臧新山,王康文,張先亮,王雪平,王軍,梁雨,裴小雨,任翔,呂宇龍,高宇,王星星,彭云玲,馬雄風,,4
棉花功能基因圖位克隆的研究進展
臧新山1,2,4,王康文1,3,張先亮1,2,王雪平1,王軍1,梁雨1,裴小雨1,任翔1,2,呂宇龍1,2,高宇1,王星星1,彭云玲3,馬雄風1
1中國農業科學院棉花研究所/棉花生物學國家重點實驗室/農業農村部棉花生物學與遺傳育種重點實驗室,河南安陽 455000;2中國農業科學院西部農業研究中心,新疆昌吉 831100;3甘肅農業大學農學院/甘肅省干旱生境作物學重點實驗室/甘肅省作物遺傳改良與種質創新重點實驗室,蘭州 730070;4鄭州大學農學院,鄭州 450001
圖位克隆是鑒定特定表型變異遺傳基礎的經典有效策略。棉花功能基因圖位克隆,對育種工作者創新利用種質資源、培育和定向設計新品種、提高育種效率有重要指導作用。近年來,隨著雷蒙德氏棉、亞洲棉、陸地棉和海島棉等基因組測序的完成和不斷完善,基因的物理位置信息已知,省去了篩選基因組文庫和構建候選區段物理圖譜的過程,棉花功能基因圖位克隆研究進入快速發展期。2016年,利用正向遺傳學方法首次圖位克隆了陸地棉顯性無腺體Gl(),目前已有20個質量性狀基因和5個數量性狀基因通過圖位克隆策略鑒定。本文從基因符號、名稱、染色體定位、候選基因等方面系統綜述棉花纖維、腺體、蜜腺、葉型、株型、植株顏色、育性等性狀相關圖位克隆基因;并從圖位克隆作圖群體和集團分離分析法測序(bulked segregate analysis-sequencing,BSA-seq)應用等方面系統綜述圖位克隆策略。隨著基因組測序技術的升級、測序成本的降低、BSA-seq等新方法的應用,圖位克隆發展更加快速準確。利用轉基因和基因組編輯技術對基因功能開展全面系統的鑒定評價,將為棉花分子設計育種提供理論基礎和基因資源,加快棉花遺傳改良進程。
棉花;圖位克隆;分子標記;作圖群體;BSA-seq
棉花是重要的天然纖維作物,也是重要的油料作物,在國民經濟中占有重要地位。圖位克隆是鑒定特定表型變異遺傳基礎的經典有效策略,從表型變異入手,通過組配遺傳群體、精細定位引起表型變異的染色體片段,并克隆候選基因,屬于正向遺傳學研究。棉花功能基因定位和圖位克隆研究為棉花分子設計育種提供了基因資源。
棉花基因組學的快速發展為棉花功能基因圖位克隆奠定了堅實基礎。2012年,棉花雷蒙德氏棉D基因組全基因組測序完成[1-2]。2014年,亞洲棉全基因組測序完成[3]。2015年,異源四倍體陸地棉品種TM-1[4-5]、海島棉品種3-79和Xinhai21全基因組測序完成[6-7]。近年來,隨著三代測序技術的不斷發展完善,亞洲棉、陸地棉和海島棉基因組不斷完善,并且多個陸地棉栽培品種的基因組也相繼組裝完成[8-11]。隨著棉花參考基因組測序數據的陸續公布,棉花圖位克隆研究取得新突破,并發展迅速。
棉花功能基因圖位克隆研究相對于主糧作物研究滯后,直至2016年,陸地棉腺體Gl首次被圖位克隆鑒定[12]。因為陸地棉和海島棉基因組是復雜的異源四倍體(AADD,包括2個亞基因組(At和Dt)),所以高質量參考基因組發布較晚。本文從棉花質量性狀和數量性狀基因的圖位克隆及策略方面綜述纖維、腺體、蜜腺、葉型、株型、植株顏色、育性等性狀的研究進展。
質量性狀一般受1—2個主效基因控制,遺傳基礎簡單,雜交F2群體分離,呈明顯的不連續變異。迄今,棉花中已有20個質量性狀基因被圖位克隆(表1)。
1.1.1 纖維 棉花纖維是紡織工業最重要的天然原料,分為長絨(Lint)和短絨(Fuzz)。軋花時,從種子上軋下來的是長絨,留在種子上的是短絨[13]。目前,已有光籽(N)、李氏無纖維(Li和Li)和纖維顏色(Lc)等纖維性狀相關基因被克隆。
光籽:2016年,Wan等[14]克隆了陸地棉顯性光籽N——,為MYB類轉錄因子家族成員。在突變體N中極低表達,與天然反義轉錄本(natural antisense transcripts,NAT)產生相關,的mRNA可能與NAT形成dsRNA,進而影響纖維發育,這是棉花中第一個通過圖位克隆方法鑒定到的纖維發育調控基因。
李氏無纖維:2017年,Thyssen等[15]克隆了顯性李氏無纖維基因Li——,其第65個氨基酸由甘氨酸(Glycine,Gly)突變為纈氨酸(Valine,Val),影響了棉花細胞骨架和極性生長,導致無纖維表型。2018年,Wu等[16]克隆了調控纖維起始的隱性基因Li——,為MIXTA類家族成員,在726 bp處由堿基胞嘧啶(Cytosine,C)突變為腺嘌呤(Adenine,A),導致無纖維表型。
纖維顏色:2018年,Yan等[17]克隆到顯性棕色纖維基因Lc——,為TRANSPARENT TESTA 2(TT2)家族成員,調控磷脂酸的生物合成與纖維著色。
1.1.2 腺體 腺體是棉屬植物特有的形態特征之一,在棉花的莖、葉、花、鈴等組織上均有分布。棉花腺體主要包括莖稈無腺體(gl、Gl和Gl)、有無腺體植株(Gl、Gl、Gl、Gl和gl)、無腺體植株修飾基因(gl和gl)和滲漏腺體基因()[13]。腺體中的棉酚有利于棉花抵抗病蟲害及不良環境的脅迫,但對人畜具有毒害作用。目前,腺體相關基因Gl和gl已被圖位克隆。
