999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

工具性喂養對9~12歲兒童挑食行為的影響:來自靜息態功能磁共振的證據

2024-06-11 00:00:00崔一岑張易曉陳曦梅肖明岳劉永宋詩情高笑郭成陳紅
心理學報 2024年6期
關鍵詞:兒童

摘 "要 "采用靜息態磁共振數據結合機器學習方法在87名9~12歲兒童中探究挑食行為的神經關聯, 并檢驗其在工具性喂養和挑食行為之間的中介作用。結果發現兒童挑食行為與右側尾狀核的局部一致性正相關。功能連接結果表明兒童挑食行為與右側尾狀核?左側殼核功能連接正相關。預測分析結果顯示上述神經發現能夠較好的預測兒童挑食行為, 驗證了神經結果的穩定性。這表明涉及感覺信息編碼和獎賞加工的尾狀核和殼核可能在兒童挑食行為的個體差異中起著關鍵作用。中介模型進一步顯示, 工具性喂養能夠通過右側尾狀核?左側殼核功能連接負向影響兒童挑食行為。研究提供了兒童挑食行為穩健的神經基礎證據, 并且為從父母喂養方式入手干預改善兒童不良的挑食行為提供理論參考。

關鍵詞 "挑食行為, 工具性喂養, 兒童, 靜息態磁共振

分類號 "B845

1 "引言

挑食行為是兒童普遍存在的飲食問題(Chilman et al., 2023; Wolstenholme et al., 2020), 調查發現在7~12歲中國兒童中, 59%的兒童存在不同程度的挑食行為(Xue et al., 2015)。挑食行為是指兒童由于拒絕大量食物而導致攝入的食物種類不足(Dovey et al., 2008; Taylor amp; Emmett, 2019), 表現為不愿意吃某類熟悉的食物或拒絕嘗試新的食物(Taylor et al., 2015)。挑食行為是喂養困難譜系中一種常見的飲食問題(McCormick amp; Markowitz, 2013), 會導致兒童總體食物攝入量減少(Pereboom et al., 2023), 飲食缺乏多樣性還會導致營養成分缺失(Northstone amp; Emmett, 2013)。長此以往, 挑食行為會發展出飲食失調等問題(Machado et al., 2021), 增加肥胖發生和生長不良的風險(Demir amp; Bektas, 2017; Kutbi, 2021)。因此, 兒童挑食行為的研究具有現實意義, 對改善兒童的不良飲食習慣促進兒童健康成長有重要的參考價值。

兒童挑食行為的影響因素模型指出社會環境因素和認知因素是調節兒童挑食行為的關鍵因素(Lafraire et al., 2016)。在社會環境因素方面, 早期喂養方式被認為是兒童挑食行為最重要的“塑造者” (Brown et al., 2022; Harris et al., 2016; Taylor amp; Emmett, 2019)。已有研究關注父母用食物作為非營養補充目的的喂養行為, 比如將食物作為獎勵來促進或鞏固好的行為和表現(Lo et al., 2016; Morrison et al., 2013), 這種喂養方式被稱為工具性喂養(Instrumental Feeding; Mason, 2015; Nembhwani amp; Winnier, 2020)。研究表明工具性喂養是非反應性喂養方式的一種, 它干擾了兒童正確識別饑餓信號和調節食欲的能力(Byrne et al., 2017; Harris et al., 2018), 通常與不良的飲食和行為后果相關(Daniels, 2019)。以往研究表明工具性喂養與兒童挑食行為的增加有關, 即父母使用食物作為獎勵的頻率越高, 兒童的挑食水平越高(Finnane et al., 2017; Maximino et al., 2021)。例如, 縱向研究發現父母在兒童4歲時采用工具性喂養能夠預測5年后挑食行為的增加(Jansen et al., 2020)。Mallan等人(2018)發現2歲挑食兒童的父母傾向于采用工具性喂養的方式鼓勵他們吃不太喜歡的食物, 但工具性喂養卻預測了一年后更多的挑食行為。由此可見, 工具性喂養似乎是一種不利于兒童成長的喂養方式, 會增加或導致兒童的挑食行為。

除了家庭環境因素以外, 兒童的大腦發育也會對其一系列行為產生影響(Plassmann et al., 2022)。挑食行為是一種可遺傳的飲食行為特質(Fildes et al., 2016; Smith et al., 2017), 非穩態進食行為通過復雜的神經系統調控(Berthoud amp; Levin, 2012)。兒童時期是大腦神經發育的關鍵階段(Fan et al., 2023; Modabbernia et al., 2021), 因此探索挑食行為的神經關聯對于理解和預防兒童挑食行為至關重要。兒童挑食行為的影響因素模型首次強調認知因素對挑食行為的影響, 包括對食物的感知機制、內部表征和分類系統以及情緒加工(Lafraire et al., 2016)。目前僅一篇研究探索8~13歲兒童挑食行為和大腦靜息態功能連接之間的關系, 該研究選定伏隔核、下頂葉和額極分別作為獎賞加工、反應抑制和沖動性相關腦區, 結果發現沖動性功能連接(額極?伏隔核功能連接)及其與反應抑制功能連接(下頂葉?伏隔核功能連接)的差異與挑食行為負相關, 這表明兒童挑食行為與獎賞、控制和沖動性相關腦區之間的功能連通性失衡有關(Chodkowski et al., 2016)。食物恐新是挑食行為的一個方面(Dovey et al., 2008), 研究發現當觀看不熟悉的食物刺激時, 高低食物恐新組在楔前葉、尾狀核和殼核處的激活存在差異(Wolfe et al., 2015)。尾狀核、殼核和伏隔核是獎賞環路的關鍵節點(Li, Hu et al., 2023), 參與調控對食物的“喜歡”和“想要”, 決定了對食物的趨近或遠離(Campos et al., 2022; Jiang et al., 2015; Morales amp; Berridge, 2020)。以往研究發現尾狀核、殼核和伏隔核負責編碼食物的主觀獎賞價值, 參與形成對食物的主觀偏好(Hommer et al., 2013; Luo amp; Han, 2023; Terenzi et al., 2022; van den Bosch et al., 2014), 而且在厭惡動機驅動的行為中也發揮作用(Royet et al., 2016), 這與挑食行為的內涵相似。此外, 尾狀核也參與感覺信息加工(Yuan et al., 2022), 有研究表明楔前葉和尾狀核是感覺加工敏感性的神經基礎(Acevedo et al., 2018, 2021; Greven et al., 2019)。與之對應地, 自閉癥兒童普遍存在挑食行為被認為與其感官體驗極其敏感相關(Klockars et al., 2021; Nimbley et al., 2022), 體現在對食物線索的味道和質地反應增強(Avery et al., 2018)。綜上, 兒童挑食行為可能主要與參與感覺加工敏感性以及獎賞加工相關腦區的神經活動相關。

兒童時期的神經可塑性使得腦發育容易受到養育模式等家庭環境因素的影響(Tooley et al., 2021), 例如喂養環境和策略充當著外部刺激影響兒童的大腦認知發育(Liu amp; Chang, 2023)。那么通過呈現獎賞食物鼓勵兒童良好表現的工具性喂養可能影響兒童某認知功能相關腦區的發育。根據獎賞習慣化理論, 習慣化的過程是最初對某種刺激的敏感性增加, 在刺激反復出現后對其敏感性降低的過程, 并且會將興趣轉向新的刺激(Benson amp; Raynor, 2014; Epstein et al., 2008)。同樣有觀點認為反復接觸食物可能會導致感官特定的飽足感(Rolls et al., 1986; Temple et al., 2008), 長時間接觸少量不變的食物會產生感官疲勞而導致食物偏好降低(Houston-Price et al., 2009; Lafraire et al., 2016)。因此, 工具性喂養可能會影響兒童與感覺和獎賞加工相關腦區的發育, 頻繁呈現食物獎勵可能導致兒童感覺和獎賞腦區反應疲勞。

