Application of organic wastes to primary saline-alkali soil in northeast China: Effects on soil available nutrients and salt ions. Communications in Soil Science and Plant Analysis, 2020, 51(9): 1238-1252.
[19] YAN Z J, CHEN S, DARI B, SIHI D, CHEN Q. Phosphorus transformation response to soil properties changes induced by manure application in a calcareous soil. Geoderma, 2018, 322: 163-171.
[20] 溫延臣, 李海燕, 袁亮, 徐久凱, 馬榮輝, 林治安, 趙秉強. 長期定位施肥對潮土剖面養分分布的影響. 中國農業科學, 2020, 53(21): 4460-4469. doi: 10.3864/j.issn.0578-1752.2020.21.014.
WEN Y C, LI H Y, YUAN L, XU J K, MA R H, LIN Z A, ZHAO B Q. Effect of long-term fertilization on nutrient distribution of fluvo-aquic soil profile. Scientia Agricultura Sinica, 2020, 53(21): 4460-4469. doi: 10.3864/j.issn.0578-1752.2020.21.014.(in Chinese)
[21] 劉國輝, 買文選, 田長彥. 施用有機肥對鹽堿土的改良效果:Meta分析. 農業資源與環境學報, 2023, 40(1): 86-96.
LIU G H, MAI W X, TIAN C Y. Effects of organic fertilizer application on the improvement of saline soils: Meta analysis. Journal of Agricultural Resources and Environment, 2023, 40(1): 86-96. (in Chinese)
[22] ZHAO S C, LI K J, ZHOU W, QIU S J, HUANG S W, HE P. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agriculture, Ecosystems & Environment, 2016, 216: 82-88.
[23] LIU E K, YAN C R, MEI X R, HE W Q, BING S H, DING L P, LIU Q, LIU S, FAN T L. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma, 2010, 158(3/4): 173-180.
[24] HU Y J, XIA Y H, SUN Q, LIU K P, CHEN X B, GE T D, ZHU B L, ZHU Z K, ZHANG Z H, SU Y R. Effects of long-term fertilization on phoD-harboring bacterial community in Karst soils. The Science of the Total Environment, 2018(628/629): 53-63.
[25] XING L, ZHANG Y M, HU C S, DONG W X, LI X X, LIU X P, ZHANG L J, WEN H D. Effects of long-term nutrient recycling pathways on soil nutrient dynamic and fertility in farmland. Chinese Journal of Eco-Agriculture,2022, 30(6): 937-951.
[26] ZHANG Q Q, ZHAO W W, ZHOU Z Z, HUANG G H, WANG X B, HAN Q, LIU G F. The application of mixed organic and inorganic fertilizers drives soil nutrient and bacterial community changes in teak plantations. Microorganisms, 2022, 10(5): 958.
[27] 楊旭, 劉海林, 黃艷艷, 楊紅竹, 貝美容, 林清火. 有機無機復混肥施用量對熱帶水稻土微生物群落和酶活性的影響. 植物營養與肥料學報, 2021, 27(4): 619-629.
YANG X, LIU H L, HUANG Y Y, YANG H Z, BEI M R, LIN Q H. Effects of application of organic-inorganic compound fertilizers on microbial communities and enzyme activities in tropical paddy soil. Journal of Plant Nutrition and Fertilizers, 2021, 27(4): 619-629. (in Chinese)
[28] LIU Y R, LV Z Z, HOU H Q, LAN X J, JI J H, LIU X M. Long-term effects of combination of organic and inorganic fertilizer on soil properties and microorganisms in a Quaternary Red Clay. PLoS One, 2021, 16(12): e0261387.
[29] FUKUNAGA Y, KURAHASHI M, SAKIYAMA Y, OHUCHI M, YOKOTA A, HARAYAMA S.Gen. nov., sp. nov., isolated from a marine alga, and proposal of Phycisphaeraceae fam. nov., Phycisphaerales ord. nov. and Phycisphaerae classis nov. in the Phylum Planctomycetes. The Journal of General and Applied Microbiology, 2009, 55(4): 267-275.
[30] NGATCHOU DJAO O D, ZHANG X J, LUCAS S, LAPIDUS A, GLAVINA DEL RIO T, NOLAN M, TICE H, CHENG J F, HAN C, TAPIA R, GOODWIN L, PITLUCK S, LIOLIOS K, IVANOVA N, MAVROMATIS K, MIKHAILOVA N, OVCHINNIKOVA G, PATI A, BRAMBILLA E, CHEN A, PALANIAPPAN K, LAND M, HAUSER L, CHANG Y J, JEFFRIES C D, ROHDE M, SIKORSKI J, SPRING S, G?KER M, DETTER J C, WOYKE T, BRISTOW J, EISEN J A, MARKOWITZ V, HUGENHOLTZ P, KYRPIDES N C, KLENK H P. Complete genome sequence oftype strain (TGB-C1^T). Standards in Genomic Sciences, 2010, 3(3): 267-275.