2016年,Ma等[12]克隆了控制腺體有無的顯性基因Gl——,為bHLH轉錄因子家族成員,是Gl和Gl的復等位基因;Gl存在時,能夠消除棉花植株的所有腺體,導致棉酚含量降低,這是第一個利用正向遺傳學手段圖位克隆的棉花基因。同年,Cheng等[18]也精細定位到該基因。2021年,Zang等[19]克隆了隱性莖稈無腺體基因gl——,為GRAS家族成員,主要調控棉花莖和葉柄上腺體的形成;在突變體T582中,編碼區2 009 bp處堿基胞嘧啶(C)突變為腺嘌呤(A),翻譯提前終止,導致莖上無腺體表型。
1.1.3 蜜腺 蜜腺是植物體上一種分泌糖液的外部分泌結構。棉花蜜腺較多,蜜腺期長,是棉花害蟲的重要食物來源。陸地棉有葉蜜腺、花蜜腺和花外蜜腺。葉蜜腺通常位于棉花葉片背面中脈上,離葉基約1 cm處,呈窩狀凹陷,窩內有許多乳頭狀突起;以花萼為分界,花萼內側基部的蜜腺稱為花蜜腺;而花萼外側的蜜腺稱為花外蜜腺。花外蜜腺()、無蜜腺(ne和ne)基因已被圖位克隆。
2020年,HU等[20]克隆了亞洲棉隱性花外蜜腺基因,編碼含有PB1結構域的蛋白,在無蜜腺突變體中,由于缺失5個氨基酸而引起蛋白質三維結構的改變,導致蛋白功能發生改變。2021年,PEI等[21]克隆了隱性無蜜腺基因GhNe和GhNe,屬于AD亞基因組上的同源基因,編碼AP2/ERF轉錄因子家族成員,調控花外蜜腺和花蜜腺發育。
1.1.4 葉型 植物葉片是進行光合作用的主要場所,根據葉裂的深淺,棉屬的葉型可以分為闊葉和雞腳葉,雞腳葉又可分為超雞腳葉和亞雞腳葉。陸地棉葉型主要為闊葉,少數品種為雞腳葉或超雞腳葉;海島棉葉片一般為三至五裂,葉型多數為海島型雞腳葉,也存在少數闊葉。雞腳葉基因位點上有多個不完全顯性等位基因,主要包括雞腳葉L、超雞腳葉L、亞雞腳葉L、海島棉葉L等。
2016年,ZHU等[22]克隆了調控葉型的復等位基因L——,為同源異型-亮氨酸拉鏈(HD-Zip)轉錄因子家族成員;與雞腳葉材料相比,闊葉材料有8 bp的缺失,翻譯提前終止,出現闊葉表型。同年,CHANG等[23]也克隆了L。2017年,ANDRES等[24]克隆了調控葉型的基因-D——,發現雞腳葉葉型棉花的啟動子存在133 bp的串聯重復,表達量上升;闊葉葉型棉花的第3個外顯子存在8 bp的缺失,翻譯提前終止。
1.1.5 株型 棉花株型結構比較復雜,具有無限生長、營養生長和生殖生長重疊等特點。棉花分枝分為營養枝和果枝,營養枝在主莖的下部著生,果枝在主莖的上部著生。
2018年,SI等[25]克隆了隱性叢生鈴基因Cl——,與番茄()同源,其811 bp處的胞嘧啶(C)突變為胸腺嘧啶(Thymine,T),導致第113位氨基酸從脯氨酸(Proline,Pro)突變為絲氨酸(Serine,Ser),出現零式果枝表型。同年,LIU等[26]克隆了隱性短果枝基因——,與棉花生長習性和叢生鈴形成相關。2020年,CHEN等[27]克隆了隱性柱頭外露ob——,在陸地棉中,它存在1 783 bp的缺失,導致第3個外顯子丟失;在海島棉(3-79)中,它的第3個外顯子存在8 bp缺失,導致出現柱頭外露表型。
1.1.6 植株顏色 棉花植株的顏色主要包括葉綠素缺失或改變導致的持久性的顏色變化和芽黃。棉花植株一般為綠色,也包括紅株R、亞紅株R和矮紅株R。長期以來,紅色植株一直作為形態學標記應用于棉花遺傳研究,而且紅色植株相比綠色植株的抗蟲性更好。芽黃是優良的指示性狀,在棉花雜種優勢利用中被棉花育種工作者重視;多數芽黃突變體在苗期表現明顯,子葉或真葉呈不同程度的黃色,后期逐漸轉為綠色。
2017年,ZHU等[28]克隆了隱性芽黃基因v——,編碼鎂離子螯合酶,在AAA+保守區域存在1個位點突變,即第360位氨基酸由精氨酸(Arginine,Arg)突變為賴氨酸(Lysine,Lys),進而導致芽黃表型。2018年,MAO等[29]也克隆了該基因。2019年,LI等[30]克隆了顯性紅株基因R——,為R2R3-MYB轉錄因子家族成員,通過調控花青素合成途徑相關基因的表達,促進花青素合成。
1.1.7 育性 雜種優勢利用是提高作物產量、改善品質、增強抗性的重要途徑。棉花具有明顯的雜種優勢,雄性不育是雜種優勢利用的有效途徑。棉花雄性不育系主要有核雄性不育系、質核互作型雄性不育系和光溫敏感型不育系3種類型。
2019年,DENG等[31]克隆了Le——,是造成海島棉和陸地棉雜交種致死的關鍵基因。2022年,MA等[32]克隆了雙隱性核不育系基因——/,基因編碼區突變導致酶催化活性喪失,當2個基因都突變時,出現不育表型。同年,WU等[33]克隆了隱性核不育恢復基因,在耐高溫棉花花藥中受高溫誘導提前表達,而在高溫敏感材料花藥中不受高溫誘導,影響花粉外壁和花粉刺突的正常形成。
1.1.8 其他性狀 類病變突變體是一種在沒有受到生物和非生物脅迫下,植物產生壞死病斑的突變材料。2017年,CHAI等[34]克隆了單隱性類病變突變體基因,編碼5-氨基乙酰丙酸脫水酶(ALAD蛋白),可以增強對黃萎病的抗性。
花冠顏色是棉花重要的顯性形態標記,將紅色花冠作為性狀標記為轉基因抗蟲雜交棉帶上天然防偽標簽。2022年,CHAI等[35]克隆了顯性紅色花瓣基因R——,編碼谷胱甘肽-S-轉移酶(glutathione S-transferase,GST),bZIP轉錄因子基因調控,且特異性結合陸地棉紅色花冠近等基因系啟動子,誘導花青素的積累,形成紅色花瓣。
花瓣的斑點、條紋可以提高傳粉昆蟲的到訪率,提升棉花三系雜交種產量。2022年,ABID等[36]克隆了海島棉控制花瓣基斑形成的關鍵基因,在陸地棉中,該基因的突變導致花瓣基斑消失;它可以直接與黃酮類物質合成基因(、、和)啟動子結合,調控花瓣基斑的形成。

表1 棉花質量性狀基因的圖位克隆
