999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

廣義Rosenau-KdV-RLW方程的一個新的高精度守恒差分格式

2024-05-15 21:34:38胡俊林劉哲含胡勁松

胡俊林 劉哲含 胡勁松

DOI:10.16783/j.cnki.nwnuz.2024.03.014

收稿日期:2023-10-20;修改稿收到日期:2023-11-25

基金項目:四川省應用基礎研究資助項目(2019YJ0387);國家自然科學青年基金資助項目(11701481)

作者簡介:胡俊林(1998—),男,四川會理人,碩士研究生.主要研究方向為微分方程數值解.

E-mail:1072450812@qq.com

*通信聯系人,男,四川射洪人,教授,博士.主要研究方向為微分方程數值解.

E-mail:hjs888hjs@163.com

摘要:對一類廣義Rosenau-KdV-RLW方程的初邊值問題提出一個新的高精度守恒差分算法.利用Taylor展式,在空間層做部分外推處理,直接從整體上抵消空間截斷誤差的二階部分,在時間層采用Crank-Nicolson格式,從而在時間方向和空間方向分別達到了二階精度和四階精度;合理模擬了問題本身的一個守恒量,并利用離散Sobolev嵌入不等式和離散泛函分析方法,證明了格式的收斂性和穩定性;最后,數值算例驗證了該方法的有效性.

關鍵詞:廣義Rosenau-KdV-RLW方程;高精度守恒差分格式;收斂性;穩定性

中圖分類號:O 241.82??? 文獻標志碼:A??? 文章編號:1001-988Ⅹ(2024)03-0127-06

A new high-accuracy conservative difference scheme

for the generalized Rosenau-KdV-RLW equation

HU Jun-lin,LIU Zhe-han,HU Jin-song

(School of Science,Xihua University,Chengdu 610039,Sichuan,China)

Abstract:A new conservative difference algorithm with the high-accuracy is proposed for the initial boundary value problem of the generalized Rosenau-KdV-RLW equation.For the space direction in this scheme,the Taylor expansion and the partial extrapolation are used to make the second-order term of the truncation error be removed directly,then it can achieve the fourth-order accuracy.And for the time direction,the Crank-Nicolson method is performed so that it has second-order accuracy in time.This algorithm can simulate reasonably a conservative property of the original problem.By using discrete Sobolev embedding inequality and the discrete functional analysis method,the convergence and stability of this algorithm are proved,respectively.Finally,the numerical examples show that this algorithm is reliable.

Key words:generalized Rosenau-KdV-RLW equation;high-accuracy conservative difference scheme;convergence;stability

考慮廣義Rosenau-KdV-RLW方程[1,2]初邊值問題

ut-3ux2t+5ux4t+

ux+3ux3+upx=0,

x∈(xL,xR),t∈(0,T],(1)

u|t=0=u0(x), x∈[xR,xL],(2)

u|x=xR=u|x=xL=0,

2ux2x=xR=2ux2x=xL=0,

t∈(0,T],(3)

其中u0(x)是一個已知的光滑函數,p≥2為整數.問題(1)~(3)滿足守恒律[1,2]:

Q(t)=∫xRxLu(x,t)dx=

∫xRxLu0(x)dx=Q(0),(4)

其中Q(0)為僅與初始條件有關的常數.方程(1)是描述非線性波動行為的重要數學模型,在許多領域都有著廣泛的應用,著名的KdV方程[3]、RLW方程[4]和Rosenau方程[5]等均可視為其特殊情形,其數值求解方法研究也備受關注[6-16].由于不能用離散分部求和公式[17]在齊次邊界條件下推導出如下結論[16]:

(n)p,2n=0, p≥2,

故文獻[16]不能從理論上嚴格保證其方法的有效性.本文利用Tayor展開,在空間層做部分外推離散,直接從整體上抵消空間截斷誤差的二階部分,在時間層采用Crank-Nicolson格式,從而對問題(1)~(3)提出一個理論精度為O(τ2+h4)的兩層非線性差分格式,并合理模擬了守恒量(4),并利用離散Sobolev嵌入不等式[17]和離散泛函分析方法給出了其收斂性和穩定性的理論證明,最后進行數值驗證.

