999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Toeplitz算子在Hardy空間上的復對稱性

2024-05-20 21:58:13富佳李然

富佳 李然

摘要:復對稱算子是由復對稱矩陣的概念抽象出來的,本文借助矩陣研究如何刻畫經典Hardy空間上的一類復對稱Toeplitz算子。首先在Hardy空間上定義兩類新的共軛算子,它們分別為n倒置的共軛算子和n二次倒置的共軛算子。其次分奇偶情況去完整刻畫在這類共軛算子下Toeplitz算子是復對稱的結構,利用在Hardy空間上經典正規正交基下Toeplitz算子的矩陣表示,給出了Toeplitz算子分別相對于一類共軛算子是復對稱的充分必要條件。最后對本文進行總結及展望,提出能否繼續刻畫Toeplitz算子相對于這類共軛算子是m-復對稱的問題。

關鍵詞:Hardy空間;Toeplitz算子;共軛算子;復對稱算子;矩陣表示

中圖分類號:O177.1文獻標志碼:A文獻標識碼

Complex symmetry of Toeplitz operators on Hardy spaces

FU? Jia,LI? Ran*

(School of Mathematics, Liaoning Normal University,Dalian,Liaoning 116029,China)

Abstract: Complex symmetric operators are abstracts from the concept of complex symmetric matrices. In this paper,we study how to characterize a class of complex symmetric Toeplitz operators on classical Hardy Spaces through matrix. Firstly,two new classes of conjugations are defined on Hardy spaces,which are n-inverted conjugations and n-quadratic inverted conjugations respectively. Secondly,it is described that the Toeplitz operator is complex symmetric under conjugations in odd and even cases,and the necessary and sufficient conditions for Toeplitz operator to be complex symmetric under conjugations on Hardy spaces are given by using the matrix representation of the Toeplitz operator under classical orthogonal basis respectively. Finally,this paper summarizes and looks forward to the problem of whether Toeplitz operator can be described as m-complex symmetric relative to this class of conjugations.

Key words: Hardy spaces;Toeplitz operators;conjugations;complex symmetric operators;matrix representation

參考文獻(References)

[1] TOEPLITZ O. Zur theorie der quadratischen und bilinearen formen von unendlichvielen vernderlichen[J]. Mathematische Annalen, 1911, 70(3): 351-376.

[2] GARICIA S R, PUTINAR M. Complex symmetric operators and applications[J]. Transactions of the American Mathematical Society, 2005, 358(3): 1285-1315.

[3] GARICIA S R, PUTINAR M. Complex symmetric operators and applications II[J]. Transactions of the American Mathematical Society, 2007, 359(8): 3913-3931.

[4] GARICIA S R, WOGEN W R. Complex symmetric partial isometries[J]. Journal of Functional Analysis, 2009, 257(4): 1251-1260.

[5] GARICIA S R. Conjugation and Clark operators[J]. Contemporary Mathematics, 2006, 393: 67-111.

[6] GUO K Y, ZHU S. A canonical decomposition of complex symmetric operators[J]. Journal of Operator Theory, 2014, 72(2): 529-547.

[7] KO E, LEE J E. On complex symmetric Toeplitz operators[J]. Journal of Mathematical Analysis and Applications, 2016, 434(1): 20-34.

[8] NOOR S W. Complex symmetry of Toeplitz operators with continuous symbols[J]. Archiv der Mathematik, 2017, 109(5): 455-460.

[9] BU Q G, CHEN Y, ZHU S. Complex symmetric Toeplitz operators[J]. Integral Equations and Operator Theory, 2021, 93(2): 15-33.

[10] WANG M F, WU Q, HAN K K. Complex symmetry of Toeplitz operators over the bidisk[J]. Acta Mathematica Scientia, 2023, 43(4): 1537-1546.

[11] ARUP C, SOMA D, CHANDAN P, et al. Characterization of C-symmetric Toeplitz operators for a class of conjugations in Hardy spaces[J]. Linear and Multilinear Algebra, 2022, 71(12): 2026-2048.

[12] LI R, YANG Y X, LU Y F. A class of complex symmetric Toeplitz operators on Hardy and Bergman spaces[J]. Journal of Mathematical Analysis and Applications, 2020, 489(2): 124173.

[13] KO E, LEE J E, LEE J. Complex symmetric Toeplitz operators on the weighted Bergman space[J]. Complex Variables and Elliptic Equations, 2022, 67(5): 1393-1408.

