999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于車載LiDAR的特征融合差分的車前道路提取方法

2024-01-15 00:44:26何光明韓士元陳月輝
測繪通報 2023年12期

何光明,韓士元,2,陳月輝,2,周 勁,2,楊 君

(1. 濟南大學山東省網絡環境智能計算重點實驗室,山東 濟南 250022; 2. 濟南大學人工智能研究院,山東 濟南 250022; 3. 山東交通學院汽車工程學院,山東 濟南 250023)

隨著科技的不斷發展,車載LiDAR已經開始被廣泛應用于智能駕駛、三維物體檢測等領域。車載LiDAR包含了精準的三維空間信息,物體的空間信息對行駛中的車輛至關重要,這是光學影像不具備的特征。通過車載LiDAR研究提取車前道路,相比光學影像具有更高的可信度。

目前國內外學者針對基于車載LiDAR的點云提取道路進行了大量的研究。文獻[1]使用基于最大熵的模糊聚類方法對點進行聚類,并使用加權線性擬合算法生成路面。文獻[2]使用高斯濾波算法的導數從MLS數據中檢測路緣。文獻[3]首先使用點的GPS時間將點云劃分為連續的道路橫斷面;然后使用移動窗口操作符根據高程差、點密度及坡度變化檢測每個路段中的路緣點。文獻[4]使用軌跡數據將點云劃分為多個塊。坡度和高程測試用于檢測每個街區的路緣點。文獻[5]在點云上構建了顯著特征圖,以檢測路緣點。文獻[6]使用道路邊界的局部線性特征,通過圖形切割檢測路緣點。文獻[7]提出一種針對海量點云數據局部強度的柵格分割方法,用于提取道路點云。文獻[8]提出了一種基于掃描線的移動窗口濾波道路提取方法。文獻[9]提出一種集成注意力機制和擴張卷積的道路提取模型。文獻[10]采用隨機森林分類模型提取道路點云。文獻[11]結合RANSAC閾值的形態學濾波提取地面點云,然后通過聚類提取道路點云。文獻[12]提出一種基于Otsu算法和區域生長分割的道路提取方法。文獻[13]提出了一種基于點云法向量分布特征及掃描車軌跡信息的道路邊界提取方法。文獻[14]提出了一種基于坡度濾波算法與改進歐氏距離的區域生長算法相結合的道路點云提取算法。雖然研究人員在車載LiDAR的道路提取中做了許多研究,但當前大多數研究的過程均是先采集數據,然后對整條道路數據進行建模提取。研究重點針對整條道路的提取完整度,但在行駛過程中對汽車而言,更為重要的是車前實況道路邊界感知,以及對于道路臨時占用、道路塌陷等突發狀況,即對道路的完整性提取失去了實用意義。本文針對此問題,提出一種車前短距道路自動提取的算法,實現數據采集與道路提取同時進行,以獲取更為精細的車前臨時道路邊界。

1 點云數據的預處理

1.1 基于形態學算法地面點云數據獲取

數學形態學(Morphology)是圖像處理的基本理論之一,基本的運算有腐蝕和膨脹、開運算和閉運算,基于這些基本運算還可推導和組合成各種數學形態學實用算法,進行圖像形狀和結構的分析及處理。這在圖像分割、特征抽取、邊緣檢測、圖像濾波、圖像增強和恢復等方面有廣泛應用。腐蝕和膨脹操作已經擴展到點云領域,對于激光雷達測量點云P(x,y,z),高程z在地面(x,y)處的膨脹操作定義為

(1)

腐蝕操作定位為

(2)

將原始點云的剖面圖通過抽樣形成多個點云元,如果點云元內沒有測量值,則使用最近鄰域插值導出高程。通過對點云元進行侵蝕和膨脹的組合應用,產生打開和關閉操作,用于雷達數據非地面點云數據和地面點云數據的分割,文獻[15]提出了基于形態學的地面點云提取算法,該算法流程描述如圖1所示。

圖1 形態學地面濾波算法流程

在激光雷達獲取原始點云后,經過形態學地面濾波處理,原始點云中道路周圍建筑物、行人、汽車、樹木等非地面點云會被全部濾除,剩余部分保存為地面點云。

1.2 地面點云自適應運算域設置

在經過地面濾波后,由于受到周圍環境如樹木、建筑物和車輛的遮擋,地面點云的數據量主要集中在前方道路上,如圖2-圖3所示。通過統計各橫向區間所蘊含的數據量,設置自適應運算域,該運算域的設置符合向“密集點靠攏”的原則,將前方點云劃分為若干個單位統計區間。通過點云數據量分布直方圖,確定運算域寬度,不僅可濾除不必要的噪聲點,減少了差分運算量,還在不影響準確性的前提下節省了運算空間,提高了運行速度。