調查發現7~12歲兒童挑食行為的流行性高達59% (Xue et al., 2015), 學齡兒童仍然普遍存在挑食行為(Chao amp; Chang, 2017; Diamantis et al., 2023; Zhang et al., 2021)。已有研究探討工具性喂養和挑食行為的關系大多都是在年齡較低的兒童樣本中進行, 并且認為工具性喂養可能會增加對獎勵食物的偏好, 同時對想要促進的食物的偏好降低而加劇挑食行為(Byrne et al., 2017; Harris et al., 2018)。但是沒有研究驗證過在父母采用食物作為獎勵后兒童心理過程的變化是否與猜測一致。根據前文綜述, 挑食行為與兒童的感知覺加工等認知發展有關(Lafraire et al., 2016), 因此隨著年齡增長, 兒童的大腦發育使得認知能力不斷發展, 那么是否會因為認知變化而導致對食物的看法以及對父母喂養策略的反饋發生改變。基于此, 有必要在學齡兒童中驗證工具性喂養與挑食行為的關系, 并且本研究認為在學齡兒童中二者的關聯可能與以往研究的發現不同。同時, 研究結合靜息態磁共振數據, 試圖從神經功能的角度解釋工具性喂養影響挑食行為潛在的心理加工過程。從研究方法來說, 目前唯一一篇探究挑食行為靜息態神經基礎的研究(Chodkowski et al., 2016)采用的興趣區到興趣區的功能連接分析存在一定的局限性。由于目前尚無其他研究對兒童挑食行為的神經基礎進行探索, 選定的興趣區在前人研究中并未發現與挑食行為直接相關, 因此這種先驗性假設興趣區的分析方式其背后的研究依據并不充足。在兒童挑食行為研究領域尚無充足的神經方面的實證證據的情況下, 全腦層面的探索式分析更為合適。

靜息態功能磁共振成像(Resting-state functional magnetic resonance imaging, RS-fMRI)是一種獨立于實驗任務, 反映大腦自發神經活動特征的影像學測量技術, 可以檢測在放松狀態下大腦內在的功能活動模式(Raichle et al., 2001; Zou et al., 2009; Zuo et al., 2010)。靜息狀態下大腦活動消耗總能量的95%, 而任務誘發的活動只占用大腦0.5%~1.0%的總能量(Fox amp; Raichle, 2007), 因此RS-fMRI被認為是識別飲食行為的神經關聯很有前景的研究方法(Chen et al., 2021; Dong et al., 2014)。飲食行為由多個腦區共同參與調控, 因此探索大腦的功能連接模式是揭示挑食行為神經關聯的關鍵手段。靜息態功能連接(Resting-state functional connectivity, RSFC)反映了靜息狀態下大腦不同區域間的信息交流(Fox et al., 2007)。為了實現探索性分析的目的, 本研究采用基于種子點的功能連接分析方式從體素水平上探索挑食行為的神經關聯(Lee et al., 2013; Yang et al., 2020)。而在選取種子點時由于尚無充足的神經證據, 因此首先探究挑食行為相關聯的局部神經活動特征, 并以此與全腦其他體素進行功能連接分析, 探究挑食行為是否涉及到不同腦區間的功能協同。局部一致性(Regional homogeneity, ReHo)是衡量相鄰體素間自發活動同步性程度的指標, 反映了神經活動的區域功能信息整合(Paakki et al., 2010; Zang et al., 2004), 是揭示飲食行為神經關聯可靠的靜息態指標(Dong et al., 2015; Gao et al., 2018)。因此, 本研究以ReHo和RSFC作為反映大腦自發神經活動的指標, ReHo與RSFC結合使用被認為是從單變量水平(區域內功能同步)和多變量水平(區域間遠程功能連通)兩個角度識別飲食行為內在神經連接的有效方式(Gao et al., 2018; Wang et al., 2023)。此外, 本研究采用一種機器學習方法測試腦與挑食行為關聯的穩定性(Chen et al., 2022)。

綜上, 本研究將采用全腦探索性的相關分析結合機器學習方法探究兒童挑食行為的靜息態神經關聯, 提供兒童挑食行為的穩健神經生物學基礎, 從神經功能的角度驗證并擴展兒童挑食行為的影響因素模型。我們初步假設兒童挑食行為主要與感覺敏感性加工和獎賞加工相關腦區的活動和功能連接有關, 如楔前葉、尾狀核和殼核等(假設1)。此外, 本研究不僅驗證工具性喂養與兒童挑食行為的關系, 并打算進一步從靜息態功能活動的角度提供神經證據解釋二者之間的作用機制, 即建立工具性喂養—靜息態神經表現—挑食行為中介模型。工具性喂養可能與兒童感覺和獎賞加工腦區的發育有關, 因此本研究假設工具性喂養能夠通過感覺和獎賞加工腦區的活動及功能連接影響兒童挑食行為。根據獎賞習慣化理論, 工具性喂養與感覺和獎賞加工相關腦區(如楔前葉、尾狀核和殼核等)的活動和功能連接減弱有關, 導致對喜愛食物的偏好降低, 增加了吃多種食物的可能性, 挑食行為就會隨之減少(假設2)。

2 "方法

2.1 "被試

本實驗招募來自西南地區兩所小學的129名兒童被試。所有被試必須滿足兩個條件才能納入正式分析:完成問卷測量和靜息態核磁掃描(剔除27名被試)以及靜息態核磁數據無質量和頭動較大問題(剔除15名被試)。經過篩選后, 87名兒童(51%是女孩, 年齡 = 10.07 ± 0.96歲, 年齡范圍是9~12歲)納入正式分析。根據Xu等人(2023)的計算方式, 本研究使用G*power軟件來計算所需的樣本量。根據相關文獻(Finnane et al., 2017), 工具性喂養與兒童挑食行為的相關性為0.30, 工具性喂養的標準差為0.96, 挑食行為的標準差為0.91。輸入偏倚(α error probability) = 0.05, 統計檢驗力(1 ? β) = 0.80, 最終得到所需樣本量至少為82人。所有被試視力或矯正視力正常, 無色盲, 且均未報告有精神疾病史或神經病史。所有被試在實驗前獲得家長同意并簽署知情同意書, 在實驗后得到文具作為實驗報酬。該研究經過心理學部學術倫理委員會批準。

2.2 "行為變量測量

2.2.1 "兒童挑食行為

采用兒童飲食行為問卷(Children's Eating Behavior Questionnaire)中的挑食行為維度測量家長感知到的兒童挑食行為(Wardle et al., 2001)。挑食行為維度包含6個題項, 反映了對能夠接受的食物范圍的高度挑選傾向。這些題項評估了兒童表現出某種行為的頻率(例如, 我的孩子喜歡的食物種類非常多)。評分采用5點計分制, 1 = 從不, 5 = 總是, 正向計分和反向計分條目交替排列, 統計分析時反向題目作反向計分處理。計算題項總分作為兒童挑食行為得分, 得分越高代表兒童的挑食行為越嚴重。中國版兒童飲食行為問卷已被證明具有良好的信效度(Guo et al., 2018; 曾思瑤, 2018)。本研究中挑食行為分維度的內部一致性系數為0.76。

2.2.2 "工具性喂養

工具性喂養由兒童喂養問卷(Child Feeding Questionnaire)中食物作為獎勵(Food as rewards)分維度測量(Jansen et al., 2020; Zheng et al., 2016)。該維度包含兩個題項, 分別是“我會給我的小孩他/她自己喜歡吃的食品來鼓勵他/她好好表現”和“如果孩子表現好, 我會獎勵給他/她甜食(比如:糖果、冰淇淋、蛋糕、甜點等)”。該問卷由父母進行回答, 評分采用5點計分制(1 =不同意, 5 =同意), 無反向計分題。計算兩個題目的總分作為父母工具性喂養的程度, 得分越高表示工具性喂養程度越高。本研究使用的工具性喂養分維度的內部一致性系數為0.78。

2.3 "靜息態功能磁共振數據的采集和預處理

2.3.1 "影像采集

所有影像數據均采用3T Trio西門子磁共振掃描儀進行采集(Siemens Medical, Erlangen, Germany)。每個被試都進行5分鐘結構像掃描和8分鐘的靜息態磁共振的掃描。在正式掃描之前, 所有參與者都進行了5分鐘的模擬掃描, 以適應掃描環境。在正式掃描期間, 使用泡沫墊和耳塞來減少頭部運動和機器噪音。采用梯度回波平面成像序列(a gradient echo planar imaging sequence)獲得靜息態功能影像, 掃描參數為:重復時間(repetition time, TR) = 2000 ms; 回波時間(echo time, TE)= 30 ms; 層數(Slices)= 33; 層厚(slice thickness)= 3.5 mm; 成像矩陣(matrix size)= 64 × 64; 翻轉角(flip angle, FA)= 90°; 視場(field of view, FOV)= 224 mm × 224 mm; 體素大小(voxel size)= 3.5 mm × 3.5 mm × 3.5 mm。一共獲得180時間點的成像。T1加權結構像使用快速梯度回波成像序列獲得(Magnetization Prepared Rapid Acquisition Gradient Echo Sequences), 使用以下掃描參數:TR = 2530 ms; TE = 3.48 ms; FOV = 256 mm × 256 mm; FA = 7°; matrix size = 256 × 256; 層間距 = 1 mm; voxel size = 1 mm × 1 mm × 1 mm。高分辨率T1加權結構圖像是為靜息態影像處理提供解剖學參考。