1? 差分格式及其守恒律

對區域[xL,xR]×[0,T]作等距網格剖分,設時間步長為τ,令

tn=nτ, 0≤n≤N,N=Tτ;

xj=xL+jh, 0≤j≤J,h=xR-xLJ

為空間步長;記unj=u(xj,tn),Unj≈u(xj,tn),約定C是一般常數,且C>0.并定義

(Unj)x=Unj+1-Unjh, (Unj)=Unj-Unj-1h,

(Unj)=Unj+1-Unj-12h, (Unj)t=Un+1j-Unjτ,

Un+1/2j=Un+1j+Unj2, Un,Vn=h∑J-1j=1UnjVnj,

Un2=Un,Un, Un∞=max1≤j≤J-1Unj,

Z0h={U=(Uj):U-2=U-1=U0=UJ=UJ+1=

UJ+2=0, j=-2,-1,…,J+1,J+2}.

若函數u(x,t)足夠光滑,當τ,h→0時,通過Taylor展開可得

(unj)x=2ux2nj+112h24ux4nj+O(h4),(5)

(unj)=2ux2nj+13h24ux4nj+O(h4),(6)

(unj)x=3ux3nj+14h25ux5nj+O(h4),(7)

(unj)=3ux3nj+12h25ux5nj+O(h4).(8)

由(5)~(8)式,有

23(unj)x+13(unj)=2ux2nj+

16h24ux4nj+O(h4),(9)

43(unj)x-13(unj)=3ux3nj+

16h25ux5nj+O(h4),(10)

(unj)t=utn+1/2j+O(τ2),(11)

(unj)=uxnj+16h23ux3nj+O(h4),(12)

[(unj)p]=upxnj+16h23upx3nj+O(h4),(13)

(unj)xx=4ux4nj+16h26ux6nj+O(h4).(14)

將方程(1)對x兩次求偏導,則有

3ux2t-5ux4t+7ux6t+

3ux3+5ux5+3upx3=0,(15)

再將方程(1)在點(xj,tn+1/2)處進行差分離散,并結合(9)~(14)式有

(unj)t-23(unj)xt+13(unj)t-

16h25ux4tn+1/2j+

(unj)xxt-16h27ux6tn+1/2j+

(un+1/2j)-16h23ux3n+1/2j+

43(un+1/2j)x-13(un+1/2j)-

16h25ux5n+1/2j+

[(un+1/2j)p]-16h23upx3n+1/2j=

O(τ2+h4).

結合(15)式,整理有

(unj)t-23(unj)xt+13(unj)t+

(unj)xxt+(un+1/2j)+

43(un+1/2j)x-13(un+1/2j)+

[(un+1/2j)p]+16h23ux2tnj=

O(τ2+h4).

再由(5)式可得

(unj)t-23(unj)xt+13(unj)t+

(unj)xxt+(un+1/2j)+

43(un+1/2j)x-13(un+1/2j)+

[(un+1/2j)p]+16h2(unj)xt=

O(τ2+h4).(16)

于是,對問題(1)~(3)構造如下差分格式:

(Unj)t-23(Unj)xt+13(Unj)t+

(Unj)xxt+(Un+1/2j)+

43(Un+1/2j)x-13(Un+1/2j)+

[(Un+1/2j)p]+16h2(Unj)xt=0,

j=1,2,…,J-1,

n=0,1,…,N-1;(17)

Unj=u0(xj), j=0,1,…,J;(18)

Un∈Z0h, n=0,1,…,N.(19)

定理1? 差分格式(17)~(19)關于離散能量

Qn=h∑J-1j=1Unj=Qn-1=…=Q0(20)

守恒,其中,n=1,2,…,N.

證明? 將(17)式兩端乘以h后,對j從1到J-1求和,由邊界條件(19)和分部求和公式[17]有

h∑J=1j=1(Unj)t=0,

由Qn的定義,關于n遞推即可得(20)式.? 】

2? 收斂性和穩定性

定義差分格式(17)~(19)的截斷誤差為:

rnj=(unj)t-23(unj)xt+13(unj)t+

(unj)xxt+(un+1/2j)+

43(un+1/2j)x-13(un+1/2j)+

[(un+1/2j)p]+16h2(unj)xt,

j=1,2,…,J-1,

n=0,1,…,N-1;(21)

u0j=u0(xj), j=0,1,…,J;(22)

un∈Z0h, n=0,1,…,N.(23)

由(16)式可知,當h,τ→0時,

|rnj|=O(τ2+h4).(24)

引理1[8]? 設u0足夠光滑,則初邊值問題(1)~(3)的解滿足:

uL∞≤C, uxL∞≤C.

