999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

新的廣義時滯系統(tǒng)容許性條件

2024-01-01 00:00:00孫欣王瀚萱
關鍵詞:利用系統(tǒng)

摘要:針對廣義時滯系統(tǒng),基于李雅普諾夫第二方法和廣義系統(tǒng)的受限等價變換,結(jié)合積分不等式技術,給出一個線性矩陣不等式(linear matrix inequality,LMI)形式的容許性條件。首先,利用廣義系統(tǒng)的受限等價變換得出廣義時滯系統(tǒng)是正則且無脈沖的;然后,通過選取增廣型LyapunovKrasovskii泛函(LK泛函)和多重積分型LK泛函,引入松弛型LK泛函構建新的LK泛函,利用Jensen積分不等式和Wirtinger積分不等式對LK泛函求導后產(chǎn)生的積分項進行處理,得出廣義時滯系統(tǒng)的穩(wěn)定性條件,進而得到廣義時滯系統(tǒng)的容許性條件;最后,利用MATLAB中的LMI工具箱,通過數(shù)值算例驗證所用方法的可行性和有效性。

關鍵詞:廣義時滯系統(tǒng); 容許性條件; LyapunovKrasovskii泛函; Jensen積分不等式; Wirtinger積分不等式

中圖分類號:O231文獻標志碼:A

doi:10.3969/j.issn.16735862.2024.02.011

CUI Song LYU Yan CHEN Lanfeng SUN Xin, WANG Hanxuan

(1. College of Physical Science and Technology, Shenyang Normal University, Shenyang 110034, China)

(College of Mathematics and Systems Science, Shenyang Normal University, Shenyang 110034, China)

Abstract:Based on Lyapunov′s second method and limited equivalent transformations of descriptor systems, combined with the integral inequality technique, an admissibility condition for descriptor delay systems is given in the form of linear matrix inequality (LMI). Firstly, it is concluded that the descriptor delay system is regular and impulse free by using limited equivalent transformations of descriptor systems. Secondly, a new LyapunovKrasovskii functional (LK functional) is constructed by selecting the augmented LK functional, multiple integral LK functional and introducting the relaxed LK functional, and then, the integral terms producted by derivation of LK functional are dealt with by Jensen integral inequality and Wirtinger integral inequality, respectively. Thus, a stability condition for the descriptor delay system is obtained, correspondingly, an admissibility condition for the descriptor delay system is obtained. Finally, a numerical example is provided to demonstrate feasibility and validity of the proposed method by virtue of LMI toolbox of MATLAB.

Key words:descriptor delay systems; admissibility condition; LyapunovKrasovskii functional; Jensen integral inequality; Wirtinger integral inequality

廣義系統(tǒng),又稱奇異系統(tǒng)、微分代數(shù)系統(tǒng)、廣義狀態(tài)空間系統(tǒng)等[1]。與正常系統(tǒng)相比,廣義系統(tǒng)的形式更加一般,可以更精準地描述一些物理現(xiàn)象,其在許多實際系統(tǒng)中,如電力系統(tǒng)、航空航天系統(tǒng)、社會經(jīng)濟系統(tǒng)中得到了廣泛應用。近年來,學者們對于廣義系統(tǒng)的研究主要集中在穩(wěn)定性分析方面[23]。時滯是工程實際中普遍存在的現(xiàn)象,信息或物質(zhì)的傳遞都會產(chǎn)生時滯,如流體的傳輸、電力的輸送等,但時滯的存在往往會降低系統(tǒng)的性能,甚至使系統(tǒng)變得不穩(wěn)定。因此,研究廣義時滯系統(tǒng)具有重要的理論意義和實用價值。目前,對廣義時滯系統(tǒng)的研究已經(jīng)非常深入,如指數(shù)穩(wěn)定性[4]、魯棒穩(wěn)定性[5]、H∞濾波[6]、滑模控制[7]等。