數量性狀屬于主基因和多基因的混合遺傳模式,受環境影響較大,其表型和基因型之間無明確對應關系,需用度量數值來表示其表型。棉花大多數農藝性狀(如品質、產量、抗逆性和生育期等)均屬于數量性狀(表2)。
棉花纖維品質直接關系紡織產品的質量,決定了其在市場上的競爭力。2021年,ZANG等[37]克隆了控制纖維強度的主效QTL位點——,通過泛素26s蛋白酶體途徑降低纖維中GhSPL1蛋白含量來調節纖維螺旋生長,揭示了螺旋纖維和纖維強度之間的內在關系。2021年,ZHANG等[38]克隆了纖維長度主效QTL位點——,其啟動子區域缺失214 bp,導致不能與NF-YA轉錄因子相互作用,進而不能調控棉纖維的伸長。
鈴重是棉花重要的產量構成因素,受環境因素、品種遺傳等因素影響而存在差異。2020年,AHMED等[39]克隆了調控棉花鈴重的,編碼油菜素內酯反應環H2蛋白,調控棉鈴發育。
黃萎病(,VW)是一種土傳真菌病害,嚴重影響棉花生產。2018年,ZHAO等[40]克隆了海島棉黃萎病抗性基因和。

表2 棉花數量性狀基因的圖位克隆
圖位克隆首先需要構建作圖群體,通過雜交、回交和自交等方式產生群體后代(如F2、BC1、RIL、NIL等),并進行遺傳圖譜構建。基于遺傳圖譜,利用多態性分子標記進行目的基因初步定位,再開發多態性分子標記對其進行精細定位,進而圖位克隆到候選基因。本文對圖位克隆作圖群體(表3)和BSA-seq應用進行了綜述。
利用F2群體圖位克隆到的基因主要包括Gl、1、、、v、ob、、、L、、、、和,定位群體大小分別為2 197[12]/4 530[18]、2 012[14]、763[34]、2 481[20]、2 576[28]/4 232[29]、6 137[27]、1 678[35]、1 962[32]、2 843[23]、5 780[36]、1 864[37]、1 081[38]、176[40]和176個[40],平均群體大小為2 529個。如DONG等[41]利用BC1群體將基因Gl初步定位在分子標記NAU3778和NAU2251b之間1 Mb的物理區間內;在此基礎上,MA等[12]利用2 197個F2群體,將Gl精細定位在分子標記w7954和w5383之間43 kb的物理區間內,區間內存在7個基因,進而克隆了顯性無腺體基因Gl——。如ZANG等[37]利用F2群體將纖維強度主效QTL位點初步定位在D03染色體23.5 cM的遺傳區間內,進一步開發SSR、SNP和InDel分子標記,將精細定位在K5219和K5221之間1.14 cM的遺傳區間內,對應0.93 Mb的物理區間,區間內存在23個基因,進而克隆了——。
利用F2群體結合其他群體圖位克隆到的基因主要包括Li、/、Cl、Lc和,群體大小分別為9 330[15]、6 477[21]、2 079[25]、1 968[17]和1 904個[33],平均群體大小為4 351個。如SI等[25]前期利用F2群體將Cl初步定位到D07染色體,進一步利用852個F2/BC1群體將Cl精細定位在分子標記K4918和K5833之間0.39 Mb的物理區間內,區間內存在13個基因,進而克隆了隱性叢生鈴基因Cl——。YAN等[17]前期利用270個RIL群體對Lc進行初步定位,利用1 698個F2群體進一步將Lc精細定位到分子標記TT2-1A和TT2-3A之間67 kb的物理區間內,區間內存在3個基因,進而克隆了顯性棕色纖維基因Lc——。WU等[33]前期利用BSA-seq方法,將初步定位在630 kb的物理區間內,進一步利用NIL群體將精細定位到103 kb的物理區間內,區間內存在9個基因,進而克隆了單隱性敗育恢復基因。

表3 棉花圖位克隆的作圖群體

續表3 Continued table 3

續表3 Continued table 3
SONG等[42]前期利用F2群體將Le初步定位在分子標記BNL3279和BNL1154之間9.4 cM的遺傳區間內。DENG等[31]進一步利用BC1群體(群體大小為2 013個)將Le精細定位到分子標記K1805和W8424之間267 kb的物理區間內,區間內存在3個基因,進而克隆了基因Le——。
LIU等[43]將R初步定位在D07染色體上,在此基礎上,LI等[30]進一步開發了分子標記,利用RIL群體(群體大小為270個)將基因R精細定位到分子標記S5和S6之間136 kb的物理區間內,區間內存在3個基因,進而克隆了紅色植株基因R——。AHMED等[39]首先利用BSA-seq在第12染色體上檢測到QTL位點,然后利用F3群體將其定位在1.8 cM的遺傳區間內,進一步利用F4群體將其精細定位在0.89 cM的遺傳區間內,最終將其定位到分子標記AD-A12_07和AD-FM_44之間180 kb的物理區間內,區間內存在11個基因,進而克隆了調控棉花鈴重的主效QTL位點——。
集團分離分析法(bulked segregant analysis,BSA)是一種快速定位控制目標性狀基因的方法,由MICHELMORE等[44]于1991年首次提出,并成功應用于萵苣霜霉病抗性基因的遺傳定位和連鎖分子標記開發。
BSA-seq是由BSA和高通量測序技術結合而成簡單、高效、準確的遺傳定位策略。從作圖群體中挑選極端個體,構成2個DNA池;對親本和2個DNA池進行高通量測序,鑒定親本和2個DNA池中的共有SNP,計算2個DNA池中相同變異位點的基因型頻率及其差值;以差值體現標記在2個DNA池間的多態性,進而對候選基因進行定位。高通量測序技術的快速迭代與發展,極大地推進了BSA-seq技術的應用,先后衍生出了Mutmap、Mutmap+、QTL-seq、mQTL-seq、RAD-seq和SLAF-seq等技術。此外,BSR-seq技術也應用于一些未獲得參考基因組的物種進行基因定位。BSA-seq技術具有快速、成本低、適用于多種作圖群體等特點,極大促進棉花功能基因圖位克隆的研究進程[28]。
