999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

THE LOGARITHMIC SOBOLEV INEQUALITY FOR A SUBMANIFOLD IN MANIFOLDS WITH ASYMPTOTICALLY NONNEGATIVE SECTIONAL CURVATURE*

2024-03-23 08:02:54東瑜昕林和子陸琳根

(東瑜昕) (林和子) (陸琳根),

1. School of Mathematical Sciences, Fudan University, Shanghai 20043, China;

2. School of Mathematics and Statistics & Laboratory of Analytical Mathematics and Applications(Ministry of Education) & FJKLMAA, Fujian Normal University, Fuzhou 350108, China E-mail: yxdong@fudan.edu.cn; lhz1@fjnu.edu.cn; lulingen@fudan.edu.cn

Abstract In this note, we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality, this inequality contains a term involving the mean curvature.

Key words asymptotically nonnegative sectional curvature; logarithmic Sobolev inequality; ABP method

1 Introduction

The classical logarithmic Sobolev inequality,first proven by Gross[7],is a very useful tool in analysis and geometric evolution problems (cf.[4, 8, 11]).In 2000, Ecker [6] gave a logarithmic Sobolev inequality which holds for submanifolds in Euclidean space.In 2020, using the ABP technique, Brendle [2] established a sharp logarithmic Sobolev inequality for submanifolds in Euclidean space without a boundary.He[3]also gave several Sobolev inequalities for manifolds with nonnegative curvature by using the same technique.Combining the method in [3] with some comparison theorems, the authors of [5] proved some Sobolev inequalities for manifolds with asymptotically nonnegative curvature.In 2021, Yi and Zheng [10] proved a logarithmic Sobolev inequality for compact submanifolds without a boundary in manifolds with nonnegative sectional curvature.In this paper, we generalize the results of [2, 10] to the case where the ambient space has asymptotically nonnegative sectional curvature.This curvature notion was first introduced by Abresch[1].We will use some comparison results for these kinds of manifolds in order to prove our results.Complete manifolds with asymptotically nonnegative sectional curvature belong to the class of complete manifolds with radial sectional curvature bounded from below.Readers may find more general comparison results for manifolds with radial sectional curvature bounded below in [9, 12].

In this section, we follow closely the exposition of [5].Letλ(t) : [0,+∞)→[0,+∞) be a nonnegative and nonincreasing continuous function satisfing that

Recall that a complete noncompact Riemannian manifold (M,g) of dimensionn+pis said to have asymptotically nonnegative sectional curvature if there is a base pointo ∈Msuch that

is not increasing on [0,+∞), and thus we may introduce the asymptotic volume ratio ofMby

Obviously,P(0)=1, andP(t) is a nonnegative decreasing function.

By combining the ABP-method in [2, 3, 10] with some comparison theorems, we obtain a logarithmic Sobolev inequality which holds for submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature as follows:

Theorem 1.1LetMbe a complete noncompact(n+p)-dimensional manifold of asymptotically nonnegative sectional curvature with respect to a base pointo ∈M.Let Σ be a compactn-dimensional submanifold ofMwithout a boundary, and letfbe a positive smooth function on Σ.Then

wherer0= max{d(o,x)|x ∈Σ},His the mean curvature vector of Σ,θis the asymptotic volume ratio ofMgiven by (1.5),b0andb1are defined as in (1.1) and (1.2).

2 Preliminaries

whereθis the asymptotic volume ratio ofManddmax(x,Σ)=max{d(x,y)|y ∈Σ}.

ProofNoting thatr0=max{d(y,o)|y ∈Σ}, using the triangle inequality, we get that

This completes the proof.□

3 Proof of Theorem 1.1

In this section, we assume that the ambient spaceMis a complete noncompact (n+p)-dimensional Riemannian manifold of asymptotically nonnegative sectional curvature with respect to a base pointo ∈M.Let Σ?Mbe a compact submanifold of dimensionnwithout a boundary, and letfbe a positive smooth function on Σ.Letdenote the Levi-Civita connection ofMand letDΣdenote the induced connection on Σ.The second fundamental formBof Σ is given by

for allx ∈Σ.Define the transport map Φr:T⊥Σ→Mby

This completes the proof of Theorem 1.1.□

Conflict of InterestThe authors declare no conflict of interest.

主站蜘蛛池模板: 久久精品亚洲热综合一区二区| 免费人成视网站在线不卡| 波多野结衣中文字幕一区二区| 91精品国产无线乱码在线| 国产后式a一视频| 在线观看91香蕉国产免费| 亚洲三级视频在线观看| 在线不卡免费视频| 亚洲无码一区在线观看| 国产亚洲精品在天天在线麻豆| 8090午夜无码专区| 亚洲精品国产自在现线最新| 国产无码精品在线播放| 国产欧美日韩18| 亚洲成人一区二区| 久久久久久国产精品mv| 国产精品2| 全裸无码专区| 国产精品2| 人妻丰满熟妇啪啪| 欧美成一级| 欧美区国产区| 丰满人妻久久中文字幕| 国产黄色免费看| 久久国产成人精品国产成人亚洲 | 伊人婷婷色香五月综合缴缴情| 青青热久免费精品视频6| 3344在线观看无码| 毛片网站观看| 亚洲国产黄色| 大香伊人久久| 少妇被粗大的猛烈进出免费视频| 91九色最新地址| 亚洲va在线∨a天堂va欧美va| 情侣午夜国产在线一区无码| 91麻豆精品国产91久久久久| 国产精品亚洲精品爽爽| 高潮毛片无遮挡高清视频播放| AV不卡国产在线观看| 亚洲中文字幕23页在线| 一级毛片基地| a欧美在线| 999国内精品视频免费| 亚洲无码高清一区二区| 免费va国产在线观看| 国产成人精品男人的天堂| www.精品视频| 54pao国产成人免费视频| 四虎影院国产| 欧美另类视频一区二区三区| 国产精品欧美激情| 制服丝袜亚洲| 国产欧美在线观看一区| 一级毛片免费观看久| 国产国模一区二区三区四区| 国产精品夜夜嗨视频免费视频| 毛片网站观看| 依依成人精品无v国产| 日韩无码视频专区| 免费a级毛片18以上观看精品| 五月婷婷亚洲综合| 国产免费久久精品44| 免费看av在线网站网址| 色天天综合| 欧美人与牲动交a欧美精品| 福利在线不卡| 国产成人h在线观看网站站| 亚洲成A人V欧美综合天堂| 久久精品无码一区二区国产区| 色窝窝免费一区二区三区| 一区二区三区国产精品视频| 青青草91视频| 国产亚洲精品精品精品| 国产国拍精品视频免费看 | 午夜a级毛片| 不卡无码h在线观看| 国产欧美精品午夜在线播放| 伊人色在线视频| 精品久久久久久中文字幕女| 国产精品女人呻吟在线观看| 欧美成人区| 中国精品自拍|