2.3.2 "影像數據預處理

使用基于SPM8的腦成像數據處理與分析工具箱(Data Processing and Analysis for Brain Imaging, 簡稱DPABI)對數據進行處理(Yan et al., 2016)。預處理包括以下步驟:(1)剔除每個被試前10個時間點的影像, 目的是為保證BOLD信號達到穩定狀態, 排除機器啟動信號不均和被試對機器環境適應過程對圖像的干擾。(2)剩下的170個時間點的影像進行時間層校正(slice timing)以及頭動校正(realignment)。(3)為排除個體大腦形狀、大小等方面的差異, 方便不同被試間的比較, 將影像數據進行空間標準化(normalization), 統一到標準的蒙托利爾坐標系空間模板(Montreal Neurological Institute), 體素分辨率為 3 mm × 3 mm × 3 mm。(4)采用6 mm半高寬(Full width at half maximum)的平滑核進行高斯平滑(Smooth)處理(計算ReHo指標時不進行平滑處理)。(5)每個被試的fMRI圖像配準到分割后的高分辨率T1加權解剖圖像。(6)為了控制潛在的協變量對研究結果帶來的影響, 采用Friston 24方法將6個頭動參數(三個方向上的平移和轉動)、白質、腦脊液以及全腦信號等參數進行了回歸。(7)通過0.01~0.1 Hz 頻段進行低頻濾波(Filer), 去除呼吸和心跳等高頻信號值影響。(8)最終, 對每個被試的圖像進行擦洗(Scrubbing), 在擦洗過程中剔除頭動(framewise displacement, FD) gt; 0.5 mm的時間點。(9)頭動控制。將數據擦洗過程中剔除的時間點超過總時間點30%的被試排除(Varangis et al., 2019), 共有15名被試由于壞點過多被剔除。為了確保頭動與興趣變量不存在顯著相關, 計算平均頭動指標(mean FD)與兒童挑食行為的相關(Li, Bian et al., 2023; Shen et al., 2017), 最終發現二者不存在顯著相關(r = 0.18, p = 0.097)。最后在統計分析中, 將頭動納入協變量以進一步控制其對結果的影響(Horien et al., 2018; Waller et al., 2017)。

2.4 "數據分析

2.4.1 "ReHo-行為相關分析

首先使用DPARSF工具包(Data Processing Assistant for Resting-State fMRI)計算局部一致性系數(Regional homogeneity, ReHo)。通過計算給定體素與其26個相鄰體素的時間序列的肯德爾和諧系數(KCC)生成單個ReHo圖(Zang et al., 2004)。給定體素的ReHo值越大, 表示相鄰體素之間RS-fMRI信號的局部同步程度越高。為了減少個體差異的影響, 通過將每個體素的KCC除以每個被試整個大腦的平均KCC來進行ReHo圖的歸一化, 并通過Fisher的r-to-z變換將ReHo圖轉換為z分數。最后對ReHo圖進行空間平滑處理。為了確定與挑食行為相關的腦區, 采用全腦相關分析計算大腦每個體素與挑食行為的相關。使用SPM 12軟件對兒童挑食行為與ReHo進行多重線性回歸分析, 并以年齡、性別、BMI和頭動(mean FD)為協變量。采用體素水平p lt; 0.005, 團塊水平p lt; 0.05 的高斯隨機場(Gaussian Random-Field, GRF)多重比較矯正, 以獲得與兒童挑食行為顯著相關的ReHo腦區。

2.4.2 "RSFC-行為相關分析

為了探索ReHo-行為分析發現的腦區與其他腦區的功能連通性與兒童挑食行為的關聯, 本研究進行RSFC-行為相關分析。以ReHo分析中發現的顯著腦區為種子點, 以6 mm為半徑定義感興趣區, 并提取了感興趣區內體素的時間序列。隨后使用DPABI軟件在個體水平上計算其與全腦其他體素的時間序列的相關性, 即皮爾遜相關系數r, 將r值進行Fisher z轉化。最后, 在組分析水平計算每條功能連接與挑食行為的相關, 同樣在SPM中采用多重線性回歸分析, 并以年齡、性別、BMI和頭動為控制變量。多重比較校正采用GRF校正, 報告通過團塊水平p lt; 0.05, 體素水平p lt; 0.005矯正的顯著功能連接。

2.4.3 "預測分析

本研究采用一種機器學習方法——基于線性回歸的交叉驗證法——測試腦與挑食行為關聯的穩定性(Chen et al., 2022; Kong et al., 2018; Wang et al., 2018)。傳統將神經影像學指標與認知或行為評分關聯起來的分析方式受到樣本特點的限制, 無法確定觀察到的相關結果是否可以推廣到看不見的個體中, 而交叉驗證法具備評估模型預測未知個體行為的能力(Cui et al., 2018; Yarkoni amp; Westfall, 2017)。該方法目前已得到廣泛的認可并應用于認知神經科學研究以提高其研究結果的穩健性(Chen et al., 2022)。在回歸模型中, 因變量為挑食行為得分, 自變量是大腦指標(與挑食行為顯著相關的腦區ReHo和功能連接值)。首先采用四折法將數據平均分開, 接下來用其中三折的數據建立線性回歸模型, 用第四折數據驗證這個模型。重復這個過程四次得到一個最終的r(預測, 觀測)值, 代表模型預測數據與真實觀測數據的平均相關。為了得到模型的統計學顯著性, 采用非參數測試方法, 即1000次置換檢驗來估計挑食行為與靜息態腦指標之間沒有關聯的零假設。通過計算大于r(預測, 觀測)的r值個數, 再除以數據集的個數(即1000)得到模型的統計顯著性(p值)。

2.4.4 "中介分析

采用SPSS中的PROCESS插件(Hayes amp; Scharkow, 2013)計算大腦自發神經活動在工具性喂養?挑食行為關系中的中介效應。具體來說, 飲食行為受大腦神經系統的指導與調控(Berthoud amp; Levin, 2012; Plassmann et al., 2022), 因此在建立中介模型時將靜息態神經表現作為中介變量影響因變量——兒童挑食行為。而工具性喂養方式作為家庭環境方面的影響因素, 在兒童的成長發育過程中, 可能會作為外部刺激影響著大腦的發育(Tooley et al., 2021), 因此在中介模型中將工具性喂養方式作為自變量, 可能會通過影響兒童的神經發育進而影響挑食行為。綜上, 工具性喂養為自變量, 挑食行為為因變量, 與挑食行為相關的腦區的ReHo值和功能連接值為中介變量。使用5000次迭代的bootstrapping方法評估中介效應的顯著性, 如果95%置信區間(Confidence Interval, CI)不包含零, 則表示中介效應顯著。進行中介分析前, 為了對中介變量進行篩選, 將大腦信號和自變量進行偏相關分析, 以年齡, 性別和BMI為協變量。與自變量存在顯著相關的大腦指標被選作中介變量進行進一步的中介分析。

3 "結果

3.1 "共同方法偏差檢驗

本研究采用的問卷數據來源于同一評分者, 因此可能存在共同方法偏差問題(Zhou amp; Long, 2004)。首先, 在施測過程中進行了必要的控制, 保護參與者的匿名性、對數據的科研用途加以解釋、正反向計分等。進一步地, 采用單因素驗證性因子分析對所有題項進行共同方法偏差檢驗(Liu et al., 2019; Podsakoff et al., 2012), 結果顯示模型擬合較差, χ2/df = 8.920、CFI = 0.796、TLI = 0.714、RMSEA = 0.162、SRMR = 0.097。雙因子模型的擬合指標(χ2/df = 1.309、CFI = 0.974、TLI = 0.961、RMSEA = 0.06、SRMR = 0.055)顯著優于單因素模型, 所以不存在嚴重共同方法偏差問題。

3.2 "初步分析

所有變量的描述性統計和相關分析如表1所示。結果表明, 挑食行為沒有顯著的性別差異, t (85) = 1.96, p = 0.053, 95% CI = [?0.02 3.57]。挑食行為與年齡(r = 0.05, p = 0.671, 95% CI = [?0.17 0.25]), BMI (r = ?0.01, p = 0.923, 95% CI = [?0.22 0.20])和頭動(r = 0.18, p = 0.097, 95% CI = [?0.03 0.38])均沒有顯著相關關系。

3.3 "挑食行為的神經相關結果

ReHo-行為相關分析結果如圖1和表2所示。挑食行為與右側尾狀核的ReHo值正相關(r = 0.43, p lt; 0.001, 95% CI = [0.25 0.59])。在控制了性別、年齡、BMI和頭動后, 預測分析的結果表明右側尾狀核(r(預測, 觀測) = 0.37, p lt; 0.001)的ReHo值能夠顯著預測挑食行為。

