999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Geometric discord of tripartite quantum systems

2023-11-02 08:10:40ChunheXiong熊春河WentaoQi齊文韜MaokeMiao繆茂可andMinghuiWu吳明暉
Chinese Physics B 2023年10期

Chunhe Xiong(熊春河), Wentao Qi(齊文韜), Maoke Miao(繆茂可), and Minghui Wu(吳明暉)

1Interdisciplinary Center for Quantum Information,School of Physics,Zhejiang University,Hangzhou 310027,China

2School of Computer and Computing Science,Hangzhou City University,Hangzhou 310015,China

3School of Mathematical Sciences,Zhejiang University,Hangzhou 310027,China

4School of information and electrical engineering,Hangzhou City University,Hangzhou 310015,China

Keywords: geometric discord,tripartite quantum systems,quantum state discriminations,frozen discord

1.introduction

Quantum correlation is not only a unique phenomenon but also a valuable resource of the quantum world.The characterization and quantification of quantum correlations lie at the very heart of exploring and exploiting quantum phenomena.As resources, quantum correlations such as entanglement,[1]non-locality,[2,3]discord,[4]and coherence,[5]offer remarkable advantages that make quantum information theory more powerful than classical theory.[6-13]

Quantum discord, proposed firstly by Olliver and Zurek,[14]and Henderson and Vedral,[15]is the quantum correlation that arises from the loss of information caused by quantum measurements.Since then,a lot of efforts have been made to generalize discord to tripartite and larger systems.[16-20]Recently, Radhakrishnanet al.generalized quantum discord to multipartite cases.[21]A feature of their formulation is that the definition of multipartite discord reduces to the standard definition of discord for bipartite correlated subsystems,and this has also led to research of multipartite quantum discord.[22-26]

Quantifying discord is not only the basic problem of quantum correlation theory, but also the premise of using quantum discord.After Datta gave a mathematical description of bipartite quantum states with zero discord,[27]a great deal of work began on the quantitative study of quantum discord from a geometric perspective,that is,this kind of discord is defined as the minimal distance between a state and the set of states with zero discord.[28-31]

In this paper, we consider the quantification of tripartite discord with geometric measure, which has been proven to be a nice measure to quantify entanglement,[32]discord,[29,30]and coherence.[33]For pure states, we obtain the analytic expression of tripartite geometric discord.It is already known that geometric discord of pure state reduces to the geometric entanglement in bipartite systems.However,our results show that it is no longer the case in tripartite systems.

Furthermore, we provide an operational meaning for geometric tripartite discord by linking it to quantum state discrimination, that is, we prove that the geometric discord of tripartite states is equal to the minimum error probability to discriminate a set of pure states with von Neumann measurement.This conclusion generalizes the main result in Ref.[29],where the authors first established the relationship in the bipartite quantum system.Moreover,we obtain the analytic formula of geometric discord for three-qubit Bell diagonal states.

Finally, we consider the dynamics of tripartite geometric discord under local decoherence.It is interesting that the frozen phenomenon exists in the geometric discord of threequbit Bell diagonal states, since it has been shown that the original generalized discord of Bell diagonal states will always decay in this decoherence environment.[22]

The paper is organized as follows.We introduce and discuss the generalized geometric discord for tripartite systems in Section 2.We calculate the geometric discord of three-qubit Bell diagonal states and investigate the dynamic behavior in Section 3.Lastly,we present a conclusion in Section 4.

2.Geometric tripartite discord

2.1.Geometric discord of tripartite system

Let us first start by reviewing the original definition of discord,which is defined as

For tripartite systems, two local measurements will be necessary in order to destroy all the correlations.In general,each local successive measurement is conditionally related to the previous measurement, then the two-partite measurement is written as

wherea,b,andclabel the three subsystems,is a von Neumann projection operator on the subsystema,is a projector on subsystemb,conditioned on the measurement outcome ona.These states with zero discord of tripartite system have the following form:[21]

where{|αj〉a}jis a set of orthogonal basis,and for each fixedk,{|βk|j〉b}kis also a set of orthogonal basis.We call the quantum states with zero discord classically correlated and denote all of the classically correlated states of the tripartite system byCa:b:c.

WithCa:b:c,the geometric discord of tripartite state is defined as

2.2.Pure state case

Next,let us consider the quantification for pure states on the tripartite system.

Lemma 1 For tripartite pure state|ψabc〉, it can be decomposed as

whereμjk=μjμk|j.

With Lemma 1,we can derive the following result.

Theorem 2 For pure state|ψabc〉 with state decomposition as Eq.(3),then the geometric discord is given by

Proof See Appendix A.

In the bipartite system, it is well-known that geometric discord is equivalent to geometric entanglement on pure states.However,we find that it is not true for tripartite systems.

