999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于CiteSpace解析高溫干旱對植物生長代謝的影響研究

2024-01-01 00:00:00張傳慶李良良
山地農業生物學報 2024年4期
關鍵詞:植物研究

摘 要:

全球氣溫升高導致大部分地區高溫與干旱脅迫同時發生的風險增加。高溫和干旱脅迫同時發生將嚴重影響植物生長發育,造成作物產量損失及樹木死亡。2013以來,收錄于Web of Science核心合集數據庫中的關于高溫干旱復合脅迫的研究文獻共306篇。本研究運用CiteSpace軟件,分析其主要的研究熱點,并通過關鍵詞確定近十年高溫干旱復合脅迫研究的主要內容。在此基礎上,進一步圍繞熱點和主要內容深入解析高溫干旱復合脅迫對植物生理、代謝和分子調控等方面的影響。本綜述通過整合近年一系列增強植株脅迫耐受性的文獻,包括轉基因技術、脅迫引發、接種菌根、施加營養元素和植物激素等,闡明逆境脅迫對植物的不利影響,為了解和開發復合脅迫耐受性品種以及提高植物對未來氣候變化的適應能力奠定基礎。

關鍵詞:

高溫;干旱;轉錄;代謝

中圖分類號:S722.5

文獻標識碼:A

文章編號:1008-0457(2024)04-0053-08

國際DOI編碼:10.15958/j.cnki.sdnyswxb.2024.04.008

氣候變化導致全球大部分地區高溫與干旱脅迫同時發生的風險增加[1]。大量作物產量研究顯示,比如花生[2]、大豆[3]、土豆[4]、大麥[5]、玉米[6]等,高溫和干旱是限制植物生產力的兩個關鍵因素。復合脅迫損害植物發育和生長,致使植株葉片損傷,顏色褐變,生物量減少。生殖階段的植株對脅迫更敏感,脅迫會阻止細胞分裂和擴張,破壞花粉粒。降低花藥開裂性、花粉萌發率和柱頭可授性,導致花粉不育[7-8]。縮短作物生命周期、改變種子數量、大小和組成顯著影響產量[9]。值得注意的是,干旱和高溫對產量的單一效應和交互效應都是非線性的[10]。此外,極端高溫增加了樹木干旱誘導的死亡風險[11],造成部分干燥地區森林的可持續性是不確定的[12]。同時,氣候變化是物種重新分布和生物多樣性喪失的主要原因之一,特別是對受威脅和特有的重要植物物種而言[13]。高溫干旱復合脅迫多方面的影響植物在未來氣候變化下的生存和進化,植物對非生物脅迫的反應一直是世界范圍內眾多研究的主題。研究證實,植物對非生物脅迫組合的反應是復雜和動態的,包括不同性狀的變化,或者是脅迫的直接結果,或者是主動的適應反應。脅迫組合對一些性狀有加性效應,而對于某些性狀,一種脅迫中和了另一種脅迫的作用[14]。

隨著統計學和信息科學的發展,文獻計量技術已經發展成為一種分析數據趨勢的有效方法[15]。本文使用CiteSpace軟件統計了2013以來關于高溫干旱復合脅迫的研究文獻,分析了主要發文國家/地區和機構,通過關鍵詞統計尋找關于高溫干旱復合脅迫研究的主要內容,并且詳細綜述了高溫干旱復合脅迫組合效應的最新研究,重點關注不同植物生理、分子和代謝反應。整合最新的提高作物對脅迫組合耐受性的方法,這有助于減輕脅迫的不利影響和開發復合脅迫耐受性品種,提高植物對未來氣候變化的適應能力。