RSFC-行為相關分析結果如圖2和表2所示, 結果顯示挑食行為與右側尾狀核?左側殼核之間的功能連接正相關(r = 0.43, p lt; 0.001, 95% CI = [0.24 0.59])。預測分析結果表明右側尾狀核?左側殼核功能連接(r(預測, 觀測) = 0.35, p lt; 0.001)能顯著預測兒童挑食行為。

3.4 "中介模型

在控制性別、年齡、BMI和頭動后, 結果發現工具性喂養與挑食行為存在顯著的負相關(r = ?0.24, p = 0.026, 95% CI = [?0.45 ?0.02])。接下來計算上述與挑食行為相關的神經指標與工具性喂養之間的相關性。結果顯示工具性喂養與右側尾狀核處的局部一致性負相關(r = ?0.22, p = 0.046, 95% CI = [?0.41 ?0.001]), 與右側尾狀核到左側殼核之間的功能連接顯著負相關(r = ?0.30, p = 0.006, 95% CI = [?0.49 ?0.08])。這些結果表明工具性喂養、挑食行為相關的大腦自發活動/功能連接以及挑食行為三者關系密切。

中介結果如圖3所示。在區域活動水平上, 結果顯示右側尾狀核處的局部一致性不能中介工具性喂養對兒童挑食行為的影響(間接效應β = ?0.11, 標準誤 = 0.06)。工具性喂養對挑食行為的直接影響也不顯著(直接效應β = ?0.13, 標準誤 = 0.09, p = 0.173)。在功能連接水平上, 工具性喂養?腦?挑食行為中介模型成立, 總效應β = ?0.24, 標準誤 = 0.11, 95% CI = [?0.46 ?0.03], p = 0.026, 該模型對因變量變異的解釋程度R2 = 12.06%。結果顯示工具性喂養能夠通過右側尾狀核和左側殼核之間的功能連接影響兒童挑食行為(間接效應β = ?0.16, 標準誤 = 0.05, 95% CI = [?0.26 ?0.06]), 同樣工具性喂養對挑食行為的直接影響不顯著(直接效應β = ?0.08, 標準誤 = 0.10, p = 0.40)。

4 "討論

本研究采用靜息態局部一致性和功能連接兩個指標, 結合機器學習?交叉驗證的方法探究兒童挑食行為的靜息態神經基礎, 并且檢驗了相關神經基礎在工具性喂養和兒童挑食行為之間關系的中介作用。首先, 研究發現兒童挑食行為與右側尾狀核的局部一致性顯著正相關。功能連接結果表明兒童挑食行為與右側尾狀核?左側殼核之間的功能連接正相關。接著, 基于機器學習的預測分析驗證了右側尾狀核的局部一致性和右側尾狀核?左側殼核之間的功能連接與兒童挑食行為相關的穩健性。最后中介分析結果表明工具性喂養能夠通過右側尾狀核?左側殼核功能連接負向預測兒童的挑食行為。

與假設1一致的是, 本研究發現兒童挑食行為與獎賞相關腦區的自發神經活動相關。具體來說, 兒童挑食行為與獎賞腦區(右側尾狀核)的自發活動以及獎賞腦區之間的功能連接(尾狀核?殼核)正相關。尾狀核和殼核是中腦邊緣獎賞網絡的關鍵區域, 參與食物相關的獎賞加工, 并與能量穩態信號密切相互作用(Burger amp; Stice, 2013), 研究證實尾狀核和殼核與異常進食過程有關(Zhang et al., 2019)。同時, 對高熱量食物的渴求能夠激活尾狀核等獎賞腦區(Haber amp; Knutson, 2010; Pelchat et al., 2004; Stoeckel et al., 2008)。殼核被認為是獎賞加工和獎賞價值標記的核心腦區(Cromwell et al., 2005; Hori et al., 2009), 有研究表明殼核處的激活與兒童的獎賞敏感性有關(Mizuno et al., 2016)。因此, 研究發現暗示了獎賞腦區較強的反應能解釋挑食行為的形成。上述神經發現印證了以往行為研究中發現的挑食兒童特定的飲食模式。前人研究發現挑食兒童會攝入更多高熱量的食物(Carruth et al., 2004; Galloway et al., 2005; Taylor et al., 2016; Tharner et al., 2014), 而很少吃低獎賞價值但是高營養的食物, 例如蔬菜和水果等(Cardona Cano et al., 2015; Haszard et al., 2015; Horodynski et al., 2010)。綜上, 獎賞腦區的功能活躍及其內部緊密的功能交互能夠解釋挑食行為的發生, 導致挑食兒童傾向于進食高獎賞價值的食物。

此外, 尾狀核除了被認為是調節獎賞?食欲行為的關鍵大腦結構以外(Zhang et al., 2019), 也被發現涉及感覺敏感性加工(Demarquay amp; Mauguière, 2016)。尾狀核作為基底節的主要輸入單元, 參與對感覺信息的編碼加工進而影響知覺決策(Ding amp; Gold, 2010)。具有高感覺敏感性和高挑食行為的妥瑞氏癥患者在感覺相關任務中尾狀核處的激活與正常被試顯著不同(Buse et al., 2016)。感覺敏感性是影響兒童挑食行為一個穩定的影響因素(Zickgraf amp; Elkins, 2018; Zickgraf et al., 2022)。臨床研究表明挑食行為與在環境中對感覺信息的敏感程度有關(Bryant-Waugh et al., 2010; Chilman et al., 2021), 容易察覺到食物在視覺和氣味等方面變化的多感官體驗使得感覺敏感的個體對食物更加排斥厭惡(Cermak et al., 2010; Cunliffe et al., 2022)。尾狀核與殼核間的功能連接也可能反映出的是感知覺腦區與獎賞加工腦區的功能同步性, 二者共同參與調節兒童挑食行為。兒童對食物的判斷主要依賴于感知覺加工, 例如視覺和嗅覺等(Lafraire et al., 2016), 那么消極的感官決策就會導致兒童認為該食物不好吃, 即影響對食物獎賞價值的加工判斷, 最終做出拒絕食物的決策。因此, 功能連接的發現表明感覺信息加工和獎賞加工對于挑食行為的重要性, 是與挑食行為緊密相關的兩種認知加工過程, 能夠解釋兒童挑食行為的形成, 其相關腦區的功能發育也會調節挑食行為的發展。綜上, 尾狀核處的局部一致性以及尾狀核到殼核的功能連接與兒童挑食行為之間的關聯也可能是感覺敏感性與挑食行為間的關系在神經生理水平上的體現。上述發現是對兒童挑食行為影響因素模型的驗證, 從神經活動的角度證實了認知功能對兒童挑食行為的影響。

與假設2一致的是, 本研究發現了工具性喂養與兒童挑食行為之間的負相關關系。類似地, 以往研究發現同時呈現兒童不喜歡的蔬菜和獎勵會增加兒童對蔬菜的喜愛, 降低兒童挑食的可能性(Cooke et al., 2010; Wardle et al., 2003)。此外, 大多研究曾報告過相反結果, 即工具性喂養與兒童挑食行為正相關(Jansen et al., 2020)。這可能是研究者選取被試的年齡范圍不同導致的。一篇關于兒童挑食行為的質性研究中提到, 一位10歲男孩的母親認為相比于其他方式, 用食物作為獎勵是最成功的策略(Wolstenholme et al., 2019)。與引言中提到的觀點相一致, 不同年齡段的兒童神經發育程度不同(Lou et al., 2019), 使得兒童對家長喂養模式的反應不同。感官偏好并不是天生的(Lafraire et al., 2016), 大腦神經系統的發育隨著年齡的增長愈發成熟使得兒童對食物的認知更加豐富, 因此當工具性喂養策略使得獎賞系統表現出對喜愛食物的反應疲勞時, 兒童的興趣可能會轉向其他食物。此外, 隨著高級認知加工腦區的發育成熟(Fan et al., 2023; Tooley et al., 2021), 兒童的理解判斷能力逐漸增強, 更能夠理解父母采取工具性喂養策略的目的, 因此兒童很可能對喂養策略做出正向反饋, 積極配合改善自身的挑食行為。