Example 1 Consider the symmetric state of three-qubit systems as follows:[32]

then the maximal entanglement eigenvalueΛmax=2/3 and the entanglement is

On the other hand, since the Schmidt decomposition between partyaand partybcis

we have

We can conclude that there exists a pure state of tripartite systems whose geometric discord is strictly less than geometric entanglement.

2.3.Mixed state case

Now, let us consider the mixed-state case.For bipartite state,Spehner and Orszag linked the Bures distance of discord to quantum state discrimination.[29]Let us consider the case of tripartite systems.

Theorem 3 For mixed stateρ ∈D(Habc), the geometric discord is equivalent to the minimal error to discriminate a set of quantum states with von Neumann measurement,that is,

Proof Firstly, the classically correlated stateσcc ∈Ca:b:chas the following form:

therefore,for anyρ,the fidelity between them is

Furthermore,one has

By using the Cauchy-Schwartz inequality, for fixedijone has

Note that Eq.(7)will be equality if the vectors|ψk|ij〉are orthogonal for differentij’s and each of them can be decomposed into the sum of product states.First, we show that the vectors|ψk|ij〉are orthogonal provided that the|Φijk〉are chosen appropriately.Actually,for an arbitrary orthonormal basis|Φijk〉ofHabc,let us consider the Hermitian matrixS(ij)with coefficients given by the scalar productsS(ij)k,l=〈ψk|ij|ψl|ij〉.SinceS(ij)is a Hermitian matrix,one can find a unitary matrixV(ij)such that (V(ij))?S(ij)V(ij)is orthogonal in the firstrijrows,whererijis the rank ofS(i j).Let| ?Φijk〉=∑lV(ij)l,k|Φijl〉.Then| ?Φijk〉is an orthonormal basis ofHand ∑k| ?Φi jk〉〈 ?Φijk|=Πij.Moreover,the vectors|?ψk|ij〉=∑lV(ij)l,k|ψl|ij〉form an orthogonal set.

As a result,one finds

where the probabilityqij=〈αiβj|i|trc[ρ]|αiβj|i〉and the corresponding state

Furthermore,the geometric discord is given by

Noting that,ifρis invertible,then{ρij}ijwill be linearly independent.[29]In sequence,the result in Ref.[37]shows that the POVM maximizing the success probabilityPs(ρij,qij)is a von Neumann measurement with projectors,which implies

3.Three qubit Bell diagonal states and dynamics behavior

3.1.Three qubit Bell diagonal states

Let us calculate the geometric discord of the three-qubit Bell diagonal state,that is,

whose matrix form in computation basis is of the form(B2).

Let us first consider the geometric discord between subsystemaandbc.Based on the relationship between bipartite state discrimination and bipartite geometric discord,[29]one has

whereΛ=p1ρ1-p2ρ2.By using the minimax principle,[38]the maximum of tr(Π1Λ) over all projectorsΠ1of rank 4 is equal to the sum of the 4 highest eigenvaluesλ1≥···≥λ4of the Hermitian matrixΛ.

With the optimal probability of quantum state discrimination of two states,we can obtain

wherecmax:= max{|c1|,|c2|,|c3|}.Furthermore, since the closest classical correlated state of the above equation is actually inCa:b:c(see Appendix B),it holds

for each three-qubit Bell diagonal stateρabc.

3.2.Dynamic of geometric discord under local channels

For the initial state of Eq.(B1),the time evolution of the total system under the phase flip channel is given by

Fig.1.The case of c1=0.3,c2=0.4,c3=0.8,and γ =0.1.

4.Conclusion

In summary, we have obtained the analytic formula for geometric discord of tripartite systems and found that the geometric discord of pure state is not equal to the geometric entanglement for symmetric state of three-qubit systems,which implies that quantum discord and entanglement have a more complicated relationship in multipartite systems.

Furthermore, we provide an operational meaning for geometric discord of tripartite systems by linking it to quantum state discrimination, and calculate the geometric discord for generalized Bell diagonal states of three-qubit systems.

Lastly,we investigate the dynamic behavior of geometric discord of three-qubit systems under local decoherence and show that the frozen phenomenon exists for geometric discord of three-qubit systems.

Acknowledgments

Project supported by the National Natural Science Foundation of China(Grant No.12201555)and China Postdoctoral Science Foundation(Grant No.2021M702864).

