999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

用于Buck變換器監測的嵌入式概率數字孿生控制器

2024-03-04 05:55:36貝太周
山東電力技術 2024年2期
關鍵詞:模型

貝太周,陳 博,袁 月,劉 博

(1.國網山東省電力公司濟南供電公司,山東 濟南 250012;2.天津大學電氣自動化與信息工程學院,天津 300072)

0 引言

數字孿生(digital twin,DT)不僅能夠兼容大數據、網絡云、5G 通信和人工智能等先進技術,而且已經發展成為一種可以融合多學科、多物理量、多尺度、多概率的仿真技術[1-2]。目前,DT 技術已經具備對給定物理系統進行測試和診斷的能力,可以完成對給定物理系統的預測和健康管理(prognostics and health management,PHM)[3]。DT 依靠給定物理系統實時更新的數據建立起相應的數字模型,并將數字模型作為與物理系統進行比較的并行參考[4]。當物理系統運行時,通過分析物理系統與其相對應的DT模型的差異,可以很好地確定物理系統當前時刻的運行狀況[5]。

DT 技術在工業領域已經得到極大的普及與發展。文獻[6]綜合論述當前階段DT 技術在工業生產領域中的應用與挑戰。時至今日,DT 已經成功應用于工業產品的設計和生產,但是在PHM 方面應用卻相對較少。在電力系統領域,文獻[7]構建電力系統PHM 的DT 方案,進一步改進電力系統的精準預測和精確控制能力。文獻[8]提出將實時仿真模型作為觀測器嵌入到配電系統的計算單元,從而實現配電系統DT 的建模。文獻[9]提出使用DT 技術實現能量預測、能源管理和電力消耗的概念。文獻[10]介紹大型電網DT 的應用,指出借助DT 技術能夠有效減少大型電網的分析時間,便于快速做出決策部署。但是在電力電子功率變換器領域,使用DT 技術進行控制器在線監測方面的研究相對較少,文獻[11]提出使用DT 對光伏系統功率變換器進行在線監測的可行性研究,文獻[12]指出使用DT 可對風電系統中功率變換器的壽命時限進行預測分析。

借助概率DT 建模方法和廣義多項式混沌理論,提出一種用于Buck 變換器監測的嵌入式概率DT 控制器。首先簡單介紹嵌入式概率DT 控制器和廣義多項式混沌展開的基本理論,然后以Buck 變換器為應用載體,提出并分析嵌入式概率DT 控制器的具體實現方法,最后借助實驗驗證了在Buck 變換器占空比和元器件參數發生單一變化情況下所提方案的有效性和可行性。

1 嵌入式概率DT 控制器和廣義多項式混沌展開的基本理論

1.1 嵌入式概率DT控制器

嵌入式概率DT 控制器為功率變換器的動態行為提供一個預期參考。當功率變換器運行時,將變換器的實際運行情況與概率DT 模型進行比較,如果實際運行情況偏離了DT 模型的最初設定,嵌入式概率DT 控制器就會判定變換器是否根據需要繼續運行。

隨著模塊化功率變換器的重大發展,在模塊化功率變換器上已經配備了多聯網控制器和高可靠性的傳感器。除此以外,功率半導體元器件的持續發展也帶動了更高開關頻率變換器的涌現。功率變換器模塊化的發展趨勢和更加快速的開關操作特性要求在可編程門陣列(field programmable gate array,FPGA)等控制器設備上需要同時兼顧開關控制器低延遲、可大規模并行和高網絡連通的性能要求[13]。

在對功率變換器進行DT 建模時,會遇到兩個問題:一是功率變換器在運行過程中會不可避免地遇到影響自身正常運行且難以預測的多種隨機環境因素,如電磁干擾、熱效應、傳感器噪聲和負載擾動等,還有因對功率變換器的設備制造、元件參數等信息所知有限而產生其他不確定性因素,這就要求功率變換器的DT 模型需要考慮以上各種不確定性因素,實現準確模擬功率變換器動態行為的效果;二是為了保證DT 模型能夠實時跟隨功率變換器的動態行為,需要對功率變換器的DT 模型進行定期刷新和訓練,由此會產生較大的計算量,占用控制器更多的內存空間。針對這一問題,可以采用將概率DT 模型嵌入控制器的方法,依靠概率DT 模型中的隨機過程變量,使用廣義多項式混沌展開(polynomial chaos expansion,PCE)來獲得更少的計算量[14],同時結合FPGA 控制器保證功率變換器能夠以較小的時間步長實現概率DT 模型的實時運行,并利用FPGA 高并行和低延遲的優良特性,進一步提高PCE 建模的運算速度[15]。