重要的是, 本研究發現尾狀核與殼核的功能連接中介了工具性喂養對兒童挑食行為的作用。具體來說, 工具性喂養頻率越高, 尾狀核和殼核的功能連接強度更弱, 使得兒童的挑食行為減少。從獎賞習慣化的角度解釋, 食物獎勵鼓勵兒童做出好的行為可能意味著兒童多次接收食物獎勵會形成獎賞習慣化(Benson amp; Raynor, 2014)。有研究表明獎賞習慣化可以阻止強迫性的獎賞尋求行為, 并且轉向新的刺激(Leventhal et al., 2007)。尾狀核與殼核都屬于獎賞加工的關鍵腦區(Haruno amp; Kawato, 2006; Pizzagalli et al., 2009), 參與獎賞習慣化的過程(Robinson amp; Berridge, 2000), 并且也有研究表明尾狀核到殼核的功能連接與獎賞尋求等加工過程存在相關(Arias-Carrión amp; P?ppel, 2007; Fuchs et al., 2006)。因此, 一個可能的解釋是父母給予兒童食物獎勵越多, 兒童對獎賞食物逐漸習慣化, 導致對此類食物的獎賞尋求降低, 在大腦上表現為獎賞區域之間的功能連通性降低, 飲食模式可能不會固定在對獎賞食物的攝入上, 反而有機會去嘗試其他食物, 降低了挑食發生的幾率。另一方面從感知覺加工的角度來說, 頻繁呈現兒童偏好的食物作為獎勵會導致感官飽足感, 使得兒童對獎賞食物的偏好降低(Houston-Price et al., 2009; Lafraire et al., 2016), 進而增加了選擇嘗試其他食物的可能性。而且這種感知覺加工“疲勞”也可能導致兒童的感官敏感性降低, 減少對以往拒絕的食物的消極感官判斷, 增加了接受它們的可能性。

本研究揭示了圍繞著尾狀核的神經活動和功能連通性與挑食行為的緊密關聯, 因此我們推斷尾狀核能作為識別兒童挑食行為的一個生理指標。獎賞腦區內部較強的連接從大腦自發活動的角度提供了神經證據支持行為層面上發現的兒童挑食行為對應的飲食偏好, 即挑食兒童可能會對高獎賞食物有更多的偏好和攝入。此外, 本研究創新性的提出感覺加工腦區和獎賞腦區的功能協同可能是兒童挑食行為發生的潛在神經原因。重要的是, 本研究首次發現了工具性喂養可以通過尾狀核到殼核的功能連接來影響兒童挑食行為, 解釋了工具性喂養能夠改善兒童挑食行為的作用原理。綜上, 本研究驗證并拓展了兒童挑食行為的影響因素模型。一方面, 研究結果證實了兒童挑食行為的影響因素模型中提到的社會環境因素和認知因素都會對挑食行為產生影響。另一方面, 我們進一步地發現影響因素模型中的社會環境因素和認知因素之間可能存在影響關系。由于兒童正處于大腦發育期, 因此社會環境因素可能會影響大腦的神經發育而對認知功能產生影響, 從而影響兒童挑食行為的形成與發展。此外, 研究結果在實踐上有一定的參考價值, 未來可以考慮將工具性喂養作為改善兒童不健康飲食結構的干預手段。

本研究仍存在一些不足之處需要改進, 并借此提出未來研究中需要繼續深入探索和拓展的方向。首先, 本研究的樣本量偏小, 雖然采用機器學習方法加強了結果的穩定性, 但未來研究應該在更大的兒童樣本中檢驗本研究結果的穩定性。除了本研究中采用的機器學習方法, 未來采用其他樣本進行外部驗證也是必要的。其次, 本研究僅僅是從靜息態功能連接的角度提供了神經證據, 未來研究應該結合不同模態的神經研究, 例如結構態和任務態磁共振研究, 豐富兒童挑食行為神經方面的研究, 并且與靜息態研究發現整合分析進一步明確兒童挑食行為的神經加工模式。第三, 本研究基于橫斷研究發現工具性喂養可能是改善兒童挑食行為的有效手段, 但如果想證明兩者關系的因果性, 未來研究應需要采用縱向追蹤的方法確定二者之間的因果關系。

5 "結論

本研究采用靜息態局部一致性和功能連接指標結合機器學習方法探討了兒童挑食行為的神經基礎。結果發現, 兒童挑食行為與右側尾狀核的局部一致性顯著正相關, 與右側尾狀核到左側殼核的功能連接正相關。由此揭示了感覺信息加工和獎賞加工相關腦區的神經活躍以及腦區間功能協同能夠解釋兒童挑食行為的個體差異, 提供了兒童挑食行為穩健的神經生物學基礎, 并為該領域補充新的神經層面的實證證據。值得注意的是, 工具性喂養能夠通過降低尾狀核到殼核的功能連接減少兒童挑食行為。上述發現驗證和拓展了兒童挑食行為的影響因素模型, 而且為通過父母的喂養方式干預改善兒童不良的挑食行為提供了理論支持。

參 "考 "文 "獻

Acevedo, B., Aron, E., Pospos, S., amp; Jessen, D. (2018). The functional highly sensitive brain: A review of the brain circuits underlying sensory processing sensitivity and seemingly related disorders. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1744), 20170161?20170161.

Acevedo, B. P., Santander, T., Marhenke, R., Aron, A., amp; Aron, E. (2021). Sensory processing sensitivity predicts individual differences in resting-state functional connectivity associated with depth of processing. Neuropsychobiology, 80(2), 185?200.

Arias-Carrión, ó., amp; P?ppel, E. (2007). Dopamine, learning, and reward-seeking behavior. Acta Neurobiologiae Experimentalis, 67(4), 481?488.

Avery, J. A., Ingeholm, J. E., Wohltjen, S., Collins, M., Riddell, C. D., Gotts, S. J., … Martin, A. (2018). Neural correlates of taste reactivity in autism spectrum disorder. Neuroimage: Clinical, 19, 38?46.

Benson, K., amp; Raynor, H. A. (2014). Occurrence of habituation during repeated food exposure via the olfactory and gustatory systems. Eating Behaviors, 15(2), 331?333.

Berthoud, H. R., amp; Levin, B. E. (2012). CNS regulation of energy balance. In G.A. Bray amp; C. Bouchard (Eds.), Handbook of obesity, epidemiology, etiology, and physiopathology (Vol. 1, pp. 161–172). CRC Press.

Brown, C. L., Ip, E. H., Skelton, J., Lucas, C., amp; Vitolins, M. Z. (2022). Parental concerns about picky eating and undereating, feeding practices, and child's weight. Obesity Research amp; Clinical Practice, 16(5), 373?378.

Bryant-Waugh, R., Markham, L., Kreipe, R. E., amp; Walsh, B. T. (2010). Feeding and eating disorders in childhood. International Journal of Eating Disorders, 43(2), 98?111.

Burger, K. S., amp; Stice, E. (2013). Elevated energy intake is correlated with hyperresponsivity in attentional, gustatory, and reward brain regions while anticipating palatable food receipt. The American Journal of Clinical Nutrition, 97(6), 1188?1194.

Buse, J., Beste, C., Herrmann, E., amp; Roessner, V. (2016). Neural correlates of altered sensorimotor gating in boys with Tourette syndrome: A combined EMG/fMRI study. The World Journal of Biological Psychiatry, 17(3), 187?197.

Byrne, R., Jansen, E., amp; Daniels, L. (2017). Perceived fussy eating in Australian children at 14 months of age and subsequent use of maternal feeding practices at 2 years. International Journal of Behavioral Nutrition and Physical Activity, 14(1), 123.

Campos, A., Port, J. D., amp; Acosta, A. (2022). Integrative hedonic and homeostatic food intake regulation by the central nervous system: Insights from neuroimaging. Brain Sciences, 12(4), 431.

Cardona Cano, S., Tiemeier, H., Van Hoeken, D., Tharner, A., Jaddoe, V. W. V., Hofman, A., … Hoek, H. W. (2015). Trajectories of picky eating during childhood: A general population study. International Journal of Eating Disorders, 48(6), 570?579.

Carruth, B. R., Ziegler, P. J., Gordon, A., amp; Barr, S. I. (2004). Prevalence of picky eaters among infants and toddlers and their caregivers' decisions about offering a new food. Journal of the American Dietetic Association, 104(1), 57?64.

Cermak, S. A., Curtin, C., amp; Bandini, L. G. (2010). Food selectivity and sensory sensitivity in children with autism spectrum disorders. Journal of the American Dietetic Association, 110(2), 238?246.

Chao, H. C., amp; Chang, H. L. (2017). Picky eating behaviors linked to inappropriate caregiver-child interaction, caregiver intervention, and impaired general development in children. Pediatrics amp; Neonatology, 58(1), 22?28.

Chen, X., Gao, X., Qin, J., Wang, C., Xiao, M., Tian, Y., … Chen, H. (2021). Resting-state functional network connectivity underlying eating disorder symptoms in healthy young adults. Neuroimage: Clinical, 30, 102671.