BSA-seq已被大量用于水稻、大豆、黃瓜、番茄等植物基因定位中,成功定位了水稻耐鹽[45]、稻瘟病[46]、大豆疫霉病[47]、黃瓜早花[48]、番茄果實重量[49]等基因。在棉花中,通過BSA-seq定位的基因主要包括gl[19]、Cl[25]、v[28]、Li[50]和[51]。如ZHU等[28]利用BSA-seq將v初步定位在D10染色體1.5 cM的遺傳區間內,進一步將其精細定位到分子標記K5499和K5846之間44 kb的物理區間內,區間內存在8個基因,進而克隆了芽黃基因v——。
棉花參考基因組發布相對滯后,導致棉花功能基因圖位克隆研究進展緩慢。2012年以來,隨著棉花基因組測序數據的相繼公布和不斷完善,棉花功能基因圖位克隆研究進入快速發展期。
1986年,COULSON等[52]首次提出圖位克隆的概念,是隨著分子標記開發、遺傳連鎖圖譜構建逐步發展起來的一種經典的基因克隆策略。在圖位克隆提出的早期階段,由于缺乏基因組序列信息,只能根據候選基因在染色體上精細定位的遺傳信息,篩選與候選基因緊密連鎖的基因組文庫,構建候選基因區域的染色體片段重疊群,再通過染色體步移縮小定位區間,最終克隆候選基因并鑒定其生物學功能;隨著基因組序列信息的不斷完善,分子標記的不斷開發,基因物理位置信息已知,省去了篩選基因組文庫和構建候選區段物理圖譜的過程,圖位克隆技術越來越成為高效可行的鑒定候選基因的方法。
目前,除少數存在重組交換異常的染色體區段,通過圖位克隆策略挖掘棉花功能基因已基本不存在瓶頸。隨著基因組測序技術的升級,測序成本的降低,BSA-seq等[45]一些新方法的出現,使定位克隆更加快速準確,越來越多棉花功能基因相繼被圖位克隆。全基因組關聯分析(genome-wide association study,GWAS)也逐漸成為篩選功能基因位點的重要手段[53-54],但GWAS在一般情況下較難直接克隆到目的基因。利用轉基因[55]和基因組編輯技術[56]對基因功能開展全面系統的鑒定評價,為棉花分子設計育種提供理論基礎和基因資源,必將加快棉花遺傳改良進程。
[1] WANG K B, WANG Z W, LI F G, YE W W, WANG J Y, SONG G L, YUE Z, CONG L, SHANG H H, ZHU S L, ZOU C S, LI Q, YUAN Y L, LU C R, WEI H L, GOU C Y, ZHENG Z Q, YIN Y, ZHANG X Y, LIU K, WANG B, SONG C, SHI N, KOHEL R J, PERCY R G, YU J Z, ZHU Y X, WANG J, YU S X. The draft genome of a diploid cotton. Nature Genetics, 2012, 44(10): 1098-1103.
[2] PATERSON A H, WENDEL J F, GUNDLACH H, GUO H, JENKINS J, JIN D C, LLEWELLYN D, SHOWMAKER K C, SHU S Q, UDALL J, YOO M J, BYERS R, CHEN W, DORON-FAIGENBOIM A, DUKE M V, GONG L, GRIMWOOD J, GROVER C, GRUPP K, HU G J, LEE T H, LI J P, LIN L F, LIU T, MARLER B S, PAGE J T, ROBERTS A W, ROMANEL E, SANDERS W S, SZADKOWSKI E, TAN X, TANG H B, XU C M, WANG J P, WANG Z N, ZHANG D, ZHANG L, ASHRAFI H, BEDON F, BOWERS J E, BRUBAKER C L, CHEE P W, DAS S, GINGLE A R, HAIGLER C H, HARKER D, HOFFMANN L V, HOVAV R, JONES D C, LEMKE C, MANSOOR S, RAHMAN M U, RAINVILLE L N, RAMBANI A, REDDY U K, RONG J-K, SARANGA Y, SCHEFFLER B E, SCHEFFLER J A, STELLY D M, TRIPLETT B A, VAN DEYNZE A, VASLIN M F S, WAGHMARE V N, WALFORD S A, WRIGHT R J, ZAKI E A, ZHANG T D, DENNIS E S, MAYER K F X, PETERSON D G, ROKHSAR D S, WANG X Y, SCHMUTZ J. Repeated polyploidization ofgenomes and the evolution of spinnable cotton fibres. Nature, 2012, 492(7429): 423-427.
