陸沈雄,范亞偉,屠永輝,戚成健,溫世超
(浙江華云信息科技有限公司,浙江杭州 310008)
目前新能源的發展已成為當今世界的熱點,光伏發電是全球新能源之一,其年增長率超過35%,成為世界上發展最迅速的新能源。而光伏發電與太陽輻射等氣象因素有著緊密聯系,新能源儲能具有隨機性、波動性和不確定性。大規模新能源儲能的波動性將直接關系到電網的安全穩定運行。因此,在電力系統中,如何有效地協調多方能源,保證電網穩定運行是必要的。
文獻[1]提出了結合遙感數據的預測方法,利用高分辨率衛星數據和深度學習技術,獲得地面光伏發電,并與真實氣象數據相結合,對光伏發電進行預測。文獻[2]提出了基于GA-GNNM 的預測方法,該方法通過采集氣候因素數據,對缺失的光伏發電數據進行歸一化處理。通過最大相關冗余算法選擇最佳氣象數據組合,構建多維數據集。將數據集輸入到K 均值聚類算法過程中,通過構建灰色神經網絡融合模型,實現光伏發電預測。采用上述兩種方法既要了解光伏發電的氣象數據,又要對各個數據的相關性進行分析,但由于新能源儲能波動具有普遍化特性,使得預測精度降低。為此,提出了新能源儲能波動下的光伏發電預測改進算法。
光伏發電以清潔、環保等優點,被廣泛地應用于新能源領域。目前,光伏技術是當今世界可再生能源研究的熱點[3]。然而,新能源儲能具有隨機性、波動性和間歇性,尤其是大規模的光伏發電將對電網的安全、穩定運行產生巨大的影響[4]。采用合適的儲能技術,可以減少這些負面效應,促進光伏數據集約化利用。
在光伏系統處于充電狀態時,選取全過程中新能源儲能的波動最小下限為光伏系統光電輸出,剩余電能用于光伏系統充電,且直到完全充滿為止[5-7]。光伏系統的儲能容量可表示為:
式中,Ps、Pm分別表示光伏系統實際輸出功率和充電過程光伏系統輸出;η表示系統充電效率;Q0為系統的初始能量;t1、t2分別為充電的起始時刻和終止時刻。
在光伏系統處于放電狀態時,選取全過程中新能源儲能的波動最高上限為光伏系統光電輸出,缺失電能由光伏系統來補充,直至光伏系統放電到達放電下限為止[8-10]。光伏系統在某放電深度的最低能量可表示為:
式中,t3表示放電結束時間。通過對光伏系統儲能容量有合理的選擇,起到對新能源儲能波動平抑的作用。
為了進一步提高預測結果的概括性,增加預測穩定性,防止輸出結果陷入局部最優狀態,優化光伏系統結構和參數[11-12]。基于此,構建了光伏發電預測模型,如圖1 所示。

圖1 光伏發電預測模型
光伏發電預測模型如下所示:
式中,I1、I0、Ig分別表示光生電流、飽和電流和并聯電流;Rg代表并聯電阻;U代表輸出電壓;μ代表二極管質量系數;σ代表玻爾茲曼常量;C表示光伏陣列的溫度;q表示電子電荷[13]。通過光伏發電系統改進結構參數,優化連接權值和閾值。
通過構建光伏發電預測模型,結合升壓轉換器選擇開關信號,獲取最大功率跟蹤結果。通過分析時序相關性,使用改進分數階算法實現對光伏發電的精準預測。
2.2.1 模型預測控制
模型預測控制是利用離散時間模型對控制變量的未來變化進行預測的一種閉環最優控制方法[14]。選擇適當的切換控制信號是基于所設置最優判據,為了方便開關控制信號的選取,采用升壓轉換器,其結構如圖2 所示。