Chen, X., Xiao, M., Qin, J., Bian, Z., Qiu, J., Feng, T., …Chen, H. (2022). Association between high levels of body-esteem and increased degree of midcingulate cortex global connectivity: A resting-state fMRI study. Psychophysiology, 59(10), e14072.

Chilman, L., Kennedy-Behr, A., Frakking, T., Swanepoel, L., amp; Verdonck, M. (2021). Picky eating in children: A scoping review to examine its intrinsic and extrinsic features and how they relate to identification. International Journal of Environmental Research and Public Health, 18(17), 9067.

Chilman, L. B., Meredith, P. J., Kennedy-Behr, A., Campbell, G., Frakking, T., Swanepoel, L., amp; Verdonck, M. (2023). Picky eating in children: Current clinical trends, practices, and observations within the Australian health-care context. Australian Occupational Therapy Journal, 70(4), 471?486.

Chodkowski, B. A., Cowan, R. L., amp; Niswender, K. D. (2016). Imbalance in resting state functional connectivity is associated with eating behaviors and adiposity in children. Heliyon, 2(1), e00058.

Cooke, L. J., Chambers, L. C., A?ez, E. V., Croker, H. A., Boniface, D., Yeomans, M. R., amp; Wardle, J. (2010). Eating for pleasure or profit: The effect of incentives on children's enjoyment of vegetables. Psychological Science, 22(2), 190?196.

Cromwell, H. C., Hassani, O. K., amp; Schultz, W. (2005). Relative reward processing in primate striatum. Experimental Brain Research, 162(4), 520?525.

Cui, Z., Su, M., Li, L., Shu, H., amp; Gong, G. (2018). Individualized prediction of reading comprehension ability using gray matter volume. Cerebral Cortex, 28(5), 1656? 1672.

Cunliffe, L., Coulthard, H., amp; Williamson, I. R. (2022). The lived experience of parenting a child with sensory sensitivity and picky eating. Maternal amp; Child Nutrition, 18(3), e13330.

Daniels, L. A. (2019). Feeding practices and parenting: A pathway to child health and family happiness. Annals of Nutrition and Metabolism, 74(Suppl. 2), 29?42.

Demarquay, G., amp; Mauguière, F. (2016). Central nervous system underpinnings of sensory hypersensitivity in Migraine: Insights from neuroimaging and electrophysiological studies. Headache, 56(9), 1418?1438.

Demir, D., amp; Bektas, M. (2017). The effect of childrens' eating behaviors and parental feeding style on childhood obesity. Eating Behaviors, 26, 137?142.

Diamantis, D. V., Emmett, P. M., amp; Taylor, C. M. (2023). Effect of being a persistent picky eater on feeding difficulties in school-aged children. Appetite, 183, 106483.

Ding, L., amp; Gold, J. I. (2010). Caudate encodes multiple computations for perceptual decisions. The Journal of Neuroscience, 30(47), 15747?15759.

Dong, D., Jackson, T., Wang, Y., amp; Chen, H. (2015). Spontaneous regional brain activity links restrained eating to later weight gain among young women. Biological Psychology, 109, 176?183.

Dong, D., Lei, X., Jackson, T., Wang, Y., Su, Y., amp; Chen, H. (2014). Altered regional homogeneity and efficient response inhibition in restrained eaters. Neuroscience, 266, 116?126.

Dovey, T. M., Staples, P. A., Gibson, E. L., amp; Halford, J. C. G. (2008). Food neophobia and ‘picky/fussy’ eating in children: A review. Appetite, 50(2-3), 181?193.

Epstein, L. H., Robinson, J. L., Temple, J. L., Roemmich, J. N., Marusewski, A., amp; Nadbrzuch, R. (2008). Sensitization and habituation of motivated behavior in overweight and non-overweight children. Learning and Motivation, 39(3), 243?255.

Fan, X. R., Wang, Y. S., Chang, D., Yang, N., Rong, M. J., Zhang, Z., … Zuo, X. N. (2023). A longitudinal resource for population neuroscience of school-age children and adolescents in China. Scientific Data, 10(1), 545.

Fildes, A., van Jaarsveld, C. H., Cooke, L., Wardle, J., amp; Llewellyn, C. H. (2016). Common genetic architecture underlying young children's food fussiness and liking for vegetables and fruit. The American Journal of Clinical Nutrition, 103(4), 1099?1104.

Finnane, J. M., Jansen, E., Mallan, K. M., amp; Daniels, L. A. (2017). Mealtime structure and responsive feeding practices are associated with less food fussiness and more food enjoyment in children. Journal of Nutrition Education and Behavior, 49(1), 11?18.e1.

Fox, M. D., amp; Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700?711.

Fuchs, R. A., Branham, R. K., amp; See, R. E. (2006). Different neural substrates mediate cocaine seeking after abstinence versus extinction training: A critical role for the dorsolateral caudate?putamen. The Journal of Neuroscience, 26(13), 3584?3588.

Galloway, A. T., Fiorito, L., Lee, Y., amp; Birch, L. L. (2005). Parental pressure, dietary patterns, and weight status among girls who are “picky eaters”. Journal of the American Dietetic Association, 105(4), 541?548.

Gao, X., Liang, Q., Wu, G., She, Y., Sui, N., amp; Chen, H. (2018). Decreased resting-state BOLD regional homogeneity and the intrinsic functional connectivity within dorsal striatum is associated with greater impulsivity in food-related decision-making and BMI change at 6-month follow up. Appetite, 127, 69?78.

Greven, C. U., Lionetti, F., Booth, C., Aron, E. N., Fox, E., Schendan, H. E., … Homberg, J. (2019). Sensory processing sensitivity in the context of environmental sensitivity: A critical review and development of research agenda. Neuroscience amp; Biobehavioral Reviews, 98, 287? 305.

Guo, S., Lu, H., amp; Zhang, J. (2018). The association between eating behavior and body mass index among preschool children. Chinese Preventive Medicine, 19(2), 81?85.

[郭思玉, 陸紅艷, 張建端. (2018). 學齡前兒童飲食行為與體質量指數相關性研究. 中國預防醫學雜志, 19(2), 81?85.]

Haber, S. N., amp; Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 4?26.

Harris, H. A., Fildes, A., Mallan, K. M., amp; Llewellyn, C. H. (2016). Maternal feeding practices and fussy eating in toddlerhood: A discordant twin analysis. International Journal of Behavioral Nutrition and Physical Activity, 13(1), 81.

Harris, H. A., Jansen, E., Mallan, K. M., Daniels, L., amp; Thorpe, K. (2018). Do dads make a difference? Family feeding dynamics and child fussy eating. Journal of Developmental and Behavioral Pediatrics, 39(5), 415?423.

Haruno, M., amp; Kawato, M. (2006). Different neural correlates of reward expectation and reward expectation error in the putamen and caudate nucleus during stimulus-action-reward association learning. Journal of Neurophysiology, 95(2), 948?959.

Haszard, J. J., Skidmore, P. M. L., Williams, S. M., amp; Taylor, R. W. (2015). Associations between parental feeding practices, problem food behaviours and dietary intake in New Zealand overweight children aged 4?8 years. Public Health Nutrition, 18(6), 1036?1043.

Hayes, A. F., amp; Scharkow, M. (2013). The relative trustworthiness of inferential tests of the indirect effect in statistical mediation analysis: Does method really matter? Psychological Science, 24(10), 1918?1927.

Hommer, R. E., Seo, D., Lacadie, C. M., Chaplin, T. M., Mayes, L. C., Sinha, R., amp; Potenza, M. N. (2013). Neural correlates of stress and favorite-food cue exposure in adolescents: A functional magnetic resonance imaging study. Human Brain Mapping, 34(10), 2561?2573.

Hori, Y., Minamimoto, T., amp; Kimura, M. (2009). Neuronal encoding of reward value and direction of actions in the primate putamen. Journal of Neurophysiology, 102(6), 3530?3543.

Horien, C., Noble, S., Finn, E. S., Shen, X., Scheinost, D., amp; Constable, R. T. (2018). Considering factors affecting the connectome-based identification process: Comment on Waller et al. Neuroimage, 169, 172?175.

Horodynski, M. A., Stommel, M., Brophy-Herb, H., Xie, Y., amp; Weatherspoon, L. (2010). Populations at risk across the lifespan: Case studies: Low-income African American and non-Hispanic White mothers' self-efficacy, “picky eater” perception, and toddler fruit and vegetable consumption. Public Health Nursing, 27(5), 408?417.

Houston-Price, C., Butler, L., amp; Shiba, P. (2009). Visual exposure impacts on toddlers' willingness to taste fruits and vegetables. Appetite, 53(3), 450?453.