[3] LI F G, FAN G Y, WANG K B, SUN F M, YUAN Y L, SONG G L, LI Q, MA Z Y, LU C R, ZOU C S, CHEN W B, LIANG X M, SHANG H H, LIU W Q, SHI C C, XIAO G H, GOU C Y, YE W W, XU X, ZHANG X Y, WEI H L, LI Z F, ZHANG G Y, WANG J Y, LIU K, KOHEL R J, PERCY R G, YU J Z, ZHU Y X, WANG J, YU S X. Genome sequence of the cultivated cotton. Nature Genetics, 2014, 46(6): 567-572.
[4] LI F G, FAN G Y, LU C R, XIAO G H, ZOU C S, KOHEL R J, MA Z Y, SHANG H H, MA X F, WU J Y, LIANG X M, HUANG G, PERCY R G, LIU K, YANG W H, CHEN W B, DU X M, SHI C C, YUAN Y L, YE W W, LIU X, ZHANG X Y, LIU W Q, WEI H L, WEI S J, HUANG G D, ZHANG X L, ZHU S J, ZHANG H, SUN F M, WANG X F, LIANG J, WANG J H, HE Q, HUANG L H, WANG J, CUI J J, SONG G L, WANG K B, XU X, YU J Z, ZHU Y X, YU S X. Genome sequence of cultivated Upland cotton (TM-1) provides insights into genome evolution. Nature Biotechnology, 2015, 33(5): 524-530.
[5] ZHANG T Z, HU Y, JIANG W K, FANG L, GUAN X Y, CHEN J D, ZHANG J B, SASKI C A, SCHEFFLER B E, STELLY D M, HULSE-KEMP A M, WAN Q, LIU B L, LIU C X, WANG S, PAN M Q, WANG Y K, WANG D W, YE W X, CHANG L J, ZHANG W P, SONG Q X, KIRKBRIDE R C, CHEN X Y, DENNIS E, LLEWELLYN D J, PETERSON D G, THAXTON P, JONES D C, WANG Q, XU X Y, ZHANG H, WU H T, ZHOU L, MEI G F, CHEN S Q, TIAN Y, XIANG D, LI X H, DING J, ZUO Q Y, TAO L N, LIU Y C, LI J, LIN Y, HUI Y Y, CAO Z S, CAI C P, ZHU X F, JIANG Z, ZHOU B L, GUO W Z, LI R Q, CHEN Z J. Sequencing of allotetraploid cotton (L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015, 33(5): 531-537.
[6] YUAN D J, TANG Z H, WANG M J, GAO W H, TU L L, JIN X, CHEN L L, HE Y H, ZHANG L, ZHU L F, LI Y, LIANG Q Q, LIN Z X, YANG X Y, LIU N, JIN S X, LEI Y, DING Y H, LI G L, RUAN X A, RUAN Y J, ZHANG X L. The genome sequence of Sea-Island cotton () provides insights into the allopolyploidization and development of superior spinnable fibres. Scientific Reports, 2016, 5(1): 17662.
[7] LIU X, ZHAO B, ZHENG H J, HU Y, LU G, YANG C Q, CHEN J D, CHEN J J, CHEN D Y, ZHANG L, ZHOU Y, WANG L J, GUO W Z, BAI Y L, RUAN J X, SHANGGUAN X X, MAO Y B, SHAN C M, JIANG J P, ZHU Y Q, JIN L, KANG H, CHEN S T, HE X L, WANG R, WANG Y Z, CHEN J, WANG L J, YU S T, WANG B Y, WEI J, SONG S C, LU X Y, GAO Z C, GU W Y, DENG X, MA D, WANG S, LIANG W H, FANG L, CAI C P, ZHU X F, ZHOU B L, JEFFREY CHEN Z, XU S H, ZHANG Y G, WANG S Y, ZHANG T Z, ZHAO G P, CHEN X Y.genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Scientific Reports, 2015, 5(1): 14139.
[8] MA Z Y, ZHANG Y, WU L Q, ZHANG G Y, SUN Z W, LI Z K, JIANG Y F, KE H F, CHEN B, LIU Z W, GU Q S, WANG Z C, WANG G N, YANG J, WU J H, YAN Y Y, MENG C S, LI L H, LI X X, MO S J, WU N, MA L M, CHEN L T, ZHANG M, SI A J, YANG Z W, WANG N, WU L Z, ZHANG D M, CUI Y R, CUI J, LV X, LI Y, SHI R K, DUAN Y H, TIAN S L, WANG X F. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nature Genetics, 2021, 53(9): 1385-1391.
[9] HE S P, SUN G F, GENG X L, GONG W F, DAI P H, JIA Y H, SHI W J, PAN Z E, WANG J D, WANG L Y, XIAO S H, CHEN B J, CUI S F, YOU C Y, XIE Z M, WANG F, SUN J, FU G Y, PENG Z, HU D W, WANG L R, PANG B Y, DU X M. The genomic basis of geographic differentiation and fiber improvement in cultivated cotton. Nature Genetics, 2021, 53(6): 916-924.
[10] HUANG G, WU Z G, PERCY R G, BAI M Z, LI Y, FRELICHOWSKI J E, HU J, WANG K, YU J Z, ZHU Y X. Genome sequence ofand genome updates ofandprovide insights into cotton A-genome evolution. Nature Genetics, 2020, 52(5): 516-524.
[11] YANG Z E, GE X Y, YANG Z R, QIN W Q, SUN G F, WANG Z, LI Z, LIU J, WU J, WANG Y, LU L L, WANG P, MO H J, ZHANG X Y, LI F G. Extensive intraspecific gene order and gene structural variations in upland cotton cultivars. Nature Communications, 2019, 10(1): 2989.