1 基于文獻計量學的高溫干旱復合脅迫研究分析

本文選取Web of Science核心合集數據庫為數據來源。以標題“High temperature and water deficit”或“heat stress and drought stress”或“Combined stress”和主題“Plant”檢索,檢索時間跨度為2013年1月1日至2023年5月20日,文獻類型為“Article”和“Review Article”,語種為“English”,逐條篩選符合高溫干旱復合脅迫的文章,利用CiteSpace去除重復后,得到近10年研究涉及高溫干旱復合脅迫的有效文獻共306篇。十年間,高溫干旱復合脅迫研究文獻的年發文量總體呈上升趨勢(圖1),2020年后數量迅速增加。研究共涉及71個國家,217個研究機構。主要集中在中國,美國與印度,以及其他歐洲國家(表1)。國家與機構合作網絡顯示,主要的國家以及研究機構間合作密切(圖2、圖3)。中國是研究高溫干旱復合脅迫的主要力量,擁有最多的發文量,其中中國科學院,南京農業大學發文量排名第二(n=16)和第三(n=15)(表2)。由頻度排名前20的關鍵詞可知(表3),近十年研究主要涉及脅迫對產量,植物光合的影響以及植物對脅迫的響應,主要包括基因表達和氧化應激及代謝物的積累。

因此,利用CiteSpace對306篇高溫干旱復合脅迫有效文獻分析的基礎上,明確了中國是研究高溫干旱的主要國家,研究的熱點主要圍繞高溫干旱對植物的光合生理和抗氧化系統的影響、代謝物的變化和分子響應機制。在此基礎上,圍繞以上研究熱點,進一步深入解析高溫干旱對植物生長代謝的影響。

2 高溫干旱對植物生理的影響

脅迫誘導H2O2、O2-·含量顯著增加,并且增加量隨著時間的推移而加劇[16-17]。活性氧(ROS)積累過度會引起廣泛的細胞損傷,植物主要通過由多種酶組成的內源性防御機制來維持體內ROS平衡。脅迫初期,多數植株顯著增加了超氧化物歧化酶(SOD)、過氧化物酶(POD)、抗壞血酸過氧化物酶(APX)活性[16,18],但隨著脅迫時間的持續,活性均較對照下降。過氧化氫酶(CAT)活性的變化更為復雜[17]。脅迫破壞植物質膜成分及其穩定性,導致植物丙二醛積累[19],其含量因物種及基因型而異。

Zandalinas等[20]的研究強調ROS代謝和氣孔反應對植物適應干旱高溫脅迫組合的重要性。復合脅迫對光合參數有交互作用,干旱加劇了高溫對碳同化的負面影響,玉米耐旱和耐熱的關鍵性狀是有限的蒸騰速率,并伴隨著碳同化代謝的同步調節[21]。同樣蒸騰效率對于維持脅迫下小麥節水策略和生物量之間的平衡至關重要[22]。此外,關于沙漠灌木沙拐棗和梭梭的研究表明,廣泛實施的氣孔優化模型可能很難反映旱地生態系統的高溫行為[23]。故而,復合脅迫下植物的光合參數的變化具有物種特異性,但通過豆類和谷類對脅迫反應的差異,揭示了在脅迫組合中利用C3或C4代謝可能不會為植物提供優勢[24]。

3 高溫干旱對植物分子的影響

復合脅迫致使植物表現出與單獨的高溫或干旱脅迫不同的轉錄反應,其中與光合作用、激素信號途徑相關基因被顯著調節,還包括MYBs、NACs、HSFs和bHLH在內的許多轉錄因子,通過互作圖譜可以揭示這些基因的密切關系。GO富集主要集中在光合作用、代謝過程、氧化還原過程和對水和壓力的反應。包括轉錄調控、蛋白質折疊、細胞周期、細胞器、結合、運輸、信號傳導、氧化還原酶和抗氧化活性。KEGG途徑富集分析表明,TFs和控制類苯丙酸途徑的基因對聯合應激反應是極其重要的[25-27]。例如:復合脅迫下的黑麥草和對照植物的比較轉錄組分析揭示了20221個獨特的上調和17034個獨特的下調[28]。包括生長素、赤霉素、細胞分裂素、脫落酸、茉莉酸和油菜素類固醇在內的植物激素相關基因差異表達。乙烯反應因子、NAC和WRKY轉錄因子和鋅指蛋白(CCCH型和其他)的差異表達基因常被上調,MYB和GATA轉錄因子和C2H2型鋅指蛋白的差異表達基因常被下調[29]。

