999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

自旋軌道耦合作用的等效磁場

2024-05-03 09:44:00馮玉芳張瑜瑜
物理與工程 2024年1期

馮玉芳 張瑜瑜

摘 要 自旋與電荷一樣,是電子的固有屬性,電子的周期性軌道運動產生的磁場與電子的自旋磁矩相互作用,這種磁相互作用就是自旋軌道相互作用。在原子物理學中,這種自旋軌道作用會影響原子光譜的精細結構,然而教材中缺少自旋軌道耦合作用在二維半導體材料中的微觀描述。本文將引入Rashba和Dresselhaus自旋軌道耦合作用的哈密頓量,研究單電子在無外場下二維平面內運動,討論一種或者兩種自旋軌道耦合的哈密頓量表示。通過自旋與等效磁場耦合的塞曼能量表示,本文計算了本征態下不同自旋軌道耦合作用下的等效磁場,從而有助于探索二維半導體材料中不同自旋軌道耦合作用下的物理特性。

關鍵詞 自旋軌道耦合;等效磁場;塞曼能量

從施特恩蓋拉赫實驗以及烏倫貝克與古茲米特提出電子自旋的假設,我們知道了自旋是電子的固有屬性,從而能夠解釋原子光譜的精細結構以及塞曼效應等物理現象。

在原子物理的學習中,我們了解到,在單電子原子的能譜中,原子中電子與原子核的靜電相互作用是一項主要的相互作用,正是它決定了譜系的主要特征。同時,周期性運動的電子會產生磁場,由此產生的磁相互作用則決定了譜系的精細結構[1]。這種電子自旋與軌道運動產生的磁場相互作用,叫做自旋軌道相互作用。一般來說,我們比較熟悉電子和外磁場發生相互作用,即塞曼效應,而說到自旋軌道耦合我們卻難以有簡潔而清晰的認識。從經典的角度來看,作周期運動的電荷勢必會產生一個磁場。在學習原子物理課程時,我們知道電子軌道運動產生的磁場B 與電子的軌道角動量有關(B∝l),且電子具有自旋磁矩μs(μs∝s),因此原子內磁場的塞曼能可以表示為

U =-μs·B (1)

可見能量正比于s·l,被稱為“自旋軌道耦合”項[1]。它是電子軌道運動產生的磁場與自旋磁矩相互作用產生的附加能量,而正是這種磁相互作用引起了譜系的精細結構。

在原子物理學教學中,對自旋軌道耦合效應一般沒有深入探討,而自旋軌道耦合效應是諸多二維半導體材料結構中新奇物理現象產生的重要原因,也是自旋電子學研究的重要物理問題之一,非常值得我們探討學習。

在自旋軌道耦合效應中,我們可以將自旋軌道相互作用看作是電子自旋與一個等效磁場之間的磁相互作用,此時自旋軌道耦合的作用就等同于給電子外加了一個等效磁場,進而我們可以用不同的等效磁場來表示不同的自旋軌道耦合作用,以便深化理解。

結合原子物理學中所描述的有關自旋軌道耦合效應的最簡單原理,我們將進一步介紹半導體材料兩種重要的Rashba和Dresselhaus自旋軌道耦合作用,這兩種不同的作用有助于研究塞曼分裂,共振自旋霍爾效應,及自旋進動等有意義的前沿科學問題[2,3]。本文將分別給出Rashba 和Dresselhaus自旋軌道耦合作用的不同等效磁場,理解自旋軌道耦合及其等效磁場之間的聯系。

1 自旋軌道耦合介紹

自旋軌道耦合(spin-orbit coupling, SOC)本質的特點是,即使在沒有外部磁場的情況下,電子在電場中運動也會受到一個與動量相關的類似磁場的作用,這個等效磁場與電子自旋磁矩發生相互作用。因此,自旋軌道耦合的哈密頓量一般形式表示為

Hsoc ~μBσ·Beff (2)

其中,μB 表示玻爾磁子,σ 表示泡利矩陣,Beff 表示自旋軌道耦合的等效磁場。因此,自旋軌道耦合可理解為一個自旋磁矩和等效磁場的相互作用。

如果電子以動量p 在一個電場中運動,其會感受到一個等效的磁場Beff ~E ×p/mc2,從而產生依賴動量的塞曼能量[4,5],這部分能量即為自旋軌道耦合能量,此時哈密頓量應采取以下形式

