劉艷秋 范海迪 侯海燕 孫健 林寧



摘要:目的 探討血清中可溶性T細胞免疫球蛋白及黏蛋白分子-3(sTIM-3)、半乳糖凝集素-9(Gal-9)、高遷移率族蛋白B1(HMGB1)水平與2型糖尿?。═2DM)并發冠心病(CHD)的關系。方法 選取T2DM組患者50例、T2DM并發CHD組(T2DM+CHD組)患者52例,同期健康體檢人員(Con組)48例。采用酶聯免疫吸附試驗(ELISA)檢測3組血清中sTIM-3、Gal-9及HMGB1的水平。Spearman法分析血清sTIM-3、Gal-9、HMGB1、空腹血糖(FBG)、超敏C-反應蛋白(hs-CRP)間的相關性;使用受試者工作特征(ROC)曲線分析sTIM-3、Gal-9及兩者聯合檢測對T2DM并發CHD的診斷能力;采用Logistic回歸分析T2DM并發CHD的危險因素。結果 與Con組相比,T2DM組和T2DM+CHD組sTIM-3、Gal-9、HMGB1升高(P<0.05);與T2DM組相比,T2DM+CHD組sTIM-3和Gal-9升高(P<0.05),HMGB1差異無統計學意義。FBG、hs-CRP與sTIM-3、Gal-9、HMGB1呈正相關,sTIM-3與Gal-9、HMGB1,Gal-9與HMGB1呈正相關(P<0.05)。ROC曲線分析結果顯示血清sTIM-3和Gal-9聯合診斷T2DM并發CHD曲線下面積為0.812(95%CI:0.743~0.882)。Logistic回歸分析顯示體質量指數、sTIM-3、Gal-9升高是T2DM并發CHD的危險因素。結論 血清sTIM-3、Gal-9升高是T2DM并發CHD的危險因素。
關鍵詞:糖尿病,2型;冠狀動脈疾?。话肴樘悄仡?;高遷移率族蛋白質類;可溶性T細胞免疫球蛋白及黏蛋白分子-3
中圖分類號:R392.6文獻標志碼:ADOI:10.11958/20221307
Correlation research between sTIM-3 and its ligands Gal-9, HMGB1 in patients with type 2 diabetes complicated with coronary heart disease
LIU Yanqiu FAN Haidi HOU Haiyan SUN Jian LIN Ning
1 Department of Clinical Laboratory, Branch Hospital of Huai'an First People's Hospital, Huai'an 223002, China;
2 Department of Clinical Laboratory, Qinhuai District Center for Disease Control and Prevention; 3 Department of
Clinical Laboratory, Huai'an First Hospital Affiliated to Nanjing Medical University
△Corresponding Author E-mail: hayyln@126.com
Abstract: Objective To investigate the relationship between serum soluble T cell immunoglobulin and mucin domain-3 (sTIM-3), galectin-9 (Gal-9) and high mobility group protein B1 (HMGB1) levels in patients with type 2 diabetes mellitus (T2DM) complicated with coronary heart disease (CHD). Methods Fifty patients with T2DM were used as the T2DM group, and fifty-two patients with T2DM complicated with CHD were selected as the T2DM+CHD group. Forty-eight healthy physical examination subjects were selected as the control group (Con group). Serum levels of sTIM-3, Gal-9 and HMGB1 were detected by enzyme-linked immunosorbent assay (ELISA). Spearman correlation analysis was used to analyze the correlation between serum sTIM-3, Gal-9, HMGB1, fasting blood glucose (FBG) and high-sensitivity C-reactive protein (hs-CRP). Receiver operating characteristic curve (ROC) was used to analyse the diagnostic capability of sTIM-3, Gal-9 and their combination in T2DM complicated with CHD. Logistic regression was used to investigate the risk factors of T2DM complicated with CHD. Results Compared with the Con group, sTIM-3, Gal-9 and HMGB1 were significantly increased in the T2DM group and the T2DM+CHD group (P<0.05). Compared with the T2DM group, sTIM-3 and Gal-9 were significantly increased in the T2DM+CHD group (P<0.05), and there was no significant difference in HMGB1. FBG and hs-CRP were positively correlated with sTIM-3, Gal-9 and HMGB1, sTIM-3 was positively correlated with Gal-9 and HMGB1, and Gal-9 was positively correlated with HMGB1 (P<0.05). ROC curve analysis showed that the area under the curve of serum sTIM-3 and Gal-9 in the diagnosis of T2DM complicated with CHD was 0.812 (95%CI: 0.743-0.882). Logistic regression analysis showed that increased body mass index, sTIM-3 and Gal-9 were risk factors for T2DM complicated with CHD. Conclusion Increased serum levels of sTIM-3 and Gal-9 are risk factors for T2DM complicated with CHD.