[12] MA D, HU Y, YANG C Q, LIU B L, FANG L, WAN Q, LIANG W H, MEI G F, WANG L J, WANG H P, DING L Y, DONG C G, PAN M Q, CHEN J D, WANG S, CHEN S Q, CAI C P, ZHU X F, GUAN X Y, ZHOU B L, ZHU S J, WANG J W, GUO W Z, CHEN X Y, ZHANG T Z. Genetic basis for glandular trichome formation in cotton. Nature Communications, 2016, 7: 10456.
[13] 臧新山, 耿延會, 裴文鋒, 吳嫚, 李興麗, 張金發, 于霽雯. 棉花形態性狀質量遺傳分析與基因定位研究進展. 棉花學報, 2018, 30(6): 473-485.
ZANG X S, GENG Y H, PEI W F, WU M, LI X L, ZHANG J F, YU J W. Research progress on the mendelian genetic analysis and molecular mapping of morphological qualitative traits in cotton. Cotton Science, 2018, 30(6): 473-485. (in Chinese)
[14] WAN Q, GUAN X Y, YANG N N, WU H T, PAN M Q, LIU B L, FANG L, YANG S P, HU Y, YE W X, ZHANG H, MA P Y, CHEN J D, WANG Q, MEI G F, CAI C P, YANG D L, WANG J W, GUO W Z, ZHANG W H, CHEN X Y, ZHANG T Z. Small interfering RNAs from bidirectional transcripts ofregulate cotton fiber development. The New Phytologist, 2016, 210(4): 1298-1310.
[15] THYSSEN G N, FANG D D, TURLEY R B, FLORANE C B, LI P, MATTISON C P, NAOUMKINA M. A Gly65Val substitution in an actin,, disrupts cell polarity and F-actin organization resulting in dwarf, lintless cotton plants. The Plant Journal, 2017, 90(1): 111-121.
[16] WU H T, TIAN Y, WAN Q, FANG L, GUAN X Y, CHEN J D, HU Y, YE W X, ZHANG H, GUO W Z, CHEN X Y, ZHANG T Z. Genetics and evolution ofgenes regulating cotton lint fiber development. The New Phytologist, 2018, 217(2): 883-895.
[17] YAN Q, WANG Y, LI Q, ZHANG Z S, DING H, ZHANG Y, LIU H S, LUO M, LIU D X, SONG W, LIU H F, YAO D, OUYANG X F, LI Y H, LI X, PEI Y, XIAO Y H. Up-regulation ofin cotton fibres during secondary wall thickening results in brown fibres with improved quality. Plant Biotechnology Journal, 2018, 16(10): 1735-1747.
[18] CHENG H L, LU C R, YU J Z, ZOU C S, ZHANG Y P, WANG Q L, HUANG J, FENG X X, JIANG P F, YANG W C, SONG G L. Fine mapping and candidate gene analysis of the dominant glandless geneGlin cotton (spp.). Theoretical and Applied Genetics, 2016, 129(7): 1347-1355.
[19] ZANG Y H, XU C Y, XUAN L S, DING L Y, ZHU J K, SI Z F, ZHANG T Z, HU Y. Identification and characteristics of a novel gland-forming gene in cotton. The Plant Journal, 2021, 108(3): 781-792.
[20] HU W, QIN W Q, JIN Y Y, WANG P, YAN Q D, LI F G, YANG Z E. Genetic and evolution analysis of extrafloral nectary in cotton. Plant Biotechnology Journal, 2020, 18(10): 2081-2095.
[21] PEI Y F, ZHANG J, WU P, YE L, YANG D F, CHEN J D, LI J, HU Y, ZHU X F, GUO X P, ZHANG T Z.encoding a class VIIIb AP2/ERF is required for both extrafloral and floral nectary development in. The Plant Journal, 2021, 106(4): 1116-1127.
[22] ZHU Q H, ZHANG J, LIU D X, STILLER W, LIU D J, ZHANG Z S, LLEWELLYN D, WILSON I. Integrated mapping and characterization of the gene underlying the okra leaf trait inL. Journal of Experimental Botany, 2016, 67(3): 763-774.
[23] CHANG L J, FANG L, ZHU Y J, WU H T, ZHANG Z Y, LIU C X, LI X H, ZHANG T Z. Insights into interspecific hybridization events in allotetraploid cotton formation from characterization of a gene- regulating leaf shape. Genetics, 2016, 204(2): 799-806.
[24] ANDRES R J, CONEVA V, FRANK M H, TUTTLE J R, SAMAYOA L F, HAN S-W, KAUR B, ZHU L, FANG H, BOWMAN D T, ROJAS-PIERCE M, HAIGLER C H, JONES D C, HOLLAND J B, CHITWOOD D H, KURAPARTHY V. Modifications to agene are responsible for the major leaf shapes of Upland cotton (L.). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(1): E57-E66.
[25] SI Z F, LIU H, ZHU J K, CHEN J D, WANG Q, FANG L, GAO F K, TIAN Y, CHEN Y L, CHANG L J, LIU B L, HAN Z G, ZHOU B L, HU Y, HUANG X Z, ZHANG T Z. Mutation ofhomologs in cotton promotes short-branching plant architecture. Journal of Experimental Botany, 2018, 69(10): 2543-2553.
[26] LIU D X, TENG Z H, KONG J, LIU X Y, WANG W W, ZHANG X, ZHAI T F, DENG X P, WANG J X, ZENG J Y, XIAO Y H, GUO K, ZHANG J, LIU D J, WANG W R, ZHANG Z S. Natural variation in a CENTRORADIALIS homolog contributed to cluster fruiting and early maturity in cotton. BMC Plant Biology, 2018, 18(1): 286.
[27] CHEN W, YAO J B, LI Y, ZHU S H, GUO Y, FANG S T, ZHAO L J, WANG J Y, YUAN L, LU Y J, ZHANG Y S. Open-bud duplicate loci are identified as, orthologs of MIXTA-like genes on homologous chromosomes of allotetraploid cotton. Frontiers in Plant Science, 2020, 11: 81.