利用轉基因技術增加植物的脅迫耐受性已經得到證明。轉基因品系具有更高的生物量和更低的損傷。OsMYB55在玉米中的過表達激活其他脅迫應答基因并增強耐熱性和耐旱性[30]。miR160a-5p的過表達可以直接或間接改變生長素反應因子途徑的機制,這使得轉基因土豆具有更高的脅迫耐受性[4]。pvgstu3-3的過表達在信號分子的產生、特定代謝物的誘導和保護機制的激活中起著主導作用,以增強煙草脅迫耐受性[31]。人們嘗試通過共表達已知的耐旱和耐熱基因獲得旱熱復合脅迫的耐受性。例如擬南芥液泡焦磷酸酶基因AVP1和Rubisco活化酶基因RCA共過量表達的植物既獲得了過表達AVP1賦予的耐旱性也獲得了過表達RCA賦予的耐熱性[32]。此外,表觀遺傳修飾用于調節基因的空間和時間表達,以響應外部刺激或特定的發育要求。了解高溫和干旱脅迫相關基因表達的表觀遺傳調控將為通過分子育種或生物技術方法改善作物開辟多種途徑[33]。

4 干旱和高溫脅迫下植物代謝的變化

植物整合應激信號,經轉錄組和代謝組途徑激活一系列應激反應和其他細胞活動,由此重建內穩態和修復細胞成分來保護植物細胞[34]。例如:復合脅迫可能通過影響柳枝稷的光合機制和苯丙酸途徑,從而影響柳枝稷的木質素合成和生物量生產[26]。其次,水楊酸代謝調控玉米初生根對高溫干旱復合脅迫的反應[35]。植物產生代謝組的特定調節應對高溫干旱復合脅迫[36-37]。復合脅迫激活桉樹肉桂酸的積累,而當單獨遭受干旱或熱脅迫時,這些反應是不被激活的[38]。此外,不同的基因型表現出特定的基礎代謝及不同的調節。敏感型植株代謝途徑的激活,導致光保護和抗氧化次級代謝物的積累,包括黃酮醇、黃酮和檸檬苦素類化合物,旨在減輕壓力的破壞性影響。相反,耐受型保持高光合活性和應對氧化應激的較高能力,允許維持代謝活性并防止抗氧化代謝物的積累[39]。

脯氨酸在脅迫適應中具有滲透調節、維持氧化還原平衡等多重功能[40]。復合脅迫下脯氨酸含量變化復雜,不同品種之間的脯氨酸水平存在差異[41]。此外,干旱期結束時短暫的熱脅迫(40 ℃下2 h)不會顯著影響上部葉和根中的脯氨酸水平,但會導致下部葉中的脯氨酸水平進一步增加[42]。這也證明了植物對氧化損傷的天然防御機制的效率,并且與幼組織和生殖組織受到更好的保護相一致。研究顯示脯氨酸含量的提高對非生物脅迫耐受性具有溫和且明顯的積極影響,脯氨酸過量產生的轉化體表現出防御機制的早期刺激[43]。施用外源脯氨酸上調了抗氧化酶活性、葉片脯氨酸、甘氨酸、甜菜堿含量,并減少了脂質過氧化作用,導致葉綠素含量的提高并最終提高了單株產量[44]。

5 提高作物對非生物脅迫組合耐受性的策略

脅迫引發作為一種新的脅迫耐受策略,被廣泛用于植物中以增加對后續脅迫的耐受性。研究報告了干旱引發降低高溫對植物光合效率的抑制,并通過調節脂類組成和膜流動性來增強木棉的耐熱性[45]。在玉米中,引發誘導的應激記憶在幼苗中形成防御系統,以觸發更有效的清除機制,通過改善根系的形態、分布和抗氧化能力,增強了對后續復合脅迫的適應性[46]。