[14] JIANG C, DONG X T, ZHOU Z H. Complex symmetric Toeplitz operators on the unit polydisk and the unit ball[J]. Acta Mathematica Scientia, 2020, 40(1): 35-44.

[15] HU X H, DONG X T, ZHOU Z H. Complex symmetric monormial Toeplitz operators on the unit ball[J]. Journal of Mathematical Analysis and Applications, 2020, 492(2): 124490.

[16] DONG X T, GAO Y X, HU Q J. Complex symmetric Toeplitz operators on the unit polydisk[J]. International Journal of Mathematics, 2023, 34(1): 96-120.

[17] He X H. Complex symmetry of Toeplitz operators on the weighted Bergman spaces[J]. Czechoslovak Mathematical Journal, 2022, 72(3): 855-873.

[18] KO E, LEE J E, LEE J. Complex symmetric Toeplitz operators on the weighted Bergman space[J]. Complex Var. Elliptic Equ., 2022, 67(6): 1393-1408.

[18] LI A S, LIU Y, CHEN Y. Complex symmetric Toeplitz operators on the Dirichlet space[J]. Journal of Mathematical Analysis and Applications, 2020, 487(1): 123998.

[19] HAN K K, WANG M F, WU Q. Unbounded complex symmetric Toeplitz operators[J]. Acta Mathematica Scientia, 2022, 42(1): 420-428.(責任編輯:編輯郭蕓婕)

主站蜘蛛池模板: 色婷婷综合在线| 国产成人综合久久精品下载| 成人中文字幕在线| 久久亚洲国产一区二区| 亚洲福利视频一区二区| 一区二区三区在线不卡免费| 精品久久综合1区2区3区激情| 丰满人妻被猛烈进入无码| 亚洲精品卡2卡3卡4卡5卡区| 国产精品观看视频免费完整版| 激情乱人伦| 91精品国产91久久久久久三级| 国产91高跟丝袜| 亚洲综合狠狠| 亚洲人网站| 蜜臀AV在线播放| 亚洲中字无码AV电影在线观看| 亚洲第一区欧美国产综合| 国产超薄肉色丝袜网站| 97久久超碰极品视觉盛宴| 国产丰满大乳无码免费播放| 中文一级毛片| 久久久久国产一区二区| 亚洲综合在线最大成人| 亚洲欧美另类日本| 凹凸国产分类在线观看| 国产在线精彩视频二区| 美女无遮挡拍拍拍免费视频| 亚洲午夜福利精品无码不卡 | 国产成年无码AⅤ片在线 | 欧美特黄一级大黄录像| 久久狠狠色噜噜狠狠狠狠97视色 | 毛片三级在线观看| 九九线精品视频在线观看| 四虎AV麻豆| 国产精品 欧美激情 在线播放 | 自偷自拍三级全三级视频 | 欧美无遮挡国产欧美另类| 亚洲免费毛片| 欧美日韩福利| 黄色网在线免费观看| 波多野结衣亚洲一区| 婷婷色婷婷| 亚洲人网站| 韩日无码在线不卡| 在线免费不卡视频| 九九热在线视频| 国产清纯在线一区二区WWW| 久久精品国产91久久综合麻豆自制| 永久天堂网Av| 国产精品三级av及在线观看| 亚洲欧美另类日本| 国产精品精品视频| 一区二区理伦视频| 青青青草国产| 精品国产网| 99久久国产综合精品2020| 国产精品永久不卡免费视频| a在线亚洲男人的天堂试看| 日韩免费毛片| 国产精品久久国产精麻豆99网站| 日韩福利在线视频| 老司国产精品视频91| 国产人人乐人人爱| 最新国产精品第1页| 国产精品自拍合集| 成人自拍视频在线观看| 亚洲黄色成人| 996免费视频国产在线播放| 国产亚洲高清在线精品99| 日本午夜精品一本在线观看 | A级全黄试看30分钟小视频| 女人毛片a级大学毛片免费| 亚洲欧美人成电影在线观看| 香蕉eeww99国产精选播放| 狠狠色综合久久狠狠色综合| 免费在线成人网| 欧美一级爱操视频| 91美女在线| 久久人搡人人玩人妻精品| 精品国产Av电影无码久久久| av在线人妻熟妇|