引理2[15]? 對U∈Z0h有U2≤Ux2.

定理2? 設u0足夠光滑,若時間步長τ和空間步長h充分小,則差分格式(17)~(19)的解Un以·∞收斂到初邊值問題(1)~(3)的解,且收斂階為O(τ2+h4).

證明? 用數學歸納法.記enj=unj-Unj,由(21)~(23)式減去(17)~(19)式,有

rnj=(enj)t-23(enj)xt+13(enj)t+

(enj)xxt+(en+1/2j)+

43(en+1/2j)x-13(en+1/2j)+

[(un+1/2j)p]-[(Un+1/2j)p]+h26(enj)xt,

j=1,2,…,J-1,

n=0,1,…,N-1;(25)

e0j=0, j=0,1,…,J;(26)

en∈Z0h, n=0,1,…,N.(27)

由引理1以及(24)式知,存在與τ和h無關的常數Cu和Cr,使得

un∞≤Cu, rn∞≤Cr(τ2+h4),

n=1,2,…,N.(28)

再由(26)式以及(18)式可得以下估計:

e0=0, U0≤Cu.(29)

現在假設當n≤N-1時,有

el+elx+elxx≤Cl(τ2+h4),(30)

其中Cl(l=1,2,…,n)為與τ和h無關的常數,則由離散的Sobolev不等式[17]和Cauchy-Schwarz不等式,有

el∞≤C0elelx+el≤

12C0(2el+elx)≤

32C0Cl(τ2+h4),(31)

Ul∞≤ul∞+el∞≤

Cu+32C0Cl(τ2+h4),

l=1,2,…,n.(32)

將(25)式兩端與en+1/2取內積,由邊界條件(27)式和分部求和公式[17],并注意到

en+1/2,en+1/2=0,

en+1/2x,en+1/2=0,

en+1/2,en+1/2=0,

整理得

12en2t+13-h212enx2t+

16en2t+12enxx2t=

rn,en+1/2-[(un+1/2)p-

(Un+1/2)p],en+1/2.(33)

再取h和τ充分小,使得

32C0·max0≤l≤nCl(τ2+h4)≤1,(34)

則由(32),(34)式和分部求和公式[17]、引理2以及Cauchy-Schwarz不等式可得

-[(un+1/2)p-(Un+1/2)p],en+1/2=

[(un+1/2)p-(Un+1/2)p],en+1/2=

h∑J-1j=1en+1/2j∑p-1i=1(un+1/2j)p-1-i(Un+1/2j)i)×

(en+1/2j)≤

∑p-1i=1(Cu)p-1-i(Cu+1)ih×

∑J-1j=1en+1/2j·(en+1/2j)≤

p(Cu+1)p-1h∑J-1j=1en+1/2j·(en+1/2j)≤

p2(Cu+1)p-1en+1/22+en+1/2x2≤

p4(Cu+1)p-1(en+12+en2+

en+1x2+enx2),(35)

rn,en+1/2≤12rn2+

14(en+12+en2).(36)

將(35)和(36)式代入(33)式,整理得

(en+12-en2)+23-h26×

(en+1x2-enx2)+

13(en+12-en2)+

(en+1xx2-enxx2)≤

τrn2+12τ(en+12+en2)+

τp2(Cn+1)p-1×

(en+12+en2+en+1x2+enx2)≤

τrn2+τp(Cu+1)p-1(en+12+

en2+en+1x2+enx2).(37)

An=en2+enx2+enxx2,

Bn=en2+23-h26enx2+

13en2+enxx2,

將(37)式從1到n遞推求和,并整理有

Bn+1≤B1+τ∑nk=1rk2+

τ∑n+1k=12p(Cn+1)p-1×

(ek2+ekx2).(38)

由(28)式和(30)式有

τ∑nk=1rk2≤nτmax1≤k≤nrk2≤T(Cr)2(τ2+h4)2,

B1≤(C1)2(τ2+h4)2,

取h充分小使得2/3-h2/6>1/3,則(38)式變為

An+1≤3Bn+1≤3(T(Cr)2+(C1)2)(τ2+h4)2+

τ∑n+1k=16p(Cu+1)p-1Ak.