1.2 面向控制層的DT模型分區

雖然將功率變換器的概率DT 模型嵌入FPGA能夠保證DT 模型保持時間上的同步性,但是對FPGA 而言,其維護成本也隨著模型復雜度的提高而增大。針對這一問題,可以借助模型分區的方法來有效降低模型的復雜度[16]。

考慮模塊化功率變換器容易實現基于功能和空間的控制分區[17],在控制層方案下,功率變換器的DT 模型可與功率變換器的控制層相適應。將控制層內的特征信息引至DT 模型內部,由此可以增加功率變換器DT 模型的信息程度。帶有DT 模型的控制層結構如圖1 所示。在控制層中開發功率變換器的DT 模型可以有效降低模型的復雜程度和計算成本,從而建立功率變換器的概率DT 模型。

圖1 帶有DT模型的控制層結構Fig.1 Structure of control layer with DT model

1.3 控制層DT和監測器設計

功率變換器應用層和控制層的結構如圖2 所示。圖2 中,應用層受控制器GA的控制,變換器層受控制器GC的控制。

圖2 應用層和變換器層的結構框圖Fig.2 Structure diagram of application layer and converter layer

對于控制層而言,會關聯一個如圖3 所示的DT模型結構。在每個控制層,將對控制器和DT 模型的樣本數據信息進行采集,同時傳輸至相應的監測單元,由監測單元跟蹤功率變換器的對應狀態。

圖3 控制層中DT的實現Fig.3 Implementation of DT in control layer

監測單元中監測器的結構如圖4 所示。在每個監測單元內部,通過閾值計算器對DT 模型的數據量進行統計計算并求得偏差閾值。由孿生比較器從功率變換器的物理模型中獲取實時數據,再與由閾值計算器獲得的偏差閾值進行比較運算,獲得功率變換器物理模型數據的實時偏差,產生功率變換器的當前狀態指示,并將狀態指示傳送給相應的層控制器G。根據指示的狀態,采取適當的控制措施來保證功率變換器的安全運行。

圖4 監測器的結構框圖Fig.4 Structure diagram of monitor

1.4 廣義多項式混沌展開

廣義多項式混沌理論[14]為隨機過程變量及其概率提供了非采樣的傅里葉級數分析表示方法。在給定的物理系統中,系統所含隨機過程變量Y定義為包含N維任意隨機過程向量ξ=[ξ1,…,ξN]T、系統狀態參量x和時間t的函數。隨機過程變量Y的PCE是一個由正交多項式Ψk(ξ)乘以相應系數βk構成的無窮級數,如式(1)所示。

式中:βk和Ψk(ξ)分別為隨機過程變量Y的幅值統計矩和概率密度函數。

合理選定ξ中各元素的值,即可保證正交多項式Ψk具有快速收斂特性,便于對隨機過程變量Y進行數據分析[13]。表1 給出了在PCE 中,可用于連續分布隨機過程的幾種正交多項式及其對應ξ的取值范圍。

表1 不同分布對應的正交多項式及其ξ取值范圍Table 1 Orthogonal polynomials with different distributions and range of ξ

在實際計算中,為求簡便,通常將隨機過程變量Y的無窮級數截斷為含P項有限多項式和的形式,如式(2)所示。

項數P通過隨機向量ξ的長度N和正交多項式Ψk中最高階多項式的階數O按照式(3)進行計算求取。

在功率變換器建模過程中,變換器中的元器件如電感、電容、負載阻抗等都可以借助隨機過程變量Y來表示,而變量Y中的參數βk和Ψk則相應地決定了元器件的參數值和概率密度參數。向量ξ的長度N在數值上等于變換器所含隨機過程向量元素的個數。變換器的其他物理量,如電壓和電流,也可以借助線性多項式表示出來[18]。