Key words: diabetes mellitus, type 2; coronary disease; galectins; high mobility group proteins; sTIM-3
據國際糖尿病聯合會統計,目前全世界約有5.37億人患糖尿病,其中90%左右為2型糖尿?。═2DM)[1]。冠狀動脈粥樣硬化性心臟病(coronary heart disease,CHD)簡稱為冠心病,是糖尿病的大血管并發癥之一,動脈粥樣硬化是CHD的病理基礎,與非糖尿病患者比較,糖尿病患者發生動脈粥樣硬化斑塊的風險更大,程度也更重[2]。T細胞免疫球蛋白及黏蛋白分子-3(T cell immunoglobulin domain and mucin domain protein-3,TIM-3)是一種膜蛋白,表達在活化的輔助性T細胞(Th)1、自然殺傷細胞、樹突狀細胞、巨噬細胞、單核細胞等細胞表面[3]。TIM-3還存在可溶性蛋白的形式,即可溶性TIM-3(soluble TIM-3,sTIM-3)。sTIM-3來源于TIM-3基因表達水平升高與TIM-3從細胞膜表面脫落增加兩種情況[4]。TIM-3與其配體半乳糖凝集素-9(galectin-9,Gal-9)相互作用,抑制T細胞功能[5]。高遷移率族蛋白B1(high mobility group protein 1,HMGB1)是TIM-3的另一個重要配體[6]。研究發現,TIM-3表達與一些慢性疾病如糖尿病、動脈粥樣硬化、慢性病毒感染、類風濕性關節炎等相關性較強[7]。但sTIM-3及其配體Gal-9、HMGB1在T2DM并發CHD中的作用尚不明確。本研究通過檢測T2DM并發CHD患者血清中sTIM-3、Gal-9、HMGB1的變化,旨在發現T2DM并發CHD疾病的新型檢測標志物。
1 對象與方法
1.1 研究對象 選取2019年2月—2021年12月于淮安市第一人民醫院分院確診并住院治療的單純T2DM患者(T2DM組)、T2DM并發CHD患者(T2DM+CHD組)和同期健康體檢者(Con組)。T2DM的診斷符合2018年美國糖尿病協會糖尿病診療標準;CHD診斷符合中華醫學會心血管病分會制定的《慢性穩定性心絞痛診斷與治療指南》。排除標準:(1)患CHD外的T2DM其他并發癥者。(2)患急性心肌炎、嚴重心力衰竭者。(3)患自身免疫性疾病、血液系統疾病及其他重要臟器功能不全者。最終納入T2DM組50例,男26例,女24例,年齡31~76歲,平均(52.74±8.90)歲;T2DM+CHD組52例,男25例,女27例,年齡28~72歲,平均(53.15±8.62)歲;Con組48例,男23例,女25例,年齡34~77歲,平均(51.62±9.31)歲。本研究經患者知情同意,通過淮安市第一人民醫院分院倫理委員會批準(倫理批號:HAYYFY2019-KY002)。
1.2 資料收集 一般資料:收集年齡、性別、體質量指數(BMI)。實驗室資料:采集所有研究對象空腹靜脈血,使用酶聯免疫吸附試驗(ELISA)試劑盒(上海雙贏生物科技有限公司)檢測血清sTIM-3、Gal-9、HMGB1含量;使用日立全自動生化分析儀7600檢測空腹血糖(FBG)、超敏C-反應蛋白(hs-CRP)、三酰甘油(TG)、總膽固醇(TC)、低密度脂蛋白膽固醇(LDL-C)與高密度脂蛋白膽固醇(HDL-C);使用伯樂糖化血紅蛋白分析儀D-10檢測糖化血紅蛋白(HbA1c)。
1.3 統計學方法 采用SPSS 23.0軟件進行數據分析。符合正態分布的計量資料用x±s表示,多組間比較采用單因素方差分析,若方差不齊,組間多重比較采用Tamhane's T2檢驗;若方差齊,則采用LSD-t檢驗。非正態分布的計量資料用M(P25,P75)表示,多組間比較采用Kruskal-Wallis H檢驗,組間多重比較采用Bonferroni法。計數資料采用例(%)表示,組間比較用χ2檢驗。相關性分析采用Spearman法。采用受試者工作特征(ROC)曲線分析指標對T2DM并發CHD的診斷能力。使用多因素Logistic回歸分析T2DM并發CHD的影響因素。P<0.05為差異有統計學意義。
2 結果
2.1 3組間臨床資料比較 3組間性別、年齡、TC差異無統計學意義。與Con組相比,T2DM組BMI、FBG、HbA1c、hs-CRP升高,HDL-C降低(P<0.05);T2DM+CHD組BMI、FBG、HbA1c、hs-CRP、TG、LDL-C升高,HDL-C降低(P<0.05)。與T2DM組相比,T2DM+CHD組BMI、hs-CRP、TG、LDL-C升高,HDL-C降低(P<0.05)。見表1。