植物激素是不同化學結構和物理化學性質的信號生物分子,在納摩爾濃度下起作用,調節植物的大多數生理和代謝過程[47]。復合脅迫導致非萎蔫的上部葉片中脫落酸略有下降,下部葉和根中游離吲哚乙酸的升高,其變化程度依賴于脅迫強度[46]。較高的溫度降低了植物響應干旱產生ABA的能力[48]。施加外源植物激素有效增加植物對復合脅迫的耐受性,例如脫落酸(ABA)可能在介導植物的交叉脅迫耐性中發揮作用,干旱引發和葉面噴施ABA均增強了高羊茅的耐熱性,表現為高溫脅迫下葉片相對含水量(RWC)、光化學效率和膜穩定性的增加。這可能涉及脅迫信號、ABA反應和轉錄調控[49]。下調表達細胞分裂素受體基因SlHK2,從而下調細胞分裂素信號傳導,可以提高植物對復合脅迫的耐受性[50]。此外,施加硅[51]、氮[52]和H2S通過減少ROS產生、調節滲透物含量,增強抗氧化酶活性,并調節與應激信號相關的內源激素,提高了大麥對復合脅迫的耐受性。

根際微生物直接或間接影響植物的分子、代謝和生理應激反應,緩解復合脅迫造成的不利影響,在玉米[53-54]、白菜[55]、大豆[56]、小麥[57]等研究中得到證實。研究顯示:接種真菌或細菌,通過調節植物內源激素,增強抗氧化酶活性,保持光合活性,增加水分和養分吸收,改變熱激蛋白和水通道蛋白基因的表達等,增強植物對脅迫的耐受性。因此,這被認為是在不利的氣候條件下確保植物可持續和長期生產的生態友好型策略。目前,研究逐漸向著探討復合脅迫下多種微生物[53,56]或微生物與納米粒子[57]的協同作用發展。更多的策略用以提高作物對非生物脅迫組合耐受性,包括嫁接[58],升高二氧化碳濃度[48]和種植孤生作物[59]。

6 結語與展望

毫無疑問,高溫和干旱對植物的影響是一個復雜的過程。當前的研究致力于通過整合生理生化、轉錄組、代謝產物的變化,鑒定對非生物脅迫具有良好耐受性的種質。通過轉基因、脅迫引發、接種菌根、施加營養元素和植物激素等一系列措施,增強植株對復合脅迫的耐受性。未來開發適應氣候的植物仍需要對植物如何同時處理多種脅迫有更全面、深入的理解。綜上所述,對以后的研究提出幾點建議:(1)不同植物對高溫和干旱的響應機制不同,雖然很多模式植物的響應機制已經進行了較為深入的研究,但應進一步擴大所研究植物的范圍;(2)深入挖掘植物抗高溫和干旱關鍵基因,通過先進的分子手段進行驗證;(3)在前人對植物脅迫期間的研究基礎上,進一步深入研究,脅迫恢復時期植物的響應機制,為隨后抗逆品種的篩選和培育提供理論依據。

(責任編輯:段麗麗)

參 考 文 獻:

[1]

Yin J,Slater L,Gu L,et al.Global increases in lethal compound heat stress:hydrological drought hazards under climate change[J].Geophysical Research Letters,2022,49(18):1-12.

[2] Puppala N,Nayak S N,Sanz-Saez A,et al.Sustaining yield and nutritional quality of peanuts in harsh environments:physiological and molecular basis of drought and heat stress tolerance[J].Frontiers in Genetics,2023,14:1-24.

[3] Jumrani K,Bhatia V S.Interactive effect of temperature and water stress on physiological and biochemical processes in soybean[J].Physiology and Molecular Biology of Plants,2019,25(3):667-681.

[4] Anl B A,ztürk Gke Z N.Investigating effect of miR160 through overexpression in potato cultivars under single or combination of heat and drought stresses[J].Plant Biotechnology Reports,2021,15(3):335-348.

[5] Zhanassova K,Kurmanbayeva A,Gadilgereyeva B,et al.ROS status and antioxidant enzyme activities in response to combined temperature and drought stresses in barley[J].Acta Physiologiae Plantarum,2021,43(8):1-12.

[6] Li E,Zhao J,Pullens J W M,et al.The compound effects of drought and high temperature stresses will be the main constraints on maize yield in Northeast China[J].Science of The Total Environment,2022,812:1-7.