利用離散Gronwall不等式[17],取

τ<112p(Cn+1)p-1,

An+1≤(Cn+1)2(τ2+h4)2, n=1,2,…,N-1,

其中Cn+1=(3TCr+3C1)eT[6p(Cu+1)p-1].顯然常數Cn+1與時間層n無關.從而由歸納假設有

en≤O(τ2+h4), enx≤O(τ2+h4),

enxx≤O(τ2+h4), n=1,2,…,N.

最后由離散的Sobolev不等式[17],有

en∞≤O(τ2+h4), n=1,2,…,N.? 】

定理3? 在定理2的條件下,差分格式(17)~(19)的解滿足:

Un∞≤0, n=1,2,…,N,

其中0是與τ和h無關的常數.

證明? 對于充分小的τ和h,由定理2有

Un∞≤un∞+en∞≤0.? 】

注1? 定理3表明差分格式(17)~(19)的解Un以·∞關于初值穩定.

3? 數值實驗

考慮p=3和p=5兩種情形進行數值實驗.當p=3時,方程(1)的孤波解[1]為

u(x,t)=15(57-5)/(45(57-5)-8)×

sech218257-10

x-142(557+33)t;

當p=5時,方程(1)的孤波解[1]為

u(x,t)=3-3/42243-10×

(9/80(43-5)-72))1/4×

sech16443-20×

x-191(59+1043)t.

在數值實驗中,取初值函數u0(x)=u(x,0).固定xL=-40,xR=120,T=40.就τ和h的不同取值,數值解在一些不同時刻的誤差見表1~2,對差分格式(17)~(19)的理論精度檢驗見表3~4,對守恒量(4)的數值模擬部分數據見表5.

從數值實驗結果可以看出,本文對問題(1)~(3)提出的差分格式(17)~(19)是可靠的.

參考文獻:

[1]? RAZBOROVA P,AHMED B,BISWAS A.Solitons,shock waves and conservation laws of Rosenau-KdV-RLW equation with power law nonlinearity[J].Appl Math Inf Sci,2014,8(2):485.

[2]? SANCHEZ P,EBADI G,MOJAVER A,et al.Solitons and other solutions to perturbed Rosenau-KdV-RLW equation with power law nonlinearity[J].Acta Phys Polon A,2015,127(6):1577.

[3]? KORTEWAG D J,DEVRIES G.On the change of form of long waves advancing in a rectangular canal,and on a new type of long stationary waves[J].Philos Mag,1985,39(5):422.

[4]? BENJAMIN T B,BONA J L,MAHONY J J.Model equations for long waves in nonlinear dispersive systems[J].Philos T R Soc B,1972,272:47.

[5]? ROSENAU P.A quasi-continuous description of a nonlinear transmission line[J].Phys Scripta,1986,34:827.

[6]? FOROUTAN M,EBADIAN A,Chebyshev rational approximations for the Rosenau-KdV-RLW equation on the whole line[J].Int J Anal Appl,2018,16(1):1.

[7]? SIBEL .An effective numerical technique for the Rosenau-KdV-RLW equation[J].Balkesir niv Fen Bilim Enst derg,2018,20(3):1.

[8]? 卓茹,李佳佳,胡勁松.求解廣義Rosenau-KdV-RLW方程的一個非線性守恒差分格式[J].四川大學學報(自然科學版),2017,54(4):703.

[9]? WONGSAIJAI B,POOCHINAPAN K.A three-level average implicit finite difference scheme to solve equation obtained by coupling the Rosenau-KdV equation and the Rosenau-RLW equation[J].Appl Math Comput,2014,245:289.

[10]? PAN X,WANG Y,ZHANG L.Numerical analysis of a pseudo-compact C-N conservative scheme for the Rosenau-KdV equation coupling with the Rosenau-RLW equation[J].Bound Value Probl,2015:65.