2 概率DT控制器的實現

2.1 Buck變換器的概率建模

所提方案基于圖5 所示的Buck 變換器實現。

圖5 Buck變換器Fig.5 Buck converter

根據Buck 變換器的工作原理[19-20],可以建立其狀態空間模型,如式(4)所示。

式中:電感L、電容C和負載電阻R為Buck 變換器的3 個隨機過程變量元素;電感電流IL和電容電壓VC為變換器的兩個狀態參量;V為變換器的輸入電壓;s為變換器的瞬態開關值;VR為負載電阻R兩端的電壓,也是Buck 變換器的輸出電壓。

在建立概率DT 模型的過程中,將圖5 所示的Buck 變換器視為完整模型PA+C。為減少模型的計算量,可將完整模型拆分為兩個相互獨立的簡單模型,其中一個模型為應用層(即電壓層)的模型PA,如圖6(a)所示;另一個模型為變換器層(即電流層)模型PC,如圖6(b)所示。

圖6 Buck變換器的兩個拆分模型Fig.6 Two split models of buck converter

Buck 變換器模型中的隨機過程變量元素均被視為PCE 變量,PCE 變量參數N=3,O=2,根據式(3)可計算出P=10。隨機過程遵循均勻分布,設定變量元素的期望值為μ,公差為Tol,則Buck 變換器中電感L、電容C和負載電阻R可表示為

式中:μL為電感L的期望值;μC為電容C的期望值;μR為負載電阻R的期望值。

式(5)與式(2)做類比,將每個過程的β0設定為期望值,第i個系數βi設定為超出期望值的最大值μTol。其他系數均設定為零。隨機過程向量ξ=[ξ1,ξ2,ξ3]T中每個隨機過程變量ξi經標準化后取值均在[-1,1]范圍內,ξ1,ξ2,ξ3分別對應于Buck 變換器的電感L、電容C和負載電阻R。正交多項式Ψk遵從均勻分布,采用Legendre 多項式的形式。系數按照分布種類和多項式類型進行配置。式(4)所示的狀態空間模型通過線性化處理進行數值運算。

2.2 模型求解器及PCE C++數據類型代碼生成

DT 模型求解器在C++編程環境下按照時間步長對Buck 變換器的狀態空間模型進行離散化處理,進而建立Buck 變換器的DT 模型。

Buck 變換器的控制單元通過PCE 進行建模。帶有PCE 變量的控制單元在HLS C++代碼中開發模型求解器并將其嵌入DT 模型求解器中。

在DT 模型求解器的C++設計中,需要將Buck變換器模型中的全部隨機過程變量定義為PCE 所需的長度為P的數組。由于C++及其標準庫不支持此類操作,因此需要自定義專門針對PCE 的C++數據類型??紤]計算精度問題,隨機過程變量的PCE 系數類型選擇浮點類型數據。

為表達帶有PCE 變量的Buck 變換器離散隨機狀態空間模型,在C++中將模型表達式定義為正則確定性達式??紤]到PCE 數據類型可重載數學運算符,在使用不同數據類型的情況下仍可保證隨機模型表達式保持不變,因此將模型表達式中的變量和常量均定義為PCE 數據類型。

為提升FPGA 控制器的實時執行能力同時降低FPGA 的資源使用率,還需要制定一種能夠在C++環境下生成專供PCE 使用的數據類型代碼生成工具。具體過程為:通過輸入PCE 的參數N、O、P以及目標執行平臺的配置參數,產生含有PCE 數據類型可優化的自定義源代碼,產生的PCE 數據類型將參數以硬編碼常量的形式嵌入到PCE 算術表達式,同時允許FPGA 合成工具圍繞常量文本優化操作邏輯進行設計。該代碼生成工具能夠保證每個PCE 系數彼此獨立,不進行循環迭代,而且在FPGA 的實現過程中允許向量的并行運算,對于PCE 變量之間的乘除運算,通過引入一個主要由零元素和少數非零元素構成的內積張量Q,將PCE 變量與內積張量Q中的元素相乘,減少PCE 建模的數據運算量。