Hsoc ~μB (E ×p)·σ/mc2 (3)

在晶體中電場由晶體勢的梯度E =-▽V給出。根據介質材料所受力的性質和材料結構對稱性的不同,我們可以將自旋軌道耦合分為Rashba自旋軌道耦合和Dresselhaus自旋軌道耦合。

1.1 Rashba自旋軌道耦合

1960年,Rashba引入了一種簡單的自旋軌道耦合形式,而后,Bychkov和Rashba等人將這種自旋軌道耦合形式應用到具有結構反演對稱性破缺的二維電子氣模型中,以解釋二維半導體電子共振自旋霍爾效應的特性,這種自旋軌道耦合被稱為Rashba自旋軌道耦合[6,7]。在各種不同的自旋軌道耦合作用形式中,Rashba自旋軌道耦合作用的研究最早開始于半導體材料,在半導體異質結處形成的較大電勢梯度導致了較強的自旋軌道耦合效應,并因其強度可由外加電場靈活調控而備受關注。

Rashba自旋軌道耦合通常由半導體材料的結構反演對稱性破缺引起,產生某個方向的界面電場E =Ez^z。自旋軌道耦合作用的哈密頓量可表示為[5]

HR =(α/ )(σ×p)·^z (4)

也可以寫作

HR =(α/ )(pyσx -pxσy ) (5)

其中,α 是Rashba自旋軌道耦合強度,也被稱為Rashba參數。

1.2 Dresselhaus自旋軌道耦合

1955年,Dresselhaus 注意到在缺乏體反演對稱性的半導體材料中,例如GaAs 或者InSb,電子的自旋與軌道之間的作用能夠引起半導體的能帶劈裂,由此發現這種體反演不對稱引起的自旋軌道耦合效應則為Dresselhaus自旋軌道耦合[8]。哈密頓量可以表示如下[5]

HD =(β/ )(pxσx -pyσy ) (6)

其中,β 是Dresselhaus自旋軌道耦合強度。

2 等效磁場

由于自旋軌道耦合效應可以被看作是電子自旋和一個等效磁場之間的相互作用。由此,對于不同的Rashba和Dresselhaus自旋軌道耦合可以得出不同的等效磁場,而在一定程度上,等效磁場可以表現對應自旋軌道耦合的特征。

在沒有外場存在的情況下,我們考慮二維電子氣中的單個電子運動,總能量包括動能和自旋軌道耦合能量,且x,y 方向的動量守恒。單電子的哈密頓量表示為

3 結語

我們分別介紹了Rashba和Dresselhaus兩種自旋軌道耦合作用,并表示為自旋磁矩和等效磁場耦合的塞曼能量,從而得到一種或者兩種自旋軌道耦合情況下的等效磁場。

本文中,我們通過解自旋軌道耦合哈密頓量的本征函數和本征能量,求其本征態下泡利算符平均值<σ>SOC 來得出等效磁場的表達式,且依賴于電子波矢k。此方法可看成將自旋1/2電子類比磁場中的小磁針,以電子受自旋軌道耦合作用的自旋取向表示磁場。通過本文給出的等效磁場,我們了解到自旋軌道耦合作用相當于給電子外加了一個等效磁場,從而有助于分析半導體材料中不同自旋軌道耦合作用引起的物理現象。

參考文獻

[1] 楊福家.原子物理學[M].4 版.北京:高等教育出版社,2008:151-190.

[2] SHEN S Q, BAO Y J, MICHAEL M A, et al. Resonantspin Hall conductance in quantum Hall systems lacking bulkand structural inversion symmetry[J]. Physical Review B,2005, 71: 155316.

[3] YANG W, CHANG K. Magnetotransport in two-dimensionalelectron gas: The interplay between spin-orbit interactionand Zeeman splitting[J]. Physical Review B, 2006,73: 045303.

[4] WINKLER R. Spin-orbit coupling effects in two-dimensionalelectron and hole systems[M]. Berlin: Springer, 2003:69-125.