[7] Rang Z W,Jagadish S,Zhou Q M,et al.Effect of high temperature and water stress on pollen germination and spikelet fertility in rice[J].Environmental and Experimental Botany,2011,70(1):58-65.

[8] Zahra N,Wahid A,Hafeez M B,et al.Grain development in wheat under combined heat and drought stress:plant responses and management[J].Environmental and Experimental Botany,2021,188:1-12.

[9] Sehgal A,Sita K,Bhandari K,et al.Influence of drought and heat stress,applied independently or in combination during seed development,on qualitative and quantitative aspects of seeds of lentil (Lens culinaris Medikus) genotypes,differing in drought sensitivity[J].Plant,Cell amp; Environment,2019,42(1):198-211.

[10] Zhu X,Liu T,Xu K,et al.The impact of high temperature and drought stress on the yield of major staple crops in northern China[J].Journal of Environmental Management,2022,314:1-13.

[11] Marchin R M,Backes D,Ossola A,et al.Extreme heat increases stomatal conductance and drought-induced mortality risk in vulnerable plant species[J].Global Change Biology,2022,28(3):1133-1146.

[12] Coppi A,Lazzaro L,Selvi F.Plant mortality on ultramafic soils after an extreme heat and drought event in the Mediterranean area[J].Plant and Soil,2022,471(1):123-139.

[13] Feng Y X,Tian P,Li C Z,et al.Individual and mutual effects of elevated carbon dioxide and temperature on salt and cadmium uptake and translocation by rice seedlings[J].Frontiers in Plant Science,2023,14:1-13.

[14] Morales A,de Boer H J,Douma J C,et al.Effects of sublethal single,simultaneous and sequential abiotic stresses on phenotypic traits of Arabidopsis thaliana[J].AoB Plants,2022,14(4):1-14.

[15] Chen Y,Wu Z,Yi W,et al.Bibliometric method for manufacturing servitization:a review and future research directions[J].Sustainability,2022,14(14).1-26.

[16] Dias M C,Ferreira De Oliveira J M P,Marum L,et al.Pinus elliottii and P.elliottii x P.caribaea hybrid differently cope with combined drought and heat episodes[J].Industrial Crops and Products,2022,176:1-12.

[17] Zhou R,Kong L,Yu X,et al.Oxidative damage and antioxidant mechanism in tomatoes responding to drought and heat stress[J].Acta Physiologiae Plantarum,2019,41(2):1-11.

[18] Zandalinas S I,Balfagon D,Arbona V,et al.Modulation of antioxidant defense system is associated with combined drought and heat stress tolerance in citrus[J].Front Plant Sci,2017,8:1-10.

[19] Li J,Zhao S,Yu X,et al.Role of Xanthoceras sorbifolium MYB44 in tolerance to combined drought and heat stress via modulation of stomatal closure and ROS homeostasis[J].Plant Physiology and Biochemistry,2021,162:410-420.

[20] Zandalinas S I,Mittler R,Balfagón D,et al.Plant adaptations to the combination of drought and high temperatures[J].Physiologia Plantarum,2018,162(1):2-12.

[21] Correia P,Da S A,Vaz M,et al.Efficient regulation of CO2 assimilation enables greater resilience to high temperature and drought in maize[J].Frontiers in Plant Science,2021,12:1-15.

[22] Correia P M P,Cairo Westergaard J,Bernardes Da Silva A,et al.High-throughput phenotyping of physiological traits for wheat resilience to high temperature and drought stress[J].Journal of Experimental Botany,2022,73(15):5235-5251.

[23] Feng X,Liu R,Li C,et al.Contrasting responses of two C4 desert shrubs to drought but consistent decoupling of photosynthesis and stomatal conductance at high temperature[J].Environmental and Experimental Botany,2023,209:1-11.

[24] Cohen I,Zandalinas S I,Huck C,et al.Meta-analysis of drought and heat stress combination impact on crop yield and yield components[J].Physiologia Plantarum,2021,171(1):66-76.

[25] Ju Y,Min Z,Zhang Y,et al.Transcriptome profiling provide new insights into the molecular mechanism of grapevine response to heat,drought,and combined stress[J].Scientia Horticulturae,2021,286:1-9.