2.3 FPGA的設計

DT 模型中隨機模型求解器的C++代碼被封裝到頂層函數里。在設計時,將該頂層函數置入FPGA控制器核心內部,如圖7 所示。

圖7 DT模型求解器C++代碼的置入Fig.7 C++codes implantation for DT models

圖7 中,C++頂層函數里的參數被合并至FPGA控制器的信號端口,FPGA 控制器的信號端口包括功率變換器的輸入電壓(流)源信號u(t)、輸入控制信號(如開關門信號和占空比等)s(t)、模型求解器的輸出信號x(t)和y(t)以及DT 模型所需要的其他信號。在每個時間步長內,DT 模型求解器可完成對所有輸入信號及輸出信號的采樣與更新。在FPGA 合成階段,DT 模型求解器使用指令調整流水線合成工具Vivado HLS 完成關鍵定時和延遲執行的調整。指令設置取決于所使用FPGA 控制器的資源使用和參數配置情況。DT 模型求解器受單個FPGA 執行時鐘的驅動來完成所有的執行操作。通過時鐘頻率和DT 模型求解器的執行延遲來減少計算時間,從而降低對時間步長的要求。

在每個時間步長的初始階段,通過觸發信號來啟動DT 模型求解器使之開始工作。待完成模型求解之后,輸出相應的計算結果并同步產生一個工作完成信號,其他FPGA 控制器收到此完成信號后,可對計算結果進行有效讀取,而此時DT 模型求解器進入閑置等待階段,直到收到下一時間步長的觸發信號為止。

通過FPGA 控制器創建Buck 變換器隨機DT 模型的流程如圖8 所示。

圖8 隨機DT模型的開發流程Fig.8 Development process for stochastic DT models

具體過程為:首先,PCE 參數(N、O、P)借助MATLAB 中自帶的線性代數運算工具進行計算并將參數以文本形式存儲在PCE 參數文件中。然后,將參數讀入PCE 數據類型代碼產生器,生成自定義的PCE C++類型源文件,源文件中包含了Buck 變換器的隨機DT 模型求解器和仿真器的C++代碼,該代碼通過編譯和運行實現離線測試和模型驗證。隨機DT模型求解器的C++代碼一經測試完成,即可傳遞給高級綜合工具套件Xilinx Vivado HLS,并按照事先給定的內部數據類型以及定時或延遲指令,將C++代碼自動轉換成可用于FPGA 設計的HDL 代碼。最后,HDL 代碼按照邏輯關系合成到寄存器的傳送邏輯網表上,完成對實時仿真器中FPGA 的編程邏輯功能。

3 實驗驗證

在實驗條件下,采用圖5 所示的Buck 變換器驗證嵌入式DT 控制器的有效性和可行性。電路參數為:輸入電壓為直流100 V,電感L為4.5 mH,電容C為4.7 μF,負載電阻R為12 Ω,占空比為0.6。

在實驗過程中,分別考慮變換器正常運行和變換器異常運行兩種場景下本文所提概率DT 控制器的跟蹤監測能力。

1)變換器正常運行場景。

此處考慮變換器占空比及元器件參數均未發生改變的情況,相關實驗波形如圖9 所示。從圖9(a)和圖9(b)可以看出,由概率DT 控制器獲得的輸出電壓和負載電流波形幾乎與變換器的輸出電壓和負載電流波形相吻合,說明概率DT 控制器可以準確跟蹤監測變換器的輸出。進一步觀察圖9(c)和圖9(d)所示的暫態電壓和暫態電流波形,經過2 ms 的暫態調節,概率DT 控制器即可完成對變換器輸出的一致性,且動態性能保持良好。穩態情況下概率DT控制器的輸出實現了與變換器輸出的準確跟蹤,穩態輸出波形如圖9(e)和圖9(f)所示。

圖9 變換器正常運行時輸出電壓及負載電流波形Fig.9 Waves of output voltages and load currents when converter operate in normal mode