[31] REZAKHANI L, MOTESHAREZADEH B, TEHRANI M M, ETESAMI H, MIRSEYED HOSSEINI H. Phosphate-solubilizing bacteria and silicon synergistically augment phosphorus (P) uptake by wheat (L.) plant fertilized with soluble or insoluble P source. Ecotoxicology and Environmental Safety, 2019, 173: 504-513.
[32] 田美, 劉漢湖, 申欣, 趙方慶, 陳帥, 姚永佳. 百樂克(BIOLAK)活性污泥宏基因組的生物多樣性及功能分析. 環境科學, 2015, 36(5): 1739-1748.
TIAN M, LIU H H, SHEN X, ZHAO F Q, CHEN S, YAO Y J. Biodiversity and function analyses of BIOLAK activated sludge metagenome. Environmental Science, 2015, 36(5): 1739-1748. (in Chinese)
[33] VIEIRA S, LUCKNER M, WANNER G, OVERMANN J.Gen. nov., sp. nov. a new member of subdivision 6 Acidobacteria isolated from temperate grassland soil. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(5): 1408-1414.
[34] SRINIVAS T N R, ANIL KUMAR P, TANK M, SUNIL B, POORNA M, ZAREENA B, SHIVAJI S.sp. nov., isolated from a soil sample of a mud volcano. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(8): 2391-2396.
[35] GRéGOIRE P, FARDEAU M L, GUASCO S, LAGIèRE J, CAMBAR J, MICHOTEY V, BONIN P, OLLIVIER B.sp. nov., a thermophilic sulfate-reducing bacterium isolated from a deep terrestrial geothermal spring in France. Antonie Van Leeuwenhoek, 2012, 101(3): 595-602.
[36] CAO Y R, JIN R X, JIANG Y, HE W X, JIANG C L.soli sp. nov., an actinomycete isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(7): 1587-1591.
[37] DE OLIVEIRA PARANHOS A G, PEREIRA A R, DA FONSECA Y A, DE QUEIROZ SILVA S, DE AQUINO S F. Tylosin in anaerobic reactors: Degradation kinetics, effects on methane production and on the microbial community. Biodegradation, 2022, 33(3): 283-300.
[38] LI C X, MA S C, SHAO Y, MA S T, ZHANG L L. Effects of long-term organic fertilization on soil microbiologic characteristics, yield and sustainable production of winter wheat. Journal of Integrative Agriculture, 2018, 17(1): 210-219.
[39] 李勝君, 胡菏, 李剛, 王蕊, 趙建寧, 張貴龍, 修偉明. 化肥減量與有機物料添加對華北潮土微生物氮循環功能基因豐度和氮轉化遺傳潛力的影響. 環境科學, 2022, 43(10): 4735-4744.
LI S J, HU H, LI G, WANG R, ZHAO J N, ZHANG G L, XIU W M. Impacts of co-application of chemical fertilizer reduction and organic material amendment on fluvo-aquic soil microbial N-cycling functional gene abundances and N-converting genetic potentials in Northern China. Environmental Science, 2022, 43(10): 4735-4744. (in Chinese)
[40] FENG H J, PAN H, LI C L, ZHUGE Y P. Microscale heterogeneity of soil bacterial communities under long-term fertilizations in fluvo- aquic soils. Soil Ecology Letters, 2022, 4(4): 337-347.
[41] ROUSK J, B??TH E, BROOKES P C, LAUBER C L, LOZUPONE C, CAPORASO J G, KNIGHT R, FIERER N. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 2010, 4(10): 1340-1351.
[42] ZHALNINA K, DIAS R, DE QUADROS P D, DAVIS-RICHARDSON A, CAMARGO F A O, CLARK I M, MCGRATH S P, HIRSCH P R, TRIPLETT E W. Soil pH determines microbial diversity and composition in the park grass experiment. Microbial Ecology, 2015, 69(2): 395-406.
[43] 林惠瑛, 周嘉聰, 曾泉鑫, 孫俊, 李錦隆, 劉苑苑, 謝歡, 吳玥, 張秋芳, 崔琚琰, 程棟梁, 陳岳民. 武夷山黃山松林土壤細菌群落特征沿海拔梯度的分布模式. 生態學雜志, 2022, 41(8): 1482-1492.
LIN H Y, ZHOU J C, ZENG Q X, SUN J, LI J L, LIU Y Y, XIE H, WU Y, ZHANG Q F, CUI J Y, CHENG D L, CHEN Y M. Distribution pattern of soil bacterial community characteristics in aforest along an elevational gradient of Wuyi Mountains. Chinese Journal of Ecology, 2022, 41(8): 1482-1492. (in Chinese)
[44] DE SCALLY S Z, MAKHALANYANE T P, FROSSARD A, HOGG I D, COWAN D A. Antarctic microbial communities are functionally redundant, adapted and resistant to short term temperature perturbations. Soil Biology and Biochemistry, 2016, 103: 160-170.