圖2 車前橫向點云數據量分布

圖3 車前50 m縱向點云數據量分布

2 多特征融合差分道路提取算法

2.1 差分元劃分

差分元大小的選擇對于獲得良好結果至關重要。激光雷達通過發射出的接觸物體表面并反射回的激光回波信號強度記錄數據。一般而言,與激光雷達正對著的位置上激光回波點的數量會多一些,而相較激光雷達位置較偏的物體或出現不規則的表面的物體,導致被掃描物體所處環境難以返回回波信號,即激光回波的收點數量相對較少。還有些對激光信號有吸收性的物體,會造成點云數據中的大面積空白區域。不同的掃描方式也會引起點云分布不均。同時激光雷達的光線收發模組的每個發射頭之間會有定量的偏移角,其激光線數越多,偏移角越小,所獲得的激光點越多,成像級別越高。前方道路距離車越近,獲得激光點數越多且密集,但隨著車距的增加,激光點逐漸稀疏。使用固定差分元會出現大量的空白數據,增加不必要的運算量。因此,需要設置合適尺寸的差分元。

2.1.1 差分元的縱向劃分

差分元縱向劃分的最佳狀況是確保每個縱向條帶中都包含數據點,通過驗證分析,(l1,l2,…,ln)屬于正向遞增序列,窗口長度的選擇可以通過線性增加長度,計算公式為

ln=tn+b

(3)

式中,t為增益系數,其數值t∝Htanα,其中H為激光雷達的安裝高度,α為激光雷達發射模組中相鄰激光發射頭的夾角,為固定值;b用于調節每個差分元起始位置。

圖4(a)中,b的值小于ln-1,差分元之間形成交叉重疊;圖4(b)中,b的值等于ln-1,差分元之間交界;圖4(c)中,b的值大于ln-1,差分元之間存在間隙會形成數據遺漏,故b∈(0,ln-1),n≥2。

圖4 相鄰差分元縱向起點

2.1.2 差分元的橫向劃分

大量的試驗結果證明,差分橫向劃分寬度與點云的密度和差分元長度有關,密度越大,差分云寬度越短,效果越好。本文中同一縱深選取等距窗口長度,差分元的起點計算公式為

(4)

s決定每個差分元的起點,如圖5所示。s小于wm-1時,差分元之間形成交叉重疊;s等于wm-1時,差分元之間交界;s大于wm-1時,差分元之間存在間隙會形成數據遺漏,故b∈(0,wm-1),m≥2。

圖5 相鄰差分元橫向起點

2.2 差分元特征參數處理

參考文獻[16]點云中每個點根據豪斯多夫距離映射到特征空間中,對每個差分元的多個激光點的多維度特征進行融合映射,設S為一個差分元的點集合:S={p0,p1,p2,…},取數量特征N、高度特征H、反射強度特征為R,設α、β、λ為權重系數,規定α+β+λ=1,則每個差分元內有

(5)

式中,F為每個差分元的特征融合參數。

2.3 差分運算

在每個差分元界限選取后,統計每個差分元內特征D,記為D(m,n)=[wmlnF],獲得特征矩陣為

(6)

式中,Γ為非零陣,設單位變換矩陣E,求取變換矩陣Γ′=Γ·E,則求解差分矩陣Res=Γ-Γ′。

2.4 閾值濾波器設置

在獲取差分矩陣后,道路的不平整、積水、落葉等因素會在提取邊界時對結果形成噪聲干擾,需將微小的噪聲濾除,否則對不平整路面的提取精度將大幅降低。

差分閾值初值T可根據運算域內點云密度的均值K確定,計算公式為

(7)

假設均值恒定,差分閾值初值設定與點云密度均值存在關系為T=K,在獲取T后若無法找到道路邊界,需要再對T值進行重置,依據同縱深的每個差分元內的密度均值重置T,計算公式為

(8)

差分矩陣進行濾波,獲取參照矩陣Ψ=Res·T,運行結果Ψ內會出現大量空值,在空值邊緣截取標定矩陣為

(9)

通過標定矩陣Φ查詢原始點云,獲取道路邊界。綜上所述,本文算法描述如下。

Input: 原始點云

Output: 道路點云

1 形態學濾波獲取地面點Gp

2 計算Gp數據分布,確定運算域的長度L、寬度W,提取出運算域點云Gp(W,L,k)={P0,P1,P2,…,Pk}

3 設定差分元D參數(Δw,Δl),相鄰差分元之間的偏移量(b,s)

4 設定閾值濾波器初始值T

7 ifΦ==0&T!=0:

8Φ←Res·T

9 if is find(Dleft,Dright):

10 end

11 if on find(Dleft,Dright)&T!=0:

12T-1=1,返回5

13 ifT==0

14 Δw+=b,Δl+=s,返回4

3 試驗結果分析

采用一臺雷克薩斯RX450 h搭載4個Sekonix SF3325-100相機、兩個VLP-16線激光雷達、一個Ouster OS2-128 long range LiDAR[17-19]的信息收集平臺進行試驗數據采集。其點云數據樣本包含了(x,y,z,reflection)四維度特征。采集到原始的激光點云數據,數據量巨大且冗余,需要經過數據配準、數據減縮(地面濾波)、空洞修補及點云分塊等一系列操作處理。原始點云包含131 072個激光點,先經濾波后地面數據包含80 935個激光點,再經過確定運算域后有效數據包含57 350個激光點,如圖6所示。為了更好地對試驗結果進行定量分析,采用Cloud Compare軟件人工提取路面點云,作為分割正確率的參考。

圖6 示例點云道路提取可視化過程

根據文獻[20-21]選用準確性p、完整性r、檢測質量q這 3個度量指標對本文算法進行評價,定義評價指標計算公式為

(10)

式中,TP為實際為道路點,且判斷為道路點;FN為實際為道路點,但判斷為非道路點;FP為實際為非道路點,但判斷為道路點。

本文算法主要應用于車輛行駛中的一幀點云數據提取的道路數據,圖6的示例點云數據提取車前0~50 m的道路,人工提取道路點云如圖6(d)所示,共9092個點。算法提取道路點如圖6(e)所示,共9162個點,其中正樣本為8842個點,假陽樣本為320個點。道路提取準確率為96.51%,完整性為97.25%,提取質量為93.94%。與相關的道路提取算法相比,效果見表1。可以得出,本文算法能精準界定行駛中車前道路邊界,更能實時監測行駛中道路情況的變化。同時為了避免數據出現偶然性,對所采數據集不同道路抽選4組數據,做不同縱深道路提取對比,效果見表2。

表1 本文算法與相關算法的道路提取對比

表2 本文算法對不同縱深的道路提取效果 (%)

4 結 語

與當前研究注重提取道路的完整性不同,本文主要研究了行駛中車載LiDAR車前道路邊界自動提取方法。首先通過形態學濾波將當前幀點云提取出地面點云,根據所獲得數據量分布細化運算區域,劃分差分元大小,統計每個差分元的特征參數形成特征矩陣,通過矩陣變換獲取差分矩陣后,采用不同的閾值濾波器掃描差分矩陣提取道路邊界。通過大量的試驗結果表明,本文在城市道路中適用性良好,在道路條件惡劣時,本文算法會通過損失檢測距離保證良好的準確性,更具有實用性。

主站蜘蛛池模板: 国产高清在线观看91精品| 国产人成在线视频| 国产主播在线一区| 萌白酱国产一区二区| 99九九成人免费视频精品| 国产va在线| 一本久道久久综合多人| 亚洲码在线中文在线观看| 国产一区免费在线观看| 国内熟女少妇一线天| 怡春院欧美一区二区三区免费| 一本大道东京热无码av | 精品视频91| 精品久久777| 国产福利小视频在线播放观看| 国产成人综合在线观看| 久久久精品国产SM调教网站| 免费国产高清精品一区在线| 伊人蕉久影院| 色香蕉影院| 久久香蕉国产线看观看亚洲片| 亚洲视频在线网| 欧美一级夜夜爽www| 国产一级二级在线观看| 国产成人91精品| 国产91av在线| 午夜视频日本| 国产欧美日韩综合一区在线播放| 99热这里都是国产精品| 日韩中文字幕免费在线观看| 好紧好深好大乳无码中文字幕| 91伊人国产| 18禁黄无遮挡免费动漫网站| 欲色天天综合网| 大陆国产精品视频| 中字无码av在线电影| 色婷婷国产精品视频| 国产精品黄色片| 日本a级免费| 人与鲁专区| 国产精品v欧美| 国产精品主播| 自拍欧美亚洲| 日韩小视频在线观看| 国产精品综合色区在线观看| 国产精品国产三级国产专业不 | 国产成熟女人性满足视频| 漂亮人妻被中出中文字幕久久| 国产aaaaa一级毛片| 一级成人a毛片免费播放| 亚洲福利一区二区三区| 亚洲无码高清视频在线观看| 国产无码精品在线| 国产农村1级毛片| 日韩天堂在线观看| 日本国产一区在线观看| 国产交换配偶在线视频| 国产高清在线观看91精品| 亚洲不卡无码av中文字幕| 国产精品.com| 亚洲精品中文字幕午夜| 国产理论最新国产精品视频| 欧美成a人片在线观看| 亚洲一区二区三区国产精华液| 五月天香蕉视频国产亚| 色综合五月婷婷| 欧美一级在线| 亚洲欧美综合在线观看| 色婷婷狠狠干| 欧美一级在线| 亚洲精品不卡午夜精品| 亚洲福利视频网址| 九九线精品视频在线观看| 国产女同自拍视频| 亚洲欧美自拍中文| 中文字幕亚洲专区第19页| 久久 午夜福利 张柏芝| 思思热精品在线8| 色婷婷在线播放| 又黄又湿又爽的视频| 国产麻豆精品久久一二三| 国产一区二区精品福利|