[5] MANCHON A, KOO H C, NITTA J, et al. New perspectivesfor Rashba spin-orbit coupling[J]. Nature Materials2015, 14: 871-882.

[6] 張躍林,張金星.自旋軌道耦合與自旋霍爾效應[J].北京師范大學學報(自然科學版),2016-12,52(6):781-789.

ZHANG Y L, ZHANG J X. Spin-orbit coupling and spinhall effect[J]. Journal of Beijing Normal University (NaturalScience), 2016-12, 52(6): 781-789. (in Chinese)

[7] RASHBA E. Properties of semiconductors with an extremumloop.1. Cyclotron and combinational resonance in amagnetic field perpendicular to the plane of the loop[J].Sov.Phys. Solid State 2, 1960: 1109-1122.

[8] DRESSELHAUS G. Spin-orbit coupling effects in zincblende structures[J]. Physical Review B, 1955, 100: 580-586.

[9] LIU M H, CHEN K W, CHEN S H, et al. Persistent spinhelix in Rashba-Dresselhaus twodimensional electronsystems[J]. Physical Review B, 2006, 74: 235322.

[10] ZHANG R, BIAO Y C, YOU W L, et al. Generalizedrashba coupling approximation to a resonant spin hall effectof the spin- orbit coupling system in a magnetic field[J].Chinese Physics Letters, 2021, 38: 077304.

主站蜘蛛池模板: 中国精品自拍| 国产在线视频欧美亚综合| 国产一区二区网站| 国产精品久久久久久影院| 国产主播福利在线观看| 欧美午夜小视频| 国产精品亚欧美一区二区三区| 亚洲无线一二三四区男男| 国产在线无码一区二区三区| 再看日本中文字幕在线观看| 中文字幕人妻无码系列第三区| 成人欧美在线观看| 狠狠亚洲婷婷综合色香| 秘书高跟黑色丝袜国产91在线| 日韩在线中文| 欧美日韩亚洲国产主播第一区| 五月天综合网亚洲综合天堂网| 欧美笫一页| 久久女人网| 国产欧美日韩在线在线不卡视频| 伊人久久婷婷| 97色婷婷成人综合在线观看| 亚洲男人的天堂网| 亚洲AV成人一区二区三区AV| 亚洲无码高清视频在线观看| 国产在线第二页| 亚洲第一国产综合| 日本国产在线| 日韩在线视频网| 亚洲国产第一区二区香蕉| 国产女主播一区| 国模在线视频一区二区三区| 欧美精品综合视频一区二区| 精品一区二区三区无码视频无码| 极品国产在线| 国产噜噜噜视频在线观看| 看你懂的巨臀中文字幕一区二区| 国产69囗曝护士吞精在线视频 | 国产在线八区| 97视频在线观看免费视频| 91精品专区国产盗摄| 国产尤物在线播放| 亚洲国产精品VA在线看黑人| 91年精品国产福利线观看久久 | 国产亚洲精品在天天在线麻豆 | 天天干天天色综合网| 真实国产乱子伦视频| 日本三区视频| 成人福利在线观看| 视频在线观看一区二区| 亚洲人成色在线观看| 自拍亚洲欧美精品| 白浆视频在线观看| 亚洲AV无码一区二区三区牲色| 国产精品内射视频| 91久久国产综合精品| 婷婷色一区二区三区| 美女裸体18禁网站| 亚洲美女一级毛片| 亚洲精品动漫| 久久综合亚洲色一区二区三区| 久久精品视频一| 日韩精品资源| 国产呦视频免费视频在线观看| 中文字幕第4页| 国产乱人免费视频| 日韩高清一区 | 日韩国产黄色网站| 久久免费观看视频| 国产精品va| 精品亚洲国产成人AV| 国产精品 欧美激情 在线播放 | 欧美日韩北条麻妃一区二区| 国产成人盗摄精品| 凹凸精品免费精品视频| 激情国产精品一区| 亚洲综合精品第一页| 国产激爽大片高清在线观看| 日本欧美在线观看| 国产精品视频3p| 亚洲AV无码久久天堂| 亚洲精品无码抽插日韩|