圖2 升壓轉換器結構
采用升壓轉換器,開關狀態定義為k1-k6,根據開關控制信號使光伏系統的變量盡可能接近參考變量[15]。如果光伏系統中存在n種信號,則在t+1 時刻所有預測結果可表示為:
式中,P(t)表示光伏發電預測量;f表示預測函數;ki表示第i個開關。
設定取樣時段控制信號,并基于以上所述的預測結果來建立代價函數,可表示為:
式中,P*(t)表示跟蹤參考信號。在n種信號控制下,以代價函數最小的控制信號為最佳,并將其作為時間的控制信號,使得控制量與基準值更接近,也就是獲取光伏發電最大功率點追蹤結果。
2.2.2 光伏發電預測量計算
對光伏發電的預測模型進行了分析,可以將λj看作是在一定時期內,各個時段的光伏發電量與未來光伏預測加權系數之間的關系,并將其與光伏系統的實時發電量之間的相關性進行了分析,可表示為:
式中,t表示發電時間。在分數階體系中,采用當前和過去時間的狀態信息對模型進行改進,可以較好地表達歷史數據。在前15 個時序上,對光伏發電系統的實時發電功率與時間序列的關系進行了研究。在新能源儲能波動平抑情況下,采用了一種改進分數階法,將在當前時刻前選取的時序區間限定在一定的采樣點數目之內,從而可以保證預測精確度和提高運算速度[16-19]。在此基礎上,將分數階理論引入到光伏發電預測中,為其提供了充分理論依據。但是,由于光伏發電的特點和綜合因素的影響,使得光伏發電的特點更加復雜,其運算速度也比常規方法要大。在此基礎上,提出了一種基于小數階法的新方法,并對其進行了動態跟蹤,為其預測提供了更為精確的信息。
根據上述分析可將模型中的預測結果,光伏發電輸出功率預測量表示為:
式中,m表示樣本數據量;τ、?分別表示改進水平、傾斜分量;ψm、ζm分別表示改進水平、傾斜系數。從以上公式可以看出,在未來一段時期,通過改進水平分量和改進傾斜分量,可以得到兩組參數權重的計算公式:
將上述計算結果引入模型中,隨著光伏發電系統的不斷擴大,相應的光伏發電預測量也會隨之增加,并用如下公式表示:
通過上述公式可得到光伏發電精準預測結果。
光伏發電的隨機性和不穩定性,使得其抗干擾能力差,運行風險增大。因此,光伏發電系統的能源管理問題是其核心問題。光伏發電的能源管理目標是對光伏發電的光伏板、基本負荷、蓄能系統進行合理的調度,以確保光伏發電的安全、穩定運行,達到最大的經濟效益。光伏電站結構如圖3 所示。

圖3 光伏電站結構示意圖
分布式電源主要由光伏電池和能量存儲兩部分組成,其中既有電能負載,也有家用電能。母線由DC/AC 變換器連接,而蓄電系統則由DC/AC 變換器連接至母線。光伏發電系統一般都是以并網的形式運行的,它是由一個公用的連接點PCC 與大電網相連的。當連接點PCC 被切斷時,大型電力系統和光伏電站之間的連接被切斷,使得光伏發電處于孤島狀態。
將待預測的數據放入預測模型中進行訓練,可以獲取各個時刻預測結果,并將這些結果與實際結果進行比較,得到預測精度。采用兩種誤差對所研究方法進行評價,即均方誤差和平均相對誤差,評價公式為:
式中,a表示預測時間點數;rs、分別表示s個實際值和預測值。
設置晴天和陰天兩種天氣,在這兩種天氣下光伏發電實際輸出功率如表1 所示。

表1 不同天氣下光伏發電實際輸出功率
由表1 可知,晴天的實際輸出功率大于陰天的實際輸出功率。
根據上述模擬數據,分別使用文獻[1]方法、文獻[2]方法和所提方法對比分析預測結果,如圖4所示。

圖4 不同方法預測結果對比分析
由圖4(a)可知,三種方法的預測結果相差較大,其中使用所提方法與實際值一致,其余兩種方法與該算法最大誤差為40 kW。由圖4(b)可知,使用所提方法與實際值在預測時間為18:00 時,與實際值存在0.2 kW 的誤差,其余時間均一致。使用文獻[1]方法、文獻[2]方法與實際值存在最大誤差為0.5 kW和0.8 kW。通過對比結果可知,使用所提方法預測結果更精準。
為精準預測光伏發電量,提出一種新能源儲能波動下的光伏發電預測改進算法。利用能量存儲技術對新能源儲能波動進行抑制,降低對光伏發電預測的影響。建立了光伏發電預測模型,利用升壓變換器,選擇適當的切換控制信號,獲得最大功率點跟蹤的結果。通過對光伏發電系統的時序相關性分析,結合改進分數階算法,預測光伏發電,并通過對該算法的實際應用進行了實驗模擬。經實驗驗證了該方法是切實可行的,且結果顯示該方法能較好地對光伏發電進行精準預測。