[26] Hayford R K,Serba D D,Xie S,et al.Global analysis of switchgrass (Panicum virgatum L.) transcriptomes in response to interactive effects of drought and heat stresses[J].BMC Plant Biology,2022,22(1):1-23.

[27] Jia J,Zhou J,Shi W,et al.Comparative transcriptomic analysis reveals the roles of overlapping heat-/drought-responsive genes in poplars exposed to high temperature and drought[J].Scientific Reports,2017,7(1):1-17.

[28] Rahman M A,Woo J H,Song Y,et al.Heat shock proteins and antioxidant genes iInvolved in heat combined with drought stress responses in perennial rye grass[J].Life (Basel),2022,12(9):1-16.

[29] Martin R C,Kronmiller B A,Dombrowski J E.Transcriptome analysis of Lolium temulentum exposed to a combination of drought and heat stress[J].Plants (Basel),2021,10(11):1-31.

[30] Casaretto J A,El-Kereamy A,Zeng B,et al.Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance[J].BMC Genomics,2016,17(1):1-15.

[31] Stavridou E,Voulgari G,Michailidis M,et al.Overexpression of a biotic stress-inducible Pvgstu gene activates early protective responses in tobacco under combined heat and drought[J].International Journal of Molecular Science,2021,22(5):1-33.

[32] Wijewardene I,Mishra N,Sun L,et al.Improving drought-,salinity-,and heat-tolerance in transgenic plants by cooverexpressing Arabidopsis vacuolar pyrophosphatase gene AVP1 and Larrea Rubisco activase gene RCA[J].Plant Science,2020,296:1-13.

[33] Singh R K,Prasad M.Delineating the epigenetic regulation of heat and drought response in plants[J].Critical Reviews in Biotechnology,2022,42(4):548-561.

[34] Wan L,Lei Y,Yan L,et al.Transcriptome and metabolome reveal redirection of flavonoids in a white testa peanut mutant[J].BMC Plant Biology,2020,20(1):1-19.

[35] Yang X,Zhu X,Wei J,et al.Primary root response to combined drought and heat stress is regulated via salicylic acid metabolism in maize[J].BMC Plant Biology,2022,22(1):1-18.

[36] Molinari H B C,Marur C J,Filho J C B,et al.Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb.x Poncirus trifoliata L.Raf.) overproducing proline[J].Plant Science,2004,167(6):1375-1381.

[37] Sun C X,Li M Q,Gao X X,et al.Metabolic response of maize plants to multi-factorial abiotic stresses[J].Plant Biology,2016,18(S1):120-129.

[38] Correia B,Hancock R D,Amaral J,et al.Combined drought and heat activates protective responses in Eucalyptus Globulus that Are not activated when subjected to drought or heat stress alone[J].Frontiers in Plant Science,2018,9:1-14.

[39] Zandalinas S I,Sales C,Beltran J,et al.Activation of secondary metabolism in citrus plants is associated to sensitivity to combined drought and high temperatures[J].Frontiers in Plant Science,2016,7:1-17.

[40] Szabados L,Savouré A.Proline:a multifunctional amino acid[J].Trends in Plant Science,2010,15(2):89-97.

[41] Ayub M,Ashraf M Y,Kausar A,et al.Growth and physio-biochemical responses of maize (Zea mays L.) to drought and heat stresses[J].Plant Biosystems-An International Journal Dealing with All Aspects of Plant Biology,2021,155(3):535-542.

[42] Cvikrová M,Gemperlová L,Martincová O,et al.Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants[J].Plant Physiology and Biochemistry,2013,73:7-15.

[43] Dobra J,Motyka V,Dobrev P,et al.Comparison of hormonal responses to heat,drought and combined stress in tobacco plants with elevated proline content[J].Journal of Plant Physiology,2010,167(16):1360-1370.

[44] Hanif S,Saleem M F,Sarwar M,et al.Biochemically triggered heat and drought stress tolerance in rice by proline application[J].Journal of Plant Growth Regulation,2021,40(1):305-312.