2)變換器異常運行場景。

此處考慮變換器占空比以及變換器所帶電感、電容和負載電阻參數變化的情況。為體現參數改變對變換器影響的相對獨立性,采取分時段單一改變參數的設置方法。具體設置如下:

初始時刻,占空比為0.6,在t=10.5 ms 時,僅將占空比由0.6 降至0.4,其他參數保持不變;在之后的t=30 ms 和t=50 ms 時,依次將變換器的電感參數和電容參數均降低20%;在t=70 ms 時,再將變換器的負載電阻降低1/6。整個過程的實驗波形如圖10所示。

圖10 變換器異常運行時電壓電流波形Fig.10 Waves of voltages and currents when converter operate in abnormal mode

從圖10 可以看出,無論在電壓波形圖還是在電流波形圖上,由概率DT 控制器獲得的輸出波形幾乎與變換器的輸出波形相吻合,表明概率DT 控制器的監測結果能夠與變換器的對應輸出保持一致。

圖11 所示為占空比改變時由概率DT 控制器獲得的輸出電壓和負載電流波形以及變換器的輸出電壓和負載電流波形。從圖11 可以看出,經過2 ms 的調整時間,變換器即可實現輸出狀態的重新調節。而在此調節過程中,由概率DT 控制器獲得的輸出波形與變換器的輸出基本相吻合,表明當變換器的占空比發生變化時,概率DT 控制器可以很好地跟蹤監測變換器的動態行為。

圖11 變換器占空比改變時電流波形Fig.11 Waves of voltages and currents when the duty cycle of converter changes

圖12 所示為在t=30 ms 時刻變換器電感參數改變的情況下,由概率DT 控制器監測到的輸出電壓和負載電流波形以及變換器的輸出電壓和負載電流波形。

圖12 電感參數改變時電壓電流波形Fig.12 Waves of voltages and currents when inductance parameter changes

從圖12(a)和圖12(c)所示的暫態電壓、暫態電流波形圖上可以看出,受電感參數改變的影響,變換器的輸出電壓和負載電流均發生變化,但經過歷時0.5 ms 的動態調整后,變換器即可實現輸出狀態的重新調整,進入穩態輸出狀態,穩態時變換器的輸出電壓和負載電流波形分別如圖12(b)和圖12(d)所示。

同樣在此調節過程中,由概率DT 控制器獲得的輸出波形時刻跟隨變換器的輸出,表明當變換器電感參數發生變化時,概率DT 控制器可以很好地跟蹤監測變換器的動態行為。

圖13 所示為在t=50 ms 時刻變換器電容參數改變的情況下,由概率DT 控制器監測到的輸出電壓和負載電流波形以及變換器的輸出電壓和負載電流波形。

圖13 電容參數改變時電壓電流波形Fig.13 Waves of voltages and currents when capacitance parameter changes

從圖13(a)和圖13(c)所示的暫態電壓、暫態電流波形圖上可以看出,電容參數的改變直接影響變換器輸出電壓及負載電流的暫態響應,經過歷時1ms 的動態調整后,變換器再次回歸穩定輸出狀態,穩態時變換器的輸出電壓和負載電流波形分別如圖13(b)和圖13(d)所示。

在此調節過程中,由概率DT 控制器獲得的輸出波形時刻與變換器的輸出保持吻合,表明當變換器電容參數發生變化時,概率DT 控制器同樣保持著良好的跟蹤監測能力。

圖14 所示為在t=70 ms 時刻變換器負載電阻參數改變的情況下,由概率DT 控制器監測到的輸出電壓和負載電流波形以及變換器的輸出電壓和負載電流波形。

圖14 負載電阻參數改變時電壓電流波形Fig.14 Waves of voltages and currents when load resistance parameter changes

從圖14(a)和圖14(c)所示的暫態電壓、暫態電流波形圖可以看出,負載電阻參數的改變同樣影響了變換器輸出電壓及負載電流的暫態響應,經過歷時2 ms 的動態調整后,變換器的輸出電壓再次回歸參數改變前的穩定狀態,負載電流則調整到一個新的穩態。穩態時變換器的輸出電壓和負載電流波形分別如圖14(b)和圖14(d)所示。