[11]? SHALLU,KUMAR K V.An efficient collocation algorithm with SSP-RK43 scheme to solve Rosenau-KdV-RLW equation[J].Int J Ap Mat Com-Pol,2021,7(161):1.

[12]? AHMAT M,QIU J X.SSP IMEX Runge-Kutta WENO scheme for generalized Rosenau-KdV-RLW equation[J].J Math Study,2022,55(1):1.

[13]? ANKUR,JIWARI R,KUMAR N.Analysis and simulation of Korteweg-de Vries-Rosenau-Regularised long-wave model via Galerkin finite element method[J].Comput Math Appl,2023,135:134.

[14]? VERMA A K,RAWANI M K.Numerical solutions of generalized Rosenau-KdV-RLW equation by using haar wavelet collocation approach coupled with nonstandard finite difference scheme and quasilinearization[J].Numer Meth Part D E,2022,39(2):1085.

[15]? GHILOUFI A,OMRANI K.New conservative difference schemes with fourth-order accuracy for some model equation for nonlinear dispersive waves[J].Numer Meth Part D E,2018,34(2):451.

[16]? WANG X,DAI W.A new conservative finite difference scheme for the generalized Rosenau-KdV-RLW Equation[J].Comput Math Appl,2020,39(3):1.

[17]? ZHOU Y.Application of Discrete Functional Analysis to the Finite Difference Method[M].Beijing:International Academic Publishers,1991.

(責任編輯? 馬宇鴻)

主站蜘蛛池模板: A级毛片无码久久精品免费| 欧美视频二区| 波多野结衣一区二区三区四区视频 | 国产精品亚洲五月天高清| 无码有码中文字幕| 久久亚洲日本不卡一区二区| 国产精品任我爽爆在线播放6080| 久久国产精品无码hdav| 亚洲动漫h| 波多野结衣无码AV在线| 99久久精品视香蕉蕉| 欧美一区二区啪啪| 制服无码网站| 亚洲v日韩v欧美在线观看| 中文字幕无码中文字幕有码在线| 久久精品女人天堂aaa| 国产偷国产偷在线高清| 亚洲伦理一区二区| 亚洲精品动漫| 久久精品波多野结衣| 欧美在线国产| 国产成人综合日韩精品无码首页| 思思热在线视频精品| 国产亚洲现在一区二区中文| 区国产精品搜索视频| 久久人与动人物A级毛片| 免费观看精品视频999| 男女男免费视频网站国产| 久精品色妇丰满人妻| 亚洲国产精品VA在线看黑人| 久久五月视频| 亚洲欧美精品在线| 91网站国产| 乱人伦中文视频在线观看免费| 国产精品主播| 婷婷色中文| 午夜毛片免费看| 亚洲欧美自拍一区| 国产精品一区二区国产主播| 亚洲最大福利视频网| 韩日无码在线不卡| 99资源在线| 欧美精品啪啪| 在线另类稀缺国产呦| 亚洲一区二区三区在线视频| 99视频在线观看免费| 久久伊人色| 国产成人综合久久| 色综合久久无码网| 美女无遮挡拍拍拍免费视频| 国产在线观看精品| 国产亚洲欧美日韩在线观看一区二区| 激情亚洲天堂| 2020极品精品国产| 人妻精品全国免费视频| 久久国产拍爱| 中文字幕永久在线观看| 欧洲日本亚洲中文字幕| 国产精品思思热在线| 久久久精品国产亚洲AV日韩| 国产一级妓女av网站| 久热re国产手机在线观看| 久久大香伊蕉在人线观看热2| 91九色视频网| 久久精品娱乐亚洲领先| 国产极品美女在线观看| 亚洲最大在线观看| 日本成人在线不卡视频| 亚洲精品va| 国产成人艳妇AA视频在线| 在线精品视频成人网| 麻豆精品在线播放| 99久久精品免费观看国产| 日韩第九页| 国产一级片网址| 精品视频在线观看你懂的一区| 亚洲伦理一区二区| 日韩欧美国产成人| 亚洲高清中文字幕在线看不卡| 欧美中文字幕在线视频| 久久精品91麻豆| 亚洲伊人久久精品影院|