對廣義時滯系統(tǒng)的研究既要考慮廣義系統(tǒng)的正則性和無脈沖性,又要考慮時滯對系統(tǒng)穩(wěn)定性的影響,難度更大,更具有挑戰(zhàn)性。針對廣義時滯系統(tǒng)容許性問題,為了降低容許性條件的保守性,常采用以下2種方式:1)構造合適的LK泛函,充分利用系統(tǒng)本身的狀態(tài)信息和時滯信息;2)選取合適的積分不等式處理LK泛函求導后產(chǎn)生的積分項,將容許性條件寫成線性矩陣不等式(linear matrix inequality,LMI)形式,便于利用MATLAB求解。構造LK泛函時通常采用簡單型[8]、多重積分型[910]、增廣型[11]、松弛型[1214]等形式。常用的積分不等式主要有Jensen積分不等式、Wirtinger積分不等式、輔助函數(shù)積分不等式等。

1問題描述

2主要結(jié)果

3數(shù)值算例

4結(jié)語

本文通過引入增維的松弛型LK泛函、增廣型LK泛函和多重積分型LK泛函構造了一個新的LK泛函,結(jié)合積分不等式技術,得到了一個新的廣義時滯系統(tǒng)容許性條件。與同類文獻相比,結(jié)論具有較小的保守性,數(shù)值算例說明了結(jié)論的可行性和優(yōu)越性。以后可以考慮設計狀態(tài)反饋控制器或輸出反饋控制器對廣義時滯系統(tǒng)進行容許性控制。

參考文獻:

[1]DAI L Y.Singular control systems[M].New York:SpringerVerlag,1989.

[2]ECHCHARQY A,OUAHI M,TISSIR E H.Delaydependent robust stability criteria for singular timedelay systems by delaypartitioning approach[J].Int J Syst Sci,2018,49(14):29572967.

[3]LUU T H,NAM P T.Stability analysis of singular timedelay systems using the auxiliary functionbased double integral inequalities[J].Int J Syst Sci,2021,52(9):18681881.

[4]LONG S H,ZHONG S M,GUAN H B,et al.Exponential stability analysis for a class of neutral singular Markovian jump systems with timevarying delays[J].J Franklin I,2019,356(12):60156040.

[5]YANG X Y,LI X D,CAO J D.Robust finitetime stability of singular nonlinear systems with interval timevarying delay[J].J Franklin I,2018,355(3):12411258.

[6]ZHOU J,LV Y W,PANG B,et al.H∞ filtering for a class of singular timedelay systems[J].Int J Control Autom,2019,17(12):31313139.

[7]ZHANG Y,ZHANG Q L,ZHANG J Y,et al.Slidingmode control for fuzzy singular systems with timedelay based on vector integral sliding mode surface[J].IEEE T Fuzzy Syst,2020,28(4):768782.

[8]RICHARD J P.Timedelay systems:An overview of some recent advances and open problems[J].Automatica,2003,39(10):16671694.

[9]WANG J D,WANG Z S,DING S B,et al.Refined Jensenbased multiple integral inequality and its application to stability of timedelay systems[J].IEEECAA J Automatic,2018,5(3):758764.

[10]CHEN J,PARK J H,XU S Y.Stability analysis for neural networks with timevarying delay via improved techniques[J].IEEE T Cybernetics,2019,49(12):44954500.

[11]SEURET A,GOUAISBAUT F.Wirtingerbased integral inequality:Application to timedelay systems[J].Automatica,2013,49(9):28602866.

[12]XU S Y,LAM J,ZHANG B Y,et al.New insight into delaydependent stability of timedelay systems[J].Int J Robust Nonlin,2015,25(7):961970.

[13]XU S Y,LAM J,ZHANG B Y,et al.A new result on the delaydependent stability of discrete systems with timevarying delays[J].Int J Robust Nonlin,2014,24(16):25122521.

[14]LIU G B.New results on stability analysis of singular timedelay systems[J].Int J Syst Sci,2017,48(7):13951403.

[15]XU S Y,VAN DOOREN P,STEFAN R,et al.Robust stability and stabilization for singular systems with state delay and parameter uncertainty[J].IEEE T Automat Contr,2002,47(7):11221128.

[16]GU K Q.A further refinement of discretized Lyapunov functional method for the stability of timedelay systems[J].Int J Control,2001,74(10):967976.