在整個調節過程中,由概率DT 控制器獲得的輸出波形時刻跟隨變換器的輸出,表明當變換器負載電阻參數發生變化時,概率DT 控制器依然可以很好地跟蹤監測變換器的動態行為。

4 結束語

以Buck 變換器為應用載體,借助概率DT 建模方法和廣義多項式混沌理論,提出一種用于Buck 變換器監測的嵌入式概率DT 控制器,實驗中開展在Buck 變換器的占空比、所帶元器件如電感、電容以及負載電阻參數發生單一變化的情況下,所提概率DT 控制器對變換器輸出的跟蹤監測能力的分析與討論,方案的有效性和可行性得以驗證。雖然采用了結構較為簡單的Buck 變換器,但是也為其他功率變換器的DT 建模和DT 控制器的研究提供了一定的理論指導和技術參考。

猜你喜歡
模型
一半模型
一種去中心化的域名服務本地化模型
適用于BDS-3 PPP的隨機模型
提煉模型 突破難點
函數模型及應用
p150Glued在帕金森病模型中的表達及分布
函數模型及應用
重要模型『一線三等角』
重尾非線性自回歸模型自加權M-估計的漸近分布
3D打印中的模型分割與打包
主站蜘蛛池模板: 噜噜噜综合亚洲| 996免费视频国产在线播放| 久久午夜夜伦鲁鲁片不卡| 永久成人无码激情视频免费| 欧美黄网站免费观看| 国产精品亚洲精品爽爽| 91精品国产91欠久久久久| 免费在线成人网| 国产精品福利尤物youwu| 国产黄网站在线观看| 亚洲精品无码AⅤ片青青在线观看| 国产成人精品无码一区二| 国产精品视频a| 日韩欧美高清视频| 国产高清精品在线91| 成人国产精品2021| 欧美中出一区二区| 国产色爱av资源综合区| 日本国产在线| 漂亮人妻被中出中文字幕久久| 欧美狠狠干| 亚洲人成网18禁| 国产黄色免费看| 亚洲成aⅴ人在线观看| 婷婷综合在线观看丁香| 国产微拍精品| 一本久道久久综合多人| 亚洲av无码片一区二区三区| 亚洲色大成网站www国产| 91精品日韩人妻无码久久| 国产精品香蕉在线观看不卡| 波多野结衣第一页| 亚洲色图在线观看| 日韩精品一区二区三区视频免费看| 国产第一页亚洲| 九九热这里只有国产精品| 久久www视频| 自偷自拍三级全三级视频| 免费无码在线观看| 免费A∨中文乱码专区| 久久综合色播五月男人的天堂| 国产无码网站在线观看| 91美女视频在线| 成人亚洲天堂| 国产白浆视频| 欧美性精品不卡在线观看| 欧美国产日韩一区二区三区精品影视| 色老二精品视频在线观看| 第九色区aⅴ天堂久久香| 欧美日韩福利| 国产原创演绎剧情有字幕的| 国产在线日本| 亚洲欧美色中文字幕| 欧美激情福利| 中文无码精品a∨在线观看| 伦精品一区二区三区视频| 国产精品视频导航| 高清乱码精品福利在线视频| 青青青国产视频手机| 亚洲欧美天堂网| 这里只有精品免费视频| 国产av无码日韩av无码网站| 新SSS无码手机在线观看| 日本成人不卡视频| 国产91麻豆视频| 久久婷婷五月综合97色| 五月激情综合网| 亚洲天堂区| 亚洲国产成人无码AV在线影院L| 国产极品嫩模在线观看91| 中文字幕精品一区二区三区视频| 91成人在线观看视频| 国产精品手机视频一区二区| 国产精品视频系列专区| 婷婷在线网站| 男女猛烈无遮挡午夜视频| 人妻中文字幕无码久久一区| 国产99久久亚洲综合精品西瓜tv| 伊人久久大香线蕉成人综合网| 91丝袜在线观看| 国产麻豆福利av在线播放| 亚洲日本一本dvd高清|