[45] Zheng Y,Xia Z,Wu J,et al.Effects of repeated drought stress on the physiological characteristics and lipid metabolism of Bombax ceiba L.during subsequent drought and heat stresses[J].BMC Plant Biology,2021,21(1):11-14.

[46] Ru C,Hu X,Chen D,et al.Heat and drought priming induce tolerance to subsequent heat and drought stress by regulating leaf photosynthesis,root morphology,and antioxidant defense in maize seedlings[J].Environmental and Experimental Botany,2022,202:1-16.

[47] Kosakivska I V,Vedenicheva N P,Babenko L M,et al.Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses[J].Molecular Biology Reports,2022,49(1):617-628.

[48] Abo Gamar M I,Kisiala A,Emery R J N,et al.Elevated carbon dioxide decreases the adverse effects of higher temperature and drought stress by mitigating oxidative stress and improving water status in Arabidopsis thaliana[J].Planta,2019,250(4):1191-1214.

[49] Zhang X,Wang X,Zhuang L,et al.Abscisic acid mediation of drought priming-enhanced heat tolerance in tall fescue (Festuca arundinacea) and Arabidopsis[J].Physiologia Plantarum,2019,167(4):488-501.

[50] Mushtaq N,Wang Y,Fan J,et al.Down-regulation of cytokinin receptor gene SlHK2 improves plant tolerance to drought,heat,and combined stresses in tomato[J].Plants (Basel),2022,11(2)1-19.

[51] Naz R,Gul F,Zahoor S,et al.Interactive effects of hydrogen sulphide and silicon enhance drought and heat tolerance by modulating hormones,antioxidant defence enzymes and redox status in barley (Hordeum vulgare L.)[J].Plant Biology,2022,24(4):684-696.

[52] Ru C,Wang K,Hu X,et al.Nitrogen modulates the effects of heat,drought,and combined stresses on photosynthesis,antioxidant capacity,cell osmoregulation,and grain yield in winter wheat[J].Journal of Plant Growth Regulation,2023,42(3):1681-1703.

[53] Romero-Munar A,Aroca R,Zamarreno A M,et al.Dual inoculation with Rhizophagus irregularis and Bacillus megaterium improves maize tolerance to combined drought and high temperature stress by enhancing root hydraulics,photosynthesis and hormonal responses[J].International Journal of Molecular Science,2023,24(6)1-22.

[54] Noununu I,Moleleki L,Roopnarain A,et al.Effects of plant growth-promoting rhizobacteria on the molecular responses of maize under drought and heat stresses:a review[J].Pedosphere,2022,32(1):90-106.

[55] Shin D J,Yoo S J,Hong J K,et al.Effect of Bacillus aryabhattai H26-2 and B-siamensis H30-3 on growth promotion and alleviation of heat and drought stresses in chinese cabbage[J].Plant Pathology Journal,2019,35(2):178-187.

[56] Bilal S,Shahzad R,Imran M,et al.Synergistic association of endophytic fungi enhances Glycine max L.resilience to combined abiotic stresses:heavy metals,high temperature and drought stress[J].Industrial Crops and Products,2020,143:1-10.

[57] Azmat A,Tanveer Y,Yasmin H,et al.Coactive role of zinc oxide nanoparticles and plant growth promoting rhizobacteria for mitigation of synchronized effects of heat and drought stress in wheat plants[J].Chemosphere,2022,297:1-13.

[58] Balfagón D,Rambla J L,Granell A,et al.Grafting improves tolerance to combined drought and heat stresses by modifying metabolism in citrus scion[J].Environmental and Experimental Botany,2022,195:1-11.

[59] Aubert L,Quinet M.Comparison of heat and drought stress responses among twelve tartary buckwheat(Fagopyrum tataricum) Varieties[J].Plants (Basel),2022,11(11):1-21.