2.2 3組間sTIM-3、Gal-9和HMGB1比較 與Con組相比,T2DM組和T2DM+CHD組sTIM-3、Gal-9和HMGB1升高(P<0.05);與T2DM相比,T2DM+CHD組sTIM-3和Gal-9升高(P<0.05),HMGB1差異無統計學意義。見表2。
2.3 sTIM-3、Gal-9、HMGB1和FBG、hs-CRP的相關性分析 在所有受試者中,FBG與sTIM-3、Gal-9、HMGB1呈正相關,rs分別為0.613、0.472、0.619(P<0.05)。hs-CRP與sTIM-3、Gal-9、HMGB1呈正相關,rs分別為0.596、0.466、0.476(P<0.05)。sTIM-3與Gal-9、HMGB1呈正相關,rs分別為0.527和0.690(P<0.05);Gal-9與HMGB1呈正相關(rs=0.466,P<0.05)。
2.4 sTIM-3、Gal-9及兩者聯合檢測對T2DM并發CHD的診斷能力 ROC曲線結果顯示,sTIM-3、Gal-9及兩者聯合檢測診斷T2DM并發CHD的ROC曲線下面積(AUC)分別是0.794、0.735、0.812,聯合診斷效能更高,但sTIM-3診斷特異度較高,見表3、圖1。
2.5 T2DM并發CHD發生的影響因素 以T2DM是否合并CHD為因變量(否=0,是=1),以BMI、年齡、sTIM-3、Gal-9、HMGB1為自變量,進行Logistic回歸分析。結果顯示BMI、sTIM-3、Gal-9升高是T2DM并發CHD的危險因素(P<0.05),見表4。
3 討論
T2DM以高血糖、胰島素抵抗和慢性T細胞活化為特征,伴有低度慢性炎癥[8]。研究證實,人體血糖穩態紊亂后會激活T細胞,CD4+T細胞與CHD、頸動脈粥樣硬化等疾病發展有關[9]。Wang等[10]研究發現,T2DM患者NK細胞表面TIM-3表達水平顯著增加,且與HbA1c和FBG水平呈正相關。還有學者發現,與健康對照組相比,T2DM患者血清中sTIM-3水平顯著升高[11]。本研究結果顯示,與Con組相比,T2DM組患者血清中sTIM-3顯著升高,且血清sTIM-3的水平和hs-CRP呈正相關,表明sTIM-3可能參與了T2DM導致的低度慢性炎癥的發展。Zhang等[12]研究發現,TIM-3在CHD患者外周血CD4+T細胞表面高表達,且隨著CHD病情的加重而升高。Hou等[13]研究發現,冠狀動脈粥樣硬化患者外周血NK細胞表面TIM-3表達增加,且TIM-3與CRP和腫瘤壞死因子-α(TNF-α)水平相關。本研究中,與Con組、T2DM組相比,T2DM+CHD組患者血清中sTIM-3水平顯著升高,且sTIM-3與FBG呈正相關。推測人體血糖代謝紊亂導致外周血細胞膜表面sTIM-3脫落增加,影響了動脈粥樣硬化相關的炎癥微環境,進一步導致T2DM并發CHD的進展。
Gal-9是半乳糖結合蛋白家族的一員,最初作為T淋巴細胞分泌的一種嗜酸性粒細胞趨化因子而被發現,其在免疫調節中發揮重要作用[14]。Gal-9是TIM-3的配體,參與細胞聚集、黏附、分化[15]、凋亡[16]和炎癥反應[17]等。Sun等[18]發現,肥胖合并糖尿病患者血漿Gal-9水平顯著高于健康對照組和單純肥胖組,且肥胖合并糖尿病組的Gal-9水平與空腹胰島素和C肽呈正相關。本研究發現,與Con組相比,T2DM組患者血清中Gal-9水平顯著升高,推測原因為高糖狀態下,Gal-9通過與Th1細胞上表達的TIM-3結合,調節Th1免疫反應,從而調節T2DM的疾病進展。Kurose等[19]發現,T2DM合并慢性腎病的患者腎小球濾過率越低,血清Gal-9水平越高。本研究中,與T2DM組相比,T2DM+CHD組患者血清中Gal-9水平顯著升高,且Gal-9與sTIM-3、FBG、hs-CRP呈正相關。推測可能為T2DM患者機體內升高的Gal-9水平加劇了機體的慢性炎癥和應激反應,參與了動脈粥樣硬化的發生和進展。