[28] ZHU J K, CHEN J D, GAO F K, XU C Y, WU H T, CHEN K, SI Z F, YAN H, ZHANG T Z. Rapid mapping and cloning of the virescent-1 gene in cotton by bulked segregant analysis-next generation sequencing and virus-induced gene silencing strategies. Journal of Experimental Botany, 2017, 68(15): 4125-4135.
[29] MAO G Z, MA Q, WEI H L, SU J J, WANG H T, MA Q F, FAN S L, SONG M Z, ZHANG X L, YU S X. Fine mapping and candidate gene analysis of the virescent gene v in Upland cotton (Gossypium). Molecular Genetics and Genomics, 2018, 293(1): 249-264.
[30] LI X, OUYANG X F, ZHANG Z S, HE L, WANG Y, LI Y H, ZHAO J, CHEN Z, WANG C N, DING L L, PEI Y, XIAO Y H. Over- expression of the red plant geneRenhances anthocyanin production and resistance to bollworm and spider mite in cotton. Molecular Genetics and Genomics, 2019, 294(2): 469-478.
[31] DENG J Q, FANG L, ZHU X F, ZHOU B L, ZHANG T Z. Agene induces hybrid lethality in cotton. Journal of Experimental Botany, 2019, 70(19): 5145-5156.
[32] MA H H, WU Y L, LV R L, CHI H B, ZHAO Y L, LI Y L, LIU H B, MA Y Z, ZHU L F, GUO X P, KONG J, WU J Y, XING C Z, ZHANG X L, MIN L. Cytochrome P450 mono-oxygenase CYP703A2 plays a central role in sporopollenin formation andfertility in cotton. Journal of Integrative Plant Biology, 2022, 64(10): 2009-2025
[33] WU Y L, LI X, LI Y L, MA H H, CHI H B, MA Y Z, YANG J, XIE S, ZHANG R, LIU L Y, SU X J, LV R J, KHAN A H, KONG J, GUO X P, LINDSEY K, MIN L, ZHANG X L. Degradation of de-esterified pctin/homogalacturonan by the polygalacturonaseis necessary for pollen exine formation and male fertility in cotton. Plant Biotechnology Journal, 2022, 20(6): 1054-1068.
[34] CHAI Q C, SHANG X G, WU S, ZHU G Z, CHENG C Z, CAI C P, WANG X Y, GUO W Z. 5-aminolevulinic acid dehydratase gene dosage affects programmed cell death and immunity. Plant Physiology, 2017, 175(1): 511-528.
[35] CHAI Q C, WANG X L, GAO M, ZHAO X C, CHEN Y, ZHANG C, JIANG H, WANG J B, WANG Y C, ZHENG M N, BALTAEVICH A M, ZHAO J, ZHAO J S. A glutathione S‐transferasedetermines flower petal pigmentation via regulating anthocyanin accumulation in cotton. Plant Biotechnology Journal, 2022, 21: 433-448.
[36] ABID M A, WEI Y X, MENG Z G, WANG Y, YE Y L, WANG Y N, HE H Y, ZHOU Q, LI Y Y, WANG P L, LI X G, YAN L H, MALIK W, GUO S D, CHU C C, ZHANG R, LIANG C Z. Increasing floral visitation and hybrid seed production mediated by beauty mark in. Plant Biotechnology Journal, 2022, 20(7): 1274-1284.
[37] ZANG Y H, HU Y, XU C Y, WU S J, WANG Y K, NING Z Y, HAN Z G, SI Z F, SHEN W J, ZHANG Y Y, FANG L, ZHANG T Z.controlling helical growth results in production of stronger cotton fiber. iScience, 2021, 24(8): 102930.
[38] ZHANG R T, SHEN C, ZHU D, LE Y, WANG N, LI Y X, ZHANG X L, LIN Z X. Fine-mapping and candidate gene analysis ofcontrolling fiber length in upland cotton (L.). Theoretical and Applied Genetics, 2022, 135(12): 4483-4494.
[39] AHMED M M, HUANG C, SHEN C, KHAN A Q, LIN Z X. Map-based cloning ofdiscovered brassinosteroid-mediated control of organ size in cotton. Plant Science, 2020, 291: 110315.
[40] ZHAO J, LIU J G, XU J W, ZHAO L, WU Q J, XIAO S H. Quantitative trait locus mapping and candidate gene analysis forwilt resistance usingchromosomal segment introgressed line. Frontiers in Plant Science, 2018, 9: 682.
[41] DONG C G, DING Y Z, GUO W Z, ZHANG T Z. Fine mapping of the dominant glandless GeneGlin Sea-island cotton (L.). Chinese Science Bulletin, 2007, 52(22): 3105-3109.
[42] SONG L, GUO W Z, ZHANG T Z. Interaction of novel Dobzhansky–Muller type genes for the induction of hybrid lethality betweenandcv. Coastland R4-4. Theoretical and Applied Genetics, 2009, 119(1): 33-41.
[43] LIU D X, LIU F, SHAN X R, ZHANG J, TANG S Y, FANG X M, LIU X Y, WANG W W, TAN Z Y, TENG Z H, ZHANG Z S, LIU D J. Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (L.). Molecular Genetics and Genomics, 2015, 290(5): 1683-1700.
[44] MICHELMORE R W, PARAN I, KESSELI R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(21): 9828-9832.
[45] TAKAGI H, TAMIRU M, ABE A, YOSHIDA K, UEMURA A, YAEGASHI H, OBARA T, OIKAWA K, UTSUSHI H, KANZAKI E, MITSUOKA C, NATSUME S, KOSUGI S, KANZAKI H, MATSUMURA H, URASAKI N, KAMOUN S, TERAUCHI R. MutMap accelerates breeding of a salt-tolerant rice cultivar. Nature Biotechnology, 2015, 33(5): 445-449.
