趙浛弛 李杰梅



摘要: 考慮一類腫瘤-免疫模型, 討論其平衡點的存在性條件, 并利用特征方程分析各平衡點的局部動力學穩定性, 證明該模型在相應條件下會發生Hopf分支. 通過計算第一Lyapunov系數得出: 如果系數不為零, 則模型發生Hopf分岔; 如果系數小于零, 則分岔是超臨界的; 如果系數大于零, 則分岔是次臨界的. 最后利用數值模擬驗證理論分析結果.
關鍵詞: 腫瘤-免疫模型; 穩定性; Hopf分支; 超臨界; 次臨界
中圖分類號: O175文獻標志碼: A文章編號: 1671-5489(2024)02-0189-08
Stability and Hopf Bifurcation Analysis ofa Class of Tumor-Immune Models
ZHAO Hanchi, LI Jiemei
(School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China)
Abstract: We considered a? class of tumor-immune model, discussed the existence? conditions? of their equilibrium points, and used characteristic equations to analyze ?the local kinetic stability of each equilibrium point,? proving that the model underwent Hopf bifurcation under the corresponding conditions. By calculating the first Lyapunov coefficient, it can be concluded that if the coefficient is not zero, the model undergoes Hopf bifurcation,? the bifurcation is supercritical if the coefficient is less than zero, and the bifurcation is subcritical if the coefficient is greater than zero. Finally, numerical simulations are used to validate the theoretical analysis results.
Keywords: tumor-immune model; stability; Hopf bifurcation; supercritical; subcritical
0 引 言
癌癥是威脅人類生命的一種重大疾病, 如何用科學方法對癌癥進行預防和治療已成為全球最重要的公共衛生問題之一[1]. 中國癌癥中心最新數據表明, 2016年中國新增癌癥病例約406.4萬例, 新增癌癥死亡病例241.35萬例[2-3]. 目前癌癥的臨床治療主要以手術治療、 化學治療和放射治療為主. 這些治療方法各有優勢, 但由于其嚴重的副作用, 給患者的生活質量和生命帶來巨大威脅[4]. 免疫療法目前已成為治療癌癥的重要組成部分, 免疫療法的目標是通過增強免疫系統的有效性加強患者自身對抗癌癥的天然能力, 免疫系統在對抗癌癥中的重要性已在實驗室和臨床中得到驗證[5-6]. 研究表明, 通過建立并分析腫瘤細胞和免疫系統相互作用的數學模型可更好地了解腫瘤的發生和發展機理[7-9].
Kuznetsov等[10]假設腫瘤細胞對效應細胞具有雙線性抑制率和飽和刺激率, 建立了數學模型:dE/dt=s+pET/g+T-mET-dE,dT/dt=aT(1-bT)-nET,(1)其中E(t)和T(t)分別表示效應細胞和腫瘤細胞在t時刻的濃度. 文獻[10]討論了模型(1)平衡點的存在性和穩定性, 計算了該模型的局部分岔和全局分岔的閾值, 預測了腫瘤的增長過程及其臨床表現, 發現腫瘤一般具有3~4個月周期的復發特征.
參考文獻
[1]FREDDIE B, AHMEDIN J, NATHAN G, et al. Global Cancer? Transitions According to the Human Development Index (2008—2030): A Population Based Study [J]. Lancet Oncology, 2012, 13(8): 790-801.
[2]李紀賓, 鄒小農. 《2016年中國癌癥發病和死亡情況》解析 [J]. 環境衛生學雜志, 2023, 13(1): 45-47. (LI J B, ZOU X N. Interpretation of Cancer Incidence and Mortality in China, 2016 [J]. Journal of Environmental Hygiene, 2023, 13(1): 45-47.)
[3]ZHENG R S, ZHANG S W, ZENG H M, et al. Cancer Incidence and Mortality in China, 2016 [J]. Journal of the National Cancer Center, 2022, 2(1): 1-9.
[4]ELADDADI A, KIM P,? MALLET D. Mathematical Models of Tumor-Immune System Dynamics [M]//Proceedings in Mathematics & Statistics, Vol.107. New York: Springer, 2014: 59-108.
[5]STPHANIE C, ERIC V. Chemotherapy and Tumor Immunity [J]. Science, 2018, 362: 1355-1356.
[6]KATSUTA E, RASHID O M, TAKABE K. Clinical Relevance of Tumor Microenvironment: Immune Cells,Vessels and Mouse Models [J]. Human Cell, 2020, 33(4): 930-937.
[7]DE PILLIS L G, ELADDADI A, RADUNSKAYA A E. Modeling Cancer-Immune Responses to Therapy [J]. Journal of Pharmacokinetics and Pharmacodynamics, 2014, 41(5): 461-478.
[8]EFTIMIE R, BRAMSON J L, EARN D J D. Interactions between the Immune System and Cancer: A Brief Review of Non-spatial Mat-hematical Models [J]. Bulletin of Mathematical Biology, 2011, 73(1): 2-32.
[9]DE PILLIS L, FISTER K R, GU W Q, et al. Mathematical Model Creation for Cancer Chemo Immunotherapy [J]. Computational and Mathematical Methods in Medicine, 2009, 10(3): 165-184.
[10][JP2]KUZNETSOV V A, MAKALKIN I A, TAYLOR M A, et al. Nonlinear Dynamics of Immunogenic Tumors: Parameter Estimation and Global Bifurcation Analysis [J]. Bulletin of Mathematical Biology, 1994, 56(2): 295-321.[JP]
[11]GALACH M. Dynamics of the Tumor-Immune System Competition: The Effect of Time Delay [J]. International Journal of Applied Mathematics & Computer Science, 2003, 13(3): 395-406.
[12]LI J Q, XIE X, CHEN Y M, et al. Complex Dynamics of a Tumor-Immune System with Antigenicity [J]. Applied Mathematics and Computation, 2021, 400: 126052-1-126052-25.
(責任編輯:? 趙立芹)
收稿日期: 2023-06-12.
第一作者簡介: 趙浛弛(1994—), 女, 漢族, 碩士研究生, 從事非線性微分方程動力學的研究, E-mail: zhaohanchi94@163.com.
基金項目: 國家自然科學基金(批準號: 11801243).