999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

具有時間依賴的時滯半線性二階發展方程的能控性和適定性

2024-04-04 14:06:55施翠云賓茂君

施翠云 賓茂君

摘要:考慮狀態依賴時滯的二階發展微分方程的能控性和適定性.首先,利用不動點定理證明狀態依賴時滯的二階發展微分方程的可控性;其次,在適當條件下證明狀態依賴時滯的二階發展微分方程是適定的;最后,通過實例驗證主要結果.

關鍵詞:時滯;抽象微分方程;二階發展方程;能控性;適定性

中圖分類號:O 175.15文獻標志碼:A文章編號:1001-988Ⅹ(2024)02-0014-07

Controllability and well posedness for second orderevolution differential equations

SHI Cui-yun BIN Mao-jun

Abstract:This paper considers the controllability and well posedness of second order evolution differential equations with state dependent delay.Firstly,the controllability is proved for second order evolution differential equations with state dependent delay by using the fixed point theorem;Secondly,it is proved that the developed differential equation are well posed under appropriate conditions.In the end,an example is provided to represent the theory.

Key words:time delay;abstract differential equation;second order evolution equation;constrollability;well posedness

0 引言

二階微分方程在變分學中有著廣泛的應用.在過去,人們對具有狀態時滯的抽象微分方程給予了極大關注[1-7].2011年,Arthi等[8]考慮了二階微分方程解的存在性和可控性.可控性在控制理論的研究中扮演著重要角色,它主要是在系統中尋找控制函數使得系統狀態達到理想狀態,關于可控性研究的結果可見文獻[9-14].

設(X,·)是Banach空間.本文研究二階時滯狀態依賴微分方程

這里,控制函數u(·)∈ζ ([0,b];U),U是Banach空間,B:UX是一個有界線性函數,A(t)表示S(t,s)的無窮小生成元,ξ(·),σ(·)是適當的函數;函數yt:(-∞,0]X,yt(θ)=y(t+θ)是特定抽象相空間B的一個生成元;σ:ζ×B(-∞,b]為適定的函數.

抽象微分方程的狀態時滯和可控性是當前研究的一個熱門話題.文獻[15-19]給出了時滯微分方程的可控性結果.近年來,Hernandez 等[20]和Rezounenko[21]研究了時滯抽象微分方程和一階偏微分方程解的存在性.本文在Hino[22]工作的基礎上研究時滯二階發展方程解的存在性和可控性.通過借鑒文獻[20]和[21]的方法,在函數y→ξ(·,yσ(·,y(·))不是利普希茨函數的前提下得到解的存在性.本文的目標是研究問題(1)的解的存在性,并證明它們至少有一個解且該解是唯一的.此外,我們還給出了問題(1)的適定性結果.在對(0)和ξ(0)有較小限制的情況下,利用問題(1)的非線性函數滿足利普希茨條件

1 基礎知識

設(V,·V)和(W,·W)表示為Banach空間,·ζ(V,W)表示線性有界算子范數函數的空間,其中ζ(V,W):VW,當V=W時,我們將空間ζ(V,W)改寫成ζ(V),其范數表示為·ζ(V).因此,Bl(v,V)表示v∈V的閉球,記X的范數為

參考文獻:

[1]CHUESHOV I,REZOUNENKO A.Dynamics of second order in time evolution equations with state dependent delay[J].Nonlinear Anal,2015,123:126.

[2]DAS S,PANDEY D N,SUKAVANAM N.Existence of solution and approximate controllability of a second-order neutral stochastic differential equation with state dependent delay[J].Acta Math Sci Ser A(Chin Ed),2016,36:1509.

[3]HERNNDEZ E,AZEVEDO A G,O'REGAN D.On second order differential equations with state dependent delay[J].Appl Anal,2018,97:2610.

[4]HERNNDEZ E,PROKOPCZYK A,LADEIRA L.A note on partial functional differential equations with state-dependent delay[J].Nonlinear Anal:Real World Appl,2006,7:510.

[5]HERNNDEZ E.Existence of solutions for a second order abstract functional differential equation with state-dependent delay [J].Electron J Differential Equations,2007:1.

[6]RADHAKRISHNAN B,BALACHANDRAN K,Controllability of neutral evolution integrodifferential systems with state dependent delay[J].J Optim Theory Appl,2012,153:85.

[7]SAKTHIVEL R,ANANDHI E R,MAHMUDOV N I.Approximate controllability of second-order systems with state-dependent delay[J].Numer Funct Anal Optim,2008,29:1347.

[8]ARTHI G,BALACHANDRAN K.Controllability of second order impulsive functional differential equations with state dependent delay[J].Bull Korean Math Soc,2011,48:1271.

[9]BAGHLI S,AOUED D.Controllability of mild solutions for evolution equations with infinite state dependent delay[J].Euro J Pure Appl Math,2016,9:383.

[10]CHAUDHARY R,SINGH V,PANDEY D N.Controllability of multi-term time-fractional differential systems with state-dependent delay[J].J Appl Anal,2020,26:241.

[11]HUAN D,AGARWAL R,GAO H.Approximate controllability for time-dependent impulsive neutral stochastic partial differential equations with memory[J].Filomat,2017,31:3433.

[12]LI M,HUANG M.Approximate controllability of second-order impulisve stochastic differential equations with state dependent delay[J].J Appl Anal Comp,2018,8:598.