[46] TAKAGI H, ABE A, YOSHIDA K, KOSUGI S, NATSUME S, MITSUOKA C, UEMURA A, UTSUSHI H, TAMIRU M, TAKUNO S, INNAN H, CANO L M, KAMOUN S, TERAUCHI R. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. The Plant Journal, 2013, 74(1): 174-183.
[47] ZHONG C, SUN S L, LI Y P, DUAN C X, ZHU Z D. Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene,, in soybean. Theoretical and Applied Genetics, 2018, 131(3): 525-538.
[48] LU H F, LIN T, KLEIN J, WANG S H, QI J J, ZHOU Q, SUN J J, ZHANG Z H, WENG Y Q, HUANG S W. QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theoretical and applied genetics, 2014, 127(7): 1491-1499.
[49] ILLA-BERENGUER E, VAN HOUTEN J, HUANG Z J, VAN DER KNAAP E. Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theoretical and Applied Genetics, 2015, 128(7): 1329-1342.
[50] NAOUMKINA M, THYSSEN G N, FANG D D, FLORANE C B, LI P. A deletion/duplication in the Ligon lintless-2 locus induces siRNAs that inhibit cotton fiber cell elongation. Plant Physiology, 2022, 190(3): 1792-1805.
[51] WANG X Y, ZHANG X W, FAN D R, GONG J W, LI S Q, GAO Y J, LIU A Y, LIU L J, DENG X Y, SHI Y Z, SHANG H H, ZHANG Y M, YUAN Y L. AAQSP increases mapping resolution of stable QTLs through applying NGS-BSA in multiple genetic backgrounds. Theoretical and Applied Genetics, 2022, 135(9): 3223-3235.
[52] COULSON A, SULSTON J, BRENNER S, KARN J. Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(20): 7821-7825.
[53] LI T G, MA X F, LI N Y, ZHOU L, LIU Z, HAN H Y, GUI Y J, BAO Y M, CHEN J Y, DAI X F. Genome-wide association study discovered candidate genes ofwilt resistance in upland cotton (L.). Plant Biotechnology Journal, 2017, 15(12): 1520-1532.
[54] LIU S M, ZHANG X J, XIAO S H, MA J, SHI W J, QIN T,XI H, NIE X H, YOU C Y, XU Z, WANG T Y, WANG Y J, ZHANG Z N, LI J Y, KONG J, AIERXI A, YU Y, LINDSEY K, KLOSTERMAN S J, ZHANG X L, ZHU L F. A Single-nucleotide mutation in a GLUTAMATE RECEPTOR-LIKE gene confers resistance towilt in. Advanced Science, 2021, 8(7): 2002723.
[55]GE X Y, XU J T, YANG Z E, YANG X F, WANG Y, CHEN Y L, WANG P, LI F G. Efficient genotype‐independent cotton genetic transformation and genome editing. Journal of Integrative Plant Biology, 2023, 65(4): 907-917.
[56] WANG P C, ZHANG J, SUN L, MA Y Z,XU J, LIANG S J, DENG J W, TAN J F, ZHANG Q H, TU L L, DANIELL H, JIN S X, ZHANG X L. High efficient multisites genome editing in allotetraploid cotton () using CRISPR/Cas9 system. Plant biotechnology journal, 2018, 16(1): 137-150.
Research advances of map-based cloning genes in cotton
ZANG XinShan1,2,4, WANG KangWen1,3, ZHANG XianLiang1,2, WANG XuePing1, WANG Jun1, LIANG Yu1, PEI XiaoYu1, REN Xiang1,2, Lü YuLong1,2, GAO Yu1, WANG XingXing1, PENG YunLing3, MA XiongFeng1,2,3,4
1Institute of Cotton Research of Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology/Key Laboratory of Biological and Genetic Breeding of Cotton, Ministry of Agriculture and Rural Affairs, Anyang 455000, Henan;2Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, Xinjiang;3College of Agronomy, Gansu Agricultural University/Gansu Provincial Key Lab of Arid Land Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070;4School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001
Map-based cloning is a classical and effective method to identify candidate genes for specific phenotypic variants. Map-based cloning of functional genes plays important roles in the innovative utilization of germplasm resources, molecular design breeding and improving breeding efficiency. In recent years, the whole-genome sequencing of,,,andhas been completed and improved. map-based cloning has entered into a crucial period. In 2016, the dominant glandless geneGl() was the first map-based cloning gene in cotton. So far, 20 qualitative traits genes and 5 quantitative traits genes have been identified by map-based cloning technology. In this paper, research progress was systematically reviewed in fiber, gland, nectary, leaf type, plant architecture, plant color, and fertility in terms of gene symbols, names, chromosomal positioning, and candidate genes. Moreover, map-based cloning strategies were systematically reviewed in mapping populations and bulked segregate analysis-sequencing (BSA-seq). With the reduction of sequencing cost and utilization of BSA-seq, it is believed that more and more genes will be cloned by map-based cloning technology. In addition, transformation and genome editing have been successfully used to evaluate the function of the candidate gene in the target interval. It is believed that map-based cloning could provide a theoretical basis and genetic resources for molecular design breeding in cotton.
cotton; map-based cloning; molecular marker; mapping population; BSA-seq

10.3864/j.issn.0578-1752.2023.23.006
2023-02-08;
2023-04-17
國家棉花產業技術體系(CARS-15-07)、新疆維吾爾自治區重點研發任務專項(2022B02052-2)、新疆維吾爾自治區天山英才計劃(2021)、昌吉回族自治州科技重大專項(2021Z01-01)
臧新山,E-mail:zangxinshan@163.com。王康文,E-mail:wangkangwen@126.com。臧新山和王康文為同等貢獻作者。通信作者彭云玲,E-mail:pengyunlingpyl@163.com。通信作者馬雄風,E-mail:maxf_caas@163.com
(責任編輯 李莉)