CiteSpace-based Analysis of the Effects of High Temperature and Drought on Plant Growth and Metabolism

Zhang Chuanqing1,Li Liangliang2*

(1.Forestry Bureau of Zhijin County,Bijie 552100,Guizhou,China;2.Institute of Mountain Resources of Guizhou Province,Guiyang 550001,Guizhou,China)

Abstract:

Rising global temperatures have increased the risk of simultaneous occurrence of heat and drought stress in most regions. The simultaneous occurrence of high temperature and drought stress will seriously affect plant growth and development, resulting in crop yield loss and tree mortality.Since 2013, a total of 306 research papers on high temperature and drought combined stress have been included in the Web of Science Core Collection database. In this study, we used CiteSpace software to analyze its main research hotspots and identify the main content of high temperature and drought compound stress research in the last decade by keywords. On this basis, the effects of high-temperature and drought stress on plant physiology, metabolism and molecular regulation were further analyzed around the hotspots and main contents. This review elucidates the adverse effects of adversity stress on plants by integrating a series of literature on enhancing plant stress tolerance in recent years, including transgenic technology, stress initiation, inoculation of mycorrhizae, application of nutrients and phytohormones, etc., and lays the foundation for understanding and developing compound stress-tolerant varieties as well as improving the adaptive capacity of plants to future climate change.

Keywords:

high temperature; drought; transcription; metabolism

猜你喜歡
植物研究
FMS與YBT相關性的實證研究
2020年國內翻譯研究述評
遼代千人邑研究述論
視錯覺在平面設計中的應用與研究
科技傳播(2019年22期)2020-01-14 03:06:54
EMA伺服控制系統研究
新版C-NCAP側面碰撞假人損傷研究
植物的防身術
把植物做成藥
哦,不怕,不怕
將植物穿身上
主站蜘蛛池模板: 久久久久久尹人网香蕉 | jizz在线免费播放| 亚洲男人的天堂久久香蕉| 97影院午夜在线观看视频| 九九九九热精品视频| 国产精品视频系列专区| 亚洲婷婷在线视频| 天堂在线亚洲| 国产成人麻豆精品| 欧美日韩国产成人高清视频| 久久无码av一区二区三区| 亚洲人成成无码网WWW| 日本午夜视频在线观看| 2018日日摸夜夜添狠狠躁| av在线手机播放| 97精品国产高清久久久久蜜芽| 五月天福利视频| 欧洲亚洲一区| 欧美黄网站免费观看| 日韩中文精品亚洲第三区| 特级做a爰片毛片免费69| 99爱在线| 丝袜美女被出水视频一区| 欧美国产成人在线| 亚洲精品无码不卡在线播放| 亚洲熟女偷拍| 国产精品无码翘臀在线看纯欲| 亚洲精品成人7777在线观看| 欧美不卡视频一区发布| 精品久久高清| 亚洲黄色视频在线观看一区| 狠狠色噜噜狠狠狠狠色综合久| 2021国产v亚洲v天堂无码| 青青青国产视频| 欧美日韩一区二区在线播放| 欧美成人一级| 久久国产精品夜色| 99精品欧美一区| 人妻丰满熟妇αv无码| 亚洲国产成人精品无码区性色| 热99re99首页精品亚洲五月天| 91麻豆国产视频| 国产91麻豆视频| 国模极品一区二区三区| 国产爽妇精品| 91精品专区国产盗摄| 五月天天天色| 77777亚洲午夜久久多人| 在线观看免费国产| 国产av色站网站| a级毛片免费播放| 欧美特黄一级大黄录像| 国产欧美日韩va| 国产流白浆视频| 久精品色妇丰满人妻| 91系列在线观看| 美女一级免费毛片| 国产一级妓女av网站| 黄色福利在线| аⅴ资源中文在线天堂| 欧美日韩中文国产va另类| 91久久青青草原精品国产| 国产日本欧美亚洲精品视| 中文字幕va| 婷婷久久综合九色综合88| 日本三区视频| 黄色在线不卡| 亚洲三级色| 国内精品免费| V一区无码内射国产| 亚洲三级色| 欧美综合区自拍亚洲综合天堂 | 99re在线观看视频| 亚洲无码A视频在线| 国产免费羞羞视频| 亚洲不卡影院| 98超碰在线观看| 国产在线精品99一区不卡| 国产精品污视频| 国产精品无码在线看| 韩国v欧美v亚洲v日本v| 国产一二三区视频|