Jansen, P. W., Derks, I. P. M., Mou, Y., van Rijen, E. H. M., Gaillard, R., Micali, N., … Hillegers, M. H. J. (2020). Associations of parents' use of food as reward with children's eating behaviour and BMI in a population-based cohort. Pediatric Obesity, 15(11), e12662.

Jiang, T., Soussignan, R., Schaal, B., amp; Royet, J. P. (2015). Reward for food odors: An fMRI study of liking and wanting as a function of metabolic state and BMI. Social Cognitive and Affective Neuroscience, 10(4), 561?568.

Klockars, A., Pal, T., Levine, A. S., amp; Olszewski, P. K. (2021). Neural basis of dysregulation of palatability-driven appetite in Autism. Current Nutrition Reports, 10(4), 391?398.

Kong, F., He, Q., Liu, X., Chen, X., Wang, X., amp; Zhao, J. (2018). Amplitude of low-frequency fluctuations during resting state differentially predicts authentic and hubristic pride. Journal of Personality, 86(2), 213?219.

Kutbi, H. A. (2021). Picky eating in school-aged children: Sociodemographic determinants and the associations with dietary intake. Nutrients, 13(8), 2518.

Lafraire, J., Rioux, C., Giboreau, A., amp; Picard, D. (2016). Food rejections in children: Cognitive and social/environmental factors involved in food neophobia and picky/fussy eating behavior. Appetite, 96, 347?357.

Lee, M. H., Smyser, C. D., amp; Shimony, J. S. (2013). Resting-state fMRI: A review of methods and clinical applications. American Journal of Neuroradiology, 34(10), 1866?1872.

Leventhal, A. M., Martin, R. L., Seals, R. W., Tapia, E., amp; Rehm, L. P. (2007). Investigating the dynamics of affect: Psychological mechanisms of affective habituation to pleasurable stimuli. Motivation and Emotion, 31(2), 145?157.

Li, G., Hu, Y., Zhang, W., Wang, J., Ji, W., Manza, P., … Wang, G. J. (2023). Brain functional and structural magnetic resonance imaging of obesity and weight loss interventions. Molecular Psychiatry, 28(4), 1466?1479.

Li, W., Bian, Z., Chen, X., Wang, J., Luo, Y., Liu, Y., … Chen, H. (2023). The relationship between frontotemporal regions and early life stress in children aged 9 to 12: Evidence from multimodal fMRI. Acta Psychologica Sinica, 55(4), 572?587.

[李為, 邊子茗, 陳曦梅, 王俊杰, 羅一君, 劉永, ... 陳紅. (2023). 9~12歲兒童應激與額顳區的關聯: 來自多模態腦影像的證據. 心理學報, 55(4), 572?587.]

Liu, L., Tian, L., amp; Guo, J. (2019). The associations of parent-adolescent relationship with adolescent risk-taking behavior: A moderated mediating model. Psychological Development and Education, 35(2), 210?218.

[劉玲玲, 田錄梅, 郭俊杰. (2019). 親子關系對青少年冒險行為的影響:有調節的中介模型. 心理發展與教育, 35(2), 210?218.]

Liu, Y., amp; Chang, C. (2023). The relationship between early childhood development and feeding practices during the dietary transitional period in rural China: A cross-sectional study. Frontiers in Public Health, 11, 1202712.

Lo, K., Cheung, C., Lee, A., Keung, V., amp; Tam, W. (2016). Associated demographic factors of instrumental and emotional feeding in parents of Hong Kong children. Journal of the Academy of Nutrition and Dietetics, 116(12), 1925?1931.

Lou, W., Wang, D., Wong, A., Chu, W. C. W., Mok, V. C. T., amp; Shi, L. (2019). Frequency-specific age-related decreased brain network diversity in cognitively healthy elderly: A whole-brain data-driven analysis. Human Brain Mapping, 40(1), 340?351.

Luo, L., amp; Han, P. (2023). Assessing food-induced emotion using functional magnetic resonance imaging: A systematic review. Food Quality and Preference, 108(19), 104877.

Machado, B., Dias, P., Lima, V., Carneiro, A., amp; Gon?alves Sónia. (2021). Frequency and correlates of picky eating and overeating in school-aged children: A Portuguese population-based study. Journal of Child and Family Studies, 30(5), 1198?1213.

Mallan, K. M., Jansen, E., Harris, H., Llewellyn, C., Fildes, A., amp; Daniels, L. A. (2018). Feeding a fussy eater: Examining longitudinal bidirectional relationships between child fussy eating and maternal feeding practices. Journal of Pediatric Psychology, 43(10), 1138?1146.

Mason, T. B. (2015). Parental instrumental feeding, negative affect, and binge eating among overweight individuals. Eating Behaviors, 17, 107?110.

Maximino, P., Leme, A. C. B., Malzyner, G., Ricci, R., Gioia, N., Fussi, C., amp; Fisberg, M. (2021). Time to reconsider feeding difficulties in healthy children: A narrative synthesis of definitions and associated factors. Nutrire, 46(2), 20.

McCormick, V., amp; Markowitz, G. (2013). Picky eater or feeding disorder? Strategies for determining the difference. Advance for NPs amp; PAs, 4(3), 18?22.

Mizuno, K., Kawatani, J., Tajima, K., Sasaki, A. T., Yoneda, T., Komi, M., … Watanabe, Y. (2016). Low putamen activity associated with poor reward sensitivity in childhood chronic fatigue syndrome. Neuroimage: Clinical, 12, 600?606.

Modabbernia, A., Janiri, D., Doucet, G. E., Reichenberg, A., amp; Frangou, S. (2021). Multivariate patterns of brain-behavior- environment associations in the Adolescent Brain and Cognitive Development Study. Biological Psychiatry, 89(5), 510?520.

Morales, I., amp; Berridge, K. C. (2020). 'Liking' and 'wanting' in eating and food reward: Brain mechanisms and clinical implications. Physiology amp; Behavior, 227, 113152.

Morrison, H., Power, T. G., Nicklas, T., amp; Hughes, S. O. (2013). Exploring the effects of maternal eating patterns on maternal feeding and child eating. Appetite, 63, 77?83.

Nembhwani, H. V., amp; Winnier, J. (2020). Impact of problematic eating behaviour and parental feeding styles on early childhood caries. International Journal of Paediatric Dentistry, 30(5), 619?625.

Nimbley, E., Golds, L., Sharpe, H., Gillespie-Smith, K., amp; Duffy, F. (2022). Sensory processing and eating behaviours in autism: A systematic review. European Eating Disorders Review, 30(5), 538?559.

Northstone, K., amp; Emmett, P. (2013). The associations between feeding difficulties and behaviours and dietary patterns at 2 years of age: The ALSPAC cohort. Maternal amp; Child Nutrition, 9(4), 533?542.

Paakki, J.J., Rahko, J., Long, X., Moilanen, I., Tervonen, O., Nikkinen, J., … Kiviniemi, V. (2010). Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders. Brain Research, 1321, 169?179.

Pelchat, M. L., Johnson, A., Chan, R., Valdez, J., amp; Ragland, J. D. (2004). Images of desire: Food-craving activation during fMRI. Neuroimage, 23(4), 1486?1493.

Pereboom, J., Thijs, C., Eussen, S., Mommers, M., amp; Gubbels, J. S. (2023). Association of picky eating around age 4 with dietary intake and weight status in early adulthood: A 14-year follow-up based on the KOALA birth cohort study. Appetite, 188, 106762.

Pizzagalli, D. A., Holmes, A. J., Dillon, D. G., Goetz, E. L., Birk, J. L., Bogdan, R., … Fava, M. (2009). Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. The American Journal of Psychiatry, 166(6), 702?710.

Plassmann, H., Schelski, D. S., Simon, M. C., amp; Koban, L. (2022). How we decide what to eat: Toward an interdisciplinary model of gut-brain interactions. Wiley Interdisciplinary Reviews. Cognitive Science, 13(1), e1562.

Podsakoff, P. M., MacKenzie, S. B., amp; Podsakoff, N. P. (2012). Sources of method bias in social science research and recommendations on how to control it. Annual Review of Psychology, 63(1), 539?569.

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., amp; Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676?682.

Robinson, T. E., amp; Berridge, K. C. (2000). The psychology and neurobiology of addiction: An incentive?sensitization view. Addiction, 95(S2), 91?117.

Rolls, E. T., Murzi, E., Yaxley, S., Thorpe, S. J., amp; Simpson, S. J. (1986). Sensory-specific satiety: Food-specific reduction in responsiveness of ventral forebrain neurons after feeding in the monkey. Brain Research, 368(1), 79?86.

Royet, J. P., Meunier, D., Torquet, N., Mouly, A. M., amp; Jiang, T. (2016). The neural bases of disgust for cheese: An fMRI Study. Frontiers in Human Neuroscience, 10, 511.