[17]SUN J,LIU G P,CHEN J.Delaydependent stability and stabilization of neutral timedelay systems[J].Int J Robust Nonlin,2009,19(12):13641375.

[18]SUN X,ZHANG Q L.Delaydependent robust stabilization for a class of uncertain singular delay systems[J].Int J Innov Comput I,2009,5(5):12311242.

[19]ZHI Y L,HE S P,ZHANG Z M.Further improvement for admissibility analysis of singular timedelay systems[J].IEEE T Syst Man CyS,2022,52(8):48074812.

[20]XU S Y,LAM J,ZOU Y.An improved characterization of bounded realness for singular delay systems and its applications[J].Int J Robust Nonlin,2008,18(3):263277.

【責任編輯:溫學兵】

猜你喜歡
利用系統(tǒng)
Smartflower POP 一體式光伏系統(tǒng)
利用min{a,b}的積分表示解決一類絕對值不等式
利用倒推破難點
WJ-700無人機系統(tǒng)
ZC系列無人機遙感系統(tǒng)
北京測繪(2020年12期)2020-12-29 01:33:58
利用一半進行移多補少
基于PowerPC+FPGA顯示系統(tǒng)
半沸制皂系統(tǒng)(下)
利用數(shù)的分解來思考
Roommate is necessary when far away from home
主站蜘蛛池模板: 她的性爱视频| 波多野吉衣一区二区三区av| 亚洲精品无码不卡在线播放| 亚洲香蕉伊综合在人在线| 伊人天堂网| 国产精品亚洲天堂| 婷婷激情亚洲| AV不卡国产在线观看| 青青草国产在线视频| 日韩欧美网址| 亚洲精品午夜无码电影网| 激情无码视频在线看| 亚洲欧美成人在线视频| 91丝袜美腿高跟国产极品老师| 婷婷99视频精品全部在线观看| 99久久国产精品无码| 手机永久AV在线播放| 亚洲午夜福利精品无码不卡 | 99热这里只有精品久久免费| 久久久久人妻一区精品色奶水| 国产精品色婷婷在线观看| 国产超碰一区二区三区| 91蝌蚪视频在线观看| 国产免费久久精品44| 在线免费观看a视频| 呦女亚洲一区精品| 国产精品免费久久久久影院无码| 国产黑丝一区| 一区二区三区高清视频国产女人| 欧美 国产 人人视频| a毛片免费观看| 国产99视频免费精品是看6| 狠狠ⅴ日韩v欧美v天堂| 97视频免费在线观看| 欧美成a人片在线观看| 欧美区一区二区三| 久久99国产综合精品1| 国产制服丝袜91在线| 国产青榴视频| 欧美精品一区在线看| 婷婷在线网站| 91九色国产porny| 欧洲精品视频在线观看| 欧美日韩资源| 日本伊人色综合网| 亚洲第一天堂无码专区| 青青草a国产免费观看| 免费A∨中文乱码专区| 国产精品亚洲αv天堂无码| 天堂成人av| 99久久免费精品特色大片| 国内a级毛片| 中文字幕无码电影| 国产黑丝一区| 国产一级视频在线观看网站| 日本成人在线不卡视频| 精品福利网| 中文精品久久久久国产网址 | 亚洲日韩AV无码一区二区三区人| 久久9966精品国产免费| 欧美日韩国产在线观看一区二区三区| 久久6免费视频| 2021无码专区人妻系列日韩| 国产精品香蕉在线观看不卡| 久热99这里只有精品视频6| 国产女同自拍视频| 国产中文一区a级毛片视频| 免费视频在线2021入口| 欧美日韩激情| 最新亚洲av女人的天堂| 国产精品自在在线午夜区app| 日韩在线观看网站| 亚洲熟女中文字幕男人总站| 中文字幕亚洲综久久2021| 婷婷久久综合九色综合88| 亚洲va在线∨a天堂va欧美va| 国产午夜精品一区二区三| 久久久久久国产精品mv| 四虎永久免费地址| 少妇精品久久久一区二区三区| 伊人色婷婷| 国产精品久久久精品三级|