Appendix A:Proof of Theorem 2

Proof Denote the classically correlated state

wherepjkl ≥0 and ∑pjkl=1.Moreover,|αj〉is an orthogonal basis ofHa,and for fixedj,|βk|j〉is an orthogonal basis ofHb,and|αjβk|jγl|jk〉is an orthogonal basis ofHcfor eachjk.Then,the square of fidelity between|ψabc〉andσccis

where the inequality follows from the fact that ∑pjkl=1.Actually,denote=max{μk|j}for eachj,then

where the last two inequalities follow the Cauchy-Schwartz inequality.Denote the Schmidt vector of eachby, then the closest classical correlated state is a pure state

Appendix B: Geometric discord of three-qubit Bell diagonal states

Let us calculate the geometric discord of the three-qubit Bell diagonal state,that is,

whose matrix form in computation basis is

As a result, if||c||=1,ρabcreduces to a pure state, and the geometric discord is given by Eq.(4).If||c||/=1,then we haveρabc >0 and

Let us first consider the geometric discord between subsystemsaandbc.Denote|α1(2)〉〈α1(2)|=(1/2)(I±uσ),then

whereξ=c1+ic2,η=u1+iu2.The eigenvalues of bothΛuandΓuare the same,that is,

Therefore,the fidelity betweenρabcand classically correlated states on the bipartite systemaandbcis

From Appendix C,one has

wherecmaxhas the maximal absolute value of{c1,c2,c3}.As a result,the geometric discord betweenaandbcis

(i) Assumecmax=c3, then the optimal measurement is{|0〉〈0|,|1〉〈1|}.Furthermore, the eigenspaces ofΓuare spanned by the following projections:

wherei,j=00,01,10,11.Sinceσ3)is a diagonal state, then the closest correlated stateρccis also a diagonal state,which meansρcc ∈Ca:b:c.In other words,for this kind of state,

(ii) Ifcmax=c1, it can be verified that the unitary matrixU=(1/2)(-I+iσ)satisfiesU?σ1U=σ3,U?σ2U=σ1,U?σ3U=σ2,therefore,

(iii) Ifcmax=c2, it can be verified that the unitary matrixU=(1/2)(I+iσ) satisfiesU?σ1U=σ2,U?σ2U=σ3,U?σ3U=σ1,therefore,

(iv) If the maximalcmaxis not unique, for example,|c1|=|c2|>|c3|, then there are infinite optimal projections with|α0〉 = (1/2)(I+sc1σ1+(1-s)c2σ2),s ∈[0,1].As a result, the closest classically correlated state is not unique.Based on the above discussion,it also holds

Appendix C:Proof of the inequality

Letf=f1+f2+f3+f4with

the equality holds forf1=f2=f3=f4,which means that

主站蜘蛛池模板: 国产成人91精品| 一区二区欧美日韩高清免费| 国产激情无码一区二区三区免费| 九九九精品成人免费视频7| 国产精品女主播| 精品国产免费人成在线观看| 中文字幕亚洲专区第19页| 亚洲电影天堂在线国语对白| 亚洲专区一区二区在线观看| 99视频在线精品免费观看6| 麻豆a级片| 国产黄色爱视频| 国产精品无码翘臀在线看纯欲| 国产成人综合在线视频| 久久香蕉欧美精品| 99精品福利视频| 亚洲三级成人| 91娇喘视频| 成年人国产网站| 国产SUV精品一区二区| 狠狠色丁香婷婷综合| 亚洲嫩模喷白浆| 97久久超碰极品视觉盛宴| 国产偷国产偷在线高清| 亚洲成年人片| 亚洲视频四区| 国产精女同一区二区三区久| 国产亚洲欧美在线中文bt天堂| 无码国内精品人妻少妇蜜桃视频| 波多野结衣第一页| 第一区免费在线观看| 日本一区高清| 欧美成人午夜在线全部免费| 深爱婷婷激情网| 亚洲色图欧美一区| 2021国产乱人伦在线播放| 国产乱人免费视频| 在线综合亚洲欧美网站| 无码AV动漫| 天天色天天操综合网| 香蕉蕉亚亚洲aav综合| 国产成人精品2021欧美日韩| 999精品免费视频| 高清欧美性猛交XXXX黑人猛交| 亚洲Av综合日韩精品久久久| 999国内精品久久免费视频| 国产福利拍拍拍| 亚洲性一区| 亚洲无码在线午夜电影| 成人久久精品一区二区三区| 国产人人射| 久久精品国产91久久综合麻豆自制| 国产成人精品午夜视频'| 亚洲成人精品在线| 国产人成在线视频| 好吊色妇女免费视频免费| 久久狠狠色噜噜狠狠狠狠97视色| 中文字幕在线日韩91| 一区二区欧美日韩高清免费| 黄片在线永久| 国产一区二区在线视频观看| 日韩国产黄色网站| 亚洲国产欧洲精品路线久久| 亚洲A∨无码精品午夜在线观看| 国产精品亚洲欧美日韩久久| 欧美国产日韩在线观看| 热久久国产| av在线手机播放| 国产91丝袜在线播放动漫| 国产区福利小视频在线观看尤物| 在线看片中文字幕| 情侣午夜国产在线一区无码| 激情视频综合网| 97国产在线视频| 浮力影院国产第一页| 亚洲大学生视频在线播放| 国产精品一区在线麻豆| 精品国产乱码久久久久久一区二区| 伊人久久青草青青综合| 制服无码网站| 久久夜色撩人精品国产| 91国内视频在线观看|