[13]VIJAYAKUMAR V,MURUGESU R.Controllability for a class of second-order evolution differential inclusions without compactness[J].Appl Anal,2019,98:1367.

[14]VIJAYAKUMAR V,PANDA S K,NISAR K S,et al.Results on approximate controllability results for second-order Sobolev-type impulsive neutral differential evolution inclusions with infinite delay[J].Numer Methods Partial Differential Equations,2020,37:1.

[15]AIELLO W,FREEDMAN H,WU J.Analysis of a model representing stage-structured population growth with state-dependent time delay[J].SIAM J Appl Math,1992,52:855.

[16]CHANG Y K,ARJUNAN M M,KAVITHA V.Existence results for a second order impulsive functional differential equation with state-dependent delay[J].Differ Equ Appl,2009,1:325.

[17]SINGH S,ARORA S,MOHAN M T,et al.Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces[J].Evol Equ Control Theory,2022,11(1):67.

[18]VIJAYAKUMAR V,HENR′IQUEZ H R.Existence of global solutions for a class of abstract second-order nonlocal Cauchy problem with impulsive conditions in Banach spaces[J].Numer Funct Anal Optim,2018,39:704.

[19]KRISZTIN T,REZOUNENKO A.Parabolic partial differential equations with discrete state-dependent delay:classical solutions and solution manifold[J].J Differential Equations,2016,260:4454.

[20]REZOUNENKO A V.A condition on delay for differential equations with discrete state-dependent delay[J].J Math Anal Appl,2012,385:506.

[21]HERNNDEZ E,PIERRI M,WU J.A C1+α-strict solutions and well posedness of abstract differential equations with state dependent delay[J].J Differential Equations,2016,261:6856.

[22]HINO Y.Functional Differential Equations with Infinite Delay[M].Lect Not Math.Berlin:Springer,1991.

[23]KISYNSKI J.On cosine operator functions and one parameter groups of operators[J].Studia Math,1972,44:93.

[24]KOZAK M.A fundamental solution of a second-order differential equation in a Banach space[J].Univ Iagel Acta Math,1995,32:275.

[25]VASILEV V V,PISKAREV S I.Differential equations in Banach spaces II.Theory of cosine operator functions [J].J Math Sci,2004,122:3055.

[26]NAITO K.Approximate controllability for trajectories of semilinear control systems[J].J Optim Theory Appl,1989,60:57.

(責任編輯 馬宇鴻)

收稿日期:2022-12-15;修改稿收到日期:2023-05-17

基金項目:廣西壯族自治區自然科學基金資助項目(2021GXNSFAA220130,2022GXNSFAA035617);廣西高校中青年教師科研基礎能力提升項目(2024KY0594,2023KY0599,2022KY0582)

作者簡介:施翠云(1989—),女,廣西南寧人,講師,碩士.主要研究方向為微分方程控制理論.E-mail:2899450273@qq.com

主站蜘蛛池模板: 人人看人人鲁狠狠高清| 亚洲一级毛片在线观| 91精品专区国产盗摄| 亚洲欧洲自拍拍偷午夜色无码| 伊人久久福利中文字幕| 久久99国产乱子伦精品免| 久久无码av三级| 国产精品思思热在线| 欧美精品xx| www精品久久| 中文字幕永久在线看| 久久大香伊蕉在人线观看热2| 波多野结衣一区二区三视频| 天天综合天天综合| 都市激情亚洲综合久久| 最新午夜男女福利片视频| 亚洲午夜18| 在线中文字幕网| 不卡视频国产| 看国产毛片| 青青青国产视频手机| 午夜视频免费试看| 国产午夜小视频| 国产精品私拍在线爆乳| 青青青草国产| 澳门av无码| www.国产福利| 亚洲精品中文字幕午夜| 91小视频在线播放| 国产又大又粗又猛又爽的视频| 青青热久免费精品视频6| 亚洲国产91人成在线| 思思热在线视频精品| 日本一区高清| 91外围女在线观看| 亚洲日本在线免费观看| 亚洲国产综合第一精品小说| 国产大片喷水在线在线视频| 无码有码中文字幕| 免费无遮挡AV| 欧洲亚洲欧美国产日本高清| 婷婷六月综合| 精品欧美视频| 亚洲最新地址| 午夜福利亚洲精品| 亚洲欧洲日产无码AV| 激情综合婷婷丁香五月尤物| 国产成人精品视频一区视频二区| 麻豆AV网站免费进入| 精品免费在线视频| 国产网友愉拍精品视频| 中文字幕欧美日韩| 中文成人在线| 亚洲AV人人澡人人双人| 青青久在线视频免费观看| 国产黄在线观看| 丰满人妻久久中文字幕| 天天做天天爱夜夜爽毛片毛片| 亚洲人成人无码www| 亚洲国产日韩在线观看| 国产微拍一区| 国产人人射| 国产美女叼嘿视频免费看| 欧洲熟妇精品视频| 91日本在线观看亚洲精品| 亚洲一级毛片免费观看| 成人福利在线看| 一区二区欧美日韩高清免费| 免费一级大毛片a一观看不卡| 国产精品伦视频观看免费| 免费无码网站| 日韩福利视频导航| 国产精品区网红主播在线观看| 亚洲无码高清一区| 69av在线| 亚洲无码91视频| 亚洲欧洲AV一区二区三区| 久视频免费精品6| 色香蕉影院| 亚洲资源站av无码网址| 亚洲欧洲综合| 国产成人精品无码一区二|