[45] 劉澤勛, 莊家堯, 劉超, 鄭康, 陳玲. 大同鉛鋅尾礦不同污染程度土壤細菌群落分析及生態功能特征. 環境科學, 2023, 44(7): 4191-4200.
LIU Z X, ZHUANG J Y, LIU C, ZHENG K, CHEN L. Analysis of soil bacterial community structure and ecological function characteristics in different pollution levels of lead-zinc tailings in Datong. Environmental Science, 2023, 44(7): 4191-4200. (in Chinese)
[46] MUNEER M A, HOU W, LI J, HUANG X M, UR REHMAN KAYANI M, CAI Y Y, YANG W H, WU L Q, JI B M, ZHENG C Y. Soil pH: a key edaphic factor regulating distribution and functions of bacterial community along vertical soil profiles in red soil of pomelo orchard. BMC Microbiology, 2022, 22(1): 38.
[47] DELGADO-BAQUERIZO M, ELDRIDGE D J, OCHOA V, GOZALO B, SINGH B K, MAESTRE F T. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecology Letters, 2017, 20(10): 1295-1305.
Effects of Long-Term Synergistic Application of Organic Materials and Chemical Fertilizers on Bacterial Community and Enzyme Activity in Wheat-Maize Rotation Fluvo-Aquic Soil
ZHANG LingFei1, 2, MA Lei2, LI YuDong2, ZHENG FuLi2, WEI JianLin2, TAN DeShui2, CUI XiuMin, LI Yan
1College of Resources and Environment, Shandong Agricultural University, Tai’an 271018, Shandong;2Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences,?Jinan?250100
【Objective】This experiment studied the effects of long-term synergistic application of organic materials and chemical fertilizers on soil bacterial community and enzyme activity, and revealed the relationship between soil nutrients, extracellular enzyme activity and bacterial community, so as to provide a theoretical basis for formulating long-term and reasonable fertilization strategies under wheat-maize rotation system in fluvo-aquic soil. 【Method】Based on a 10-year located experiment, five treatments were set up, including no fertilization (NF), chemical fertilizer (NPK), chemical fertilizer with straw return (NPKS), 50% chemical fertilizer with 6 000 kg·hm-2pig manure (NPKP), and 50% chemical fertilizer with 6 000 kg·hm-2cow manure ( NPKC ). 【Result】(1) The combined application of organic materials and chemical fertilizers ( NPKS, NPKP and NPKC ) could significantly improve soil fertility and extracellular enzyme activity, among which NPKC treatment had the most significant effect. Compared with NPK treatment, the contents of organic matter, total nitrogen, available nitrogen, available phosphorus and alkaline phosphatase activity were increased by 13.8%-15.4%, 9.7%-15.5%, 7.2%-15.9%, 13.6%-38.5%和2.5%-13.1%. (2) Long-term combined application of organic and inorganic fertilizer significantly changed the bacterial community structure and composition. In the wheat season, compared with NPK treatment, NPKS treatment significantly increased the abundance ofand, NPKP treatment significantly increased the abundance of,and, while NPKC treatment only significantly increased the abundance of. In the maize season, compared with NPK treatment, NPKS treatment significantly increased the abundance ofand, NPKP treatment significantly increased the abundance of, and NPKC treatment significantly increased the abundance ofand. (3) The results of functional prediction showed that combined application of organic and inorganic fertilizers could promote soil carbon and nitrogen cycling compared with long-term single application of chemical fertilizer. In particular, the NPKC treatment had a strong effect on nitrification, ureolysis, aromatic compound degradation, xylanolysis and cellulolysis. (4) Mental analysis showed that soil pH was the main factor regulating bacterial community structure and ecological function in fluvo-aquic soil. 【Conclusion】Long-term application of organic and inorganic fertilizers (especially chemical fertilizers combined with cow manure) could improve soil fertility and extracellular enzyme activity, increase the abundance of beneficial bacteria, significantly change the structure and composition of bacterial communities, and promote the circulation of carbon, nitrogen and phosphorus, thus construct an environment suitable for crop and bacterial growth in fluvo-aquic soil.
wheat-maize rotation; organic material; chemical fertilizer; long-term application of fertilizers; bacterial community; enzyme activity; nutrient; fluvo-aquic soil
10.3864/j.issn.0578-1752.2023.19.011
2022-11-03;
2022-12-31
國家重點研發計劃(2021YFD1901003)、國家小麥產業技術體系(CARS-03)、山東省農業科學院農業科技創新工程項目(CXGC2022A09)、山東省自然科學基金(ZR2021QD033)
張靈菲,E-mail:zhanglingfei199811@163.com。通信作者崔秀敏,E-mail:xiumincui@sdau.edu.cn。通信作者李燕,E-mail:liyan1008@163.com
(責任編輯 李云霞)