HMGB1是一種高度保守的核蛋白,由壞死細胞被動釋放,由炎性細胞和一些非免疫細胞主動分泌[20]。Behl等[21]發現,HMGB1通過促進晚期糖化終產物受體和toll樣受體結合,進而激活核因子(NF)-κB通路,刺激與糖尿病相關的炎性因子產生,加重糖尿病相關的免疫和代謝反應。Chen等[22]發現,T2DM患者血清中HMGB1上調,且HMGB1水平與血清白細胞介素(IL)-6和TNF-α相關。本研究中T2DM患者血清HMGB1水平明顯高于Con組,且HMGB1與sTIM-3、FBG、hs-CRP呈正相關,推測可能是機體的高糖環境導致HMGB1水平持續升高,激活NF-κB信號通路,誘導炎性因子的產生和分泌,加重T2DM引起的慢性炎癥狀態。Benlier等[23]發現,與健康受試者相比,冠狀動脈疾病患者的血清HMGB1水平顯著增加。但在本研究中,T2DM組和T2DM+CHD組患者血清HMGB1水平差異無統計學意義,且HMGB1不是T2DM并發CHD發生的影響因素,推測高血糖可誘導HMGB1水平升高,但T2DM并發CHD疾病狀態下血清HMGB1水平并沒有持續升高。
本研究ROC曲線顯示,sTIM-3和Gal-9聯合診斷的效能較高,表明sTIM-3與Gal-9聯合檢測能夠提高對T2DM并發CHD的診斷能力,但是血清sTIM-3的診斷特異度更佳。Logistic回歸分析結果顯示,高水平的BMI、sTIM-3、Gal-9增加了T2DM并發CHD的發病風險。
綜上所述,sTIM-3、Gal-9可能通過影響炎癥的發生發展參與T2DM并發CHD的發病機制,有望成為T2DM并發CHD的新型檢驗標志物。由于本研究樣本量有限,未對T2DM合并CHD患者進行亞組分析,存在一定局限,且血清中sTIM-3與其配體Gal-9相互作用的具體機制尚不完全明確,還需深入研究。
參考文獻
[1] GUO J,SMITH S M. Newer drug treatments for type 2 diabetes[J]. BMJ,2021,373:n1171. doi:10.1136/bmj.n1171.
[2] THOMAS M C. Type 2 diabetes and heart failure:Challenges and solutions[J]. Curr Cardiol Rev,2016,12(3): 249-255. doi:10.2174/1573403x12666160606120254.
[3] DIXON K O,DAS M,KUCHROO V K. Human disease mutations highlight the inhibitory function of TIM-3[J]. Nat Genet,2018,50(12):1640-1641. doi:10.1038/s41588-018-0289-3.
[4] GROSSMAN T B,MINIS E,LOEB-ZEITLIN S E,et al. Soluble T cell immunoglobulin mucin domain 3(sTim-3)in maternal sera:A potential contributor to immune regulation during pregnancy[J]. J Matern Fetal Neonatal Med,2021,34(24):4119-4122. doi:10.1080/14767058.2019.1706471.
[5] HASTINGS W D,ANDERSON D E,KASSAM N,et al. TIM-3 is expressed on activated human CD4+ T cells and regulates Th1 and Th17 cytokines[J]. Eur J Immunol,2009,39:2492-2501. doi:10.1002/eji.200939274.
[6] CHEN S,DONG Z,YANG P,et al. Hepatitis B virus X protein stimulates high mobility group box 1 secretion and enhances hepatocellular carcinoma metastasis[J]. Cancer Lett,2017,394:22-32. doi:10.1016/j.canlet.2017.02.011.
[7] 鐘玉梅,陳洋,羅小超,等. Tim-3調控巨噬細胞極化在類風濕性關節炎中的研究進展[J]. 天津醫藥,2020,48(9):898-902. ZHONG Y M,CHEN Y,LUO X C,et al. Research progress of Tim-3 regulating the polarization of macrophage in rheumatoid arthritis[J]. Tianjin Med J,2020,48(9):898-902. doi:10.11958/20200625.