Shen, X., Finn, E. S., Scheinost, D., Rosenberg, M. D., Chun, M. M., Papademetris, X., amp; Constable, R. T. (2017). Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nature Protocols, 12(3), 506?518.

Smith, A. D., Herle, M., Fildes, A., Cooke, L., Steinsbekk, S., amp; Llewellyn, C. H. (2017). Food fussiness and food neophobia share a common etiology in early childhood. Journal of Child Psychology and Psychiatry, 58(2), 189?196.

Stoeckel, L. E., Weller, R. E., Cook, E. W., Twieg, D. B., Knowlton, R. C., amp; Cox, J. E. (2008). Widespread reward-system activation in obese women in response to pictures of high-calorie foods. Neuroimage, 41(2), 636?647.

Taylor, C. M., amp; Emmett, P. M. (2019). Picky eating in children: Causes and consequences. Proceedings of the Nutrition Society, 78(2), 161?169.

Taylor, C. M., Northstone, K., Wernimont, S. M., amp; Emmett, P. M. (2016). Picky eating in preschool children: Associations with dietary fibre intakes and stool hardness. Appetite, 100, 263?271.

Taylor, C. M., Wernimont, S. M., Northstone, K., amp; Emmett, P. M. (2015). Picky/fussy eating in children: Review of definitions, assessment, prevalence and dietary intakes. Appetite, 95, 349?359.

Temple, J. L., Chappel, A., Shalik, J., Volcy, S., amp; Epstein, L. H. (2008). Daily consumption of individual snack foods decreases their reinforcing value. Eating Behaviors, 9(3), 267?276.

Terenzi, D., Madipakkam, A. R., Molter, F., Mohr, P. N. C., Losecaat Vermeer, A. B., Liu, L., amp; Park, S. Q. (2022). Neural correlates underlying social-cue-induced value change. The Journal of Neuroscience, 42(32), 6276?6284.

Tharner, A., Jansen, P. W., Kiefte-de Jong, J. C., Moll, H. A., van der Ende, J., Jaddoe, V. W. V., … Franco, O. H. (2014). Toward an operative diagnosis of fussy/picky eating: A latent profile approach in a population-based cohort. International Journal of Behavioral Nutrition and Physical Activity, 11(1), 14.

Tooley, U. A., Bassett, D. S., amp; Mackey, A. P. (2021). Environmental influences on the pace of brain development. Nature Reviews Neuroscience, 22(6), 372?384.

van den Bosch, I., Dalenberg, J. R., Renken, R., van Langeveld, A. W., Smeets, P. A., Griffioen-Roose, S., … Boesveldt, S. (2014). To like or not to like: Neural substrates of subjective flavor preferences. Behavioural Brain Research, 269, 128?137.

Varangis, E., Razlighi, Q., Habeck, C. G., Fisher, Z., amp; Stern, Y. (2019). Between-network functional connectivity is modified by age and cognitive task domain. Journal of Cognitive Neuroscience, 31(4), 607?622.

Waller, L., Walter, H., Kruschwitz, J. D., Reuter, L., Müller, S., Erk, S., amp; Veer, I. M. (2017). Evaluating the replicability, specificity, and generalizability of connectome fingerprints. Neuroimage, 158, 371?377.

Wang, J., Tang, L., Wang, M., Wu, G., Li, W., Wang, Y., … Wang, Z. (2023). Fronto-temporal dysfunction in appetitive regulation of bulimia nervosa with affective disorders: A regional homogeneity and remote connectivity pattern analysis. Journal of Affective Disorders, 340, 280?289.

Wang, S., Zhao, Y., Cheng, B., Wang, X., Yang, X., Chen, T., … Gong, Q. (2018). The optimistic brain: Trait optimism mediates the influence of resting-state brain activity and connectivity on anxiety in late adolescence. Human Brain Mapping, 39(10), 3943?3955.

Wardle, J., Guthrie, C. A., Sanderson, S., amp; Rapoport, L. (2001). Development of the children's eating behaviour questionnaire. The Journal of Child Psychology and Psychiatry and Allied Disciplines, 42(7), 963?970.

Wardle, J., Herrera, M. L., Cooke, L., amp; Gibson, E. L. (2003). Modifying children's food preferences: The effects of exposure and reward on acceptance of an unfamiliar vegetable. European Journal of Clinical Nutrition, 57(2), 341?348.

Wolfe, K., Olds, D., Asperin, A., Phillips, W., DeSanto, J. R., Healthcare, O. S. F., amp; Liu, W. C. (2015, July). How neophilics see food differently: Evidence from fMRIs. Paper presented at the meeting of the Annual International Council on Hotel, Restaurant, and Institutional Education Summer Conference, Orlando, FL.

Wolstenholme, H., Heary, C., amp; Kelly, C. (2019). Fussy eating behaviours: Response patterns in families of school-aged children. Appetite, 136, 93?102.

Wolstenholme, H., Kelly, C., Hennessy, M., amp; Heary, C. (2020). Childhood fussy/picky eating behaviours: A systematic review and synthesis of qualitative studies. International Journal of Behavioral Nutrition and Physical Activity, 17(1), 2.

Xu, Z., Zhao, W., Wang, H., Tian, Y., amp; Lei, X. (2023). Functional connectivity between dorsal attention and default mode networks mediates subjective sleep duration and depression in young females. Journal of Affective Disorders, 325, 386?391.

Xue, Y., Lee, E., Ning, K., Zheng, Y., Ma, D., Gao, H., … Zhang, Y. (2015). Prevalence of picky eating behaviour in Chinese school-age children and associations with anthropometric parameters and intelligence quotient. A cross-sectional study. Appetite, 91, 248?255.

Yan, C. G., Wang, X. D., Zuo, X. N., amp; Zang, Y. F. (2016). DPABI: Data processing amp; analysis for (resting-state) brain imaging. Neuroinformatics, 14(3), 339?351.

Yang, J., Gohel, S., amp; Vachha, B. (2020). Current methods and new directions in resting state fMRI. Clinical Imaging, 65, 47?53.

Yarkoni, T., amp; Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 1100?1122.

Yuan, Z., Wang, W., Zhang, X., Bai, X., Tang, H., Mei, Y., … Wang, Y. (2022). Altered functional connectivity of the right caudate nucleus in chronic migraine: A resting-state fMRI study. The Journal of Headache and Pain, 23(1), 154.

Zang, Y., Jiang, T., Lu, Y., He, Y., amp; Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. Neuroimage, 22(1), 394?400.

Zhang, H., Jiang, X., Zhang, Y. H., Yuan, J., Tan, Z. J., Xu, T., amp; Shang, L. (2021). Development and preliminary evaluation of Chinese school-aged children's eating behavior scale. Journal of Health, Population, and Nutrition, 40(1), 41.

Zhang, P., Liu, Y., Lv, H., Li, M., Yu, F., Wang, Z., … Wang, Z. (2019). Integration of neural reward processing and appetite-related signaling in obese females: Evidence from Resting-State fMRI. Journal of Magnetic Resonance Imaging, 50(2), 541?551.

Zheng, L., Song, D., Chen, C., Li, F., amp; Zhu, D. (2016). Reliability and validity of a Chinese version of Child Feeding Questionnaire among parents of preschoolers. Chinese Journal of Child Health Care, 24(10), 1019?1023.

[鄭麗霞, 宋道平, 陳楚琳, 李芳芳, 朱大喬. (2016). 中文版兒童喂養問卷在學齡前兒童家長中的信效度分析. 中國兒童保健雜志, 24(10), 1019?1023.]

Zhou, H., amp; Long, L. R. (2004). Statistical remedies for common method biases. Advances in Psychological Science, 12(6), 942?950.

[周浩, 龍立榮. (2004). 共同方法偏差的統計檢驗與控制方法. 心理科學進展, 12(6), 942?950.]

Zickgraf, H. F., amp; Elkins, A. (2018). Sensory sensitivity mediates the relationship between anxiety and picky eating in children/ adolescents ages 8?17, and in college undergraduates: A replication and age-upward extension. Appetite, 128, 333?339.

Zickgraf, H. F., Richard, E., Zucker, N. L., amp; Wallace, G. L. (2022). Rigidity and sensory sensitivity: Independent contributions to selective eating in children, adolescents, and young adults. Journal of Clinical Child amp; Adolescent Psychology, 51(5), 675?687.

Zou, Q., Wu, C. W., Stein, E. A., Zang, Y., amp; Yang, Y. (2009). Static and dynamic characteristics of cerebral blood flow during the resting state. Neuroimage, 48(3), 515?524.

Zuo, X. N., Di Martino, A., Kelly