[8] KAMATA Y,TAKANO K,KISHIHARA E,et al. Distinct clinical characteristics and therapeutic modalities for diabetic ketoacidosis in type 1 and type 2 diabetes mellitus[J]. J Diabetes Complications,2017,31(2):468-472. doi:10.1016/j.jdiacomp.2016. 06.023.
[9] NYAMBUYA T M,DLUDLA P V,MXINWA V,et al. T-cell activation and cardiovascular risk in adults with type 2 diabetes mellitus:A systematic review and meta-analysis[J]. Clin Immunol,2020,210:108313. doi:10.1016/j.clim.2019.108313.
[10] WANG H,CAO K,LIU S,et al. Tim-3 expression causes NK cell dysfunction in type 2 diabetes patients[J]. Front Immunol,2022,13:852436. doi:10.3389/fimmu.2022.852436.
[11] 石新慧. 可溶性Tim-3在疾病中的表達及其意義的研究[D]. 北京:中國人民解放軍軍事醫學科學院基礎醫學研究所,2016. SHI X H. Expression and clinical significance of soluble Tim-3 in different diseases[D]. Beijing:Institute of Basic Medical Sciences,Academy of Military Medical Sciences,2016.
[12] ZHANG J,ZHAN F,LIU H L. Expression level and significance of Tim-3 in CD4+ T lymphocytes in peripheral blood of patients with coronary heart disease[J]. Braz J Cardiovasc Surg,2022,37(3):350-355. doi:10.21470/1678-9741-2020-0509.
[13] HOU N,ZHAO D,LIU Y,et al. Increased expression of T cell immunoglobulin- and mucin domain-containing molecule-3 on natural killer cells in atherogenesis[J]. Atherosclerosis,2012,222(1):67-73. doi:10.1016/j.atherosclerosis.2012.02.009.
[14] HAO H,HE M,LI J,et al. Upregulation of the Tim-3/Gal-9 pathway and correlation with the development of preeclampsia[J]. Eur J Obstet Gynecol Reprod Biol,2015,194:85-91. doi:10.1016/j.ejogrb.2015.08.022.
[15] HIRASHIMA M,KASHIO Y,NISHI N,et al. Galectin-9 in physiological and pathological conditions[J]. Glycoconj J,2002,19(7/8/9):593-600. doi:10.1023/B:GLYC.0000014090.63206.2f.
[16] SAKAI K,KAWATA E,ASHIHARA E,et al. Galectin-9 ameliorates acute GVH disease through the induction of T-cell apoptosis[J]. Eur J Immunol,2011,41(1):67-75. doi:10.1002/eji.200939931.
[17] MANSOUR A A,RAUCCI F,SAVIANO A,et al. Galectin-9 regulates monosodium urate crystal-induced gouty inflammation through the modulation of Treg/Th17 ratio[J]. Front Immunol,2021,12:762016. doi:10.3389/ fimmu.2021.762016.
[18] SUN L,ZOU S,DING S,et al. Circulating T cells exhibit different TIM3/Galectin-9 expression in patients with obesity and obesity-related diabetes[J]. J Diabetes Res,2020,2020:2583257. doi:10.1155/2020/2583257.
[19] KUROSE Y,WADA J,KANZAKI M O,et al. Serum galectin-9 levels are elevated in the patients with type 2 diabetes and chronic kidney disease[J]. BMC Nephrol,2013,14:23. doi:10.1186/1471-2369-14-23.
[20] SU Z,WANG T,ZHU H,et al. HMGB1 modulates Lewis cell autophagy and promotes cell survival via RAGE-HMGB1-Erk1/2 positive feedback during nutrient depletion[J]. Immunobiology,2015,220(5):539-544. doi:10.1016/j.imbio.2014.12.009.
[21] BEHL T,SHARMA E,SEHGAL A,et al. Expatiating the molecular approaches of HMGB1 in diabetes mellitus:Highlighting signalling pathways via RAGE and TLRs[J]. Mol Biol Rep,2021,48(2):1869-1881. doi:10.1007 /s11033-020-06130-x.
[22] CHEN Y,QIAO F,ZHAO Y,et al. HMGB1 is activated in type 2 diabetes mellitus patients and in mesangial cells in response to high glucose[J]. Int J Clin Exp Pathol,2015,8(6):6683-6691.
[23] BENLIER N,ERDO?AN M B,KE?IO?LU S,et al. Association of high mobility group box 1 protein with coronary artery disease[J]. Asian Cardiovasc Thorac Ann,2019,27(4):251-255. doi:10.1177/0218492319835725.
(2022-08-22收稿 2022-10-12修回)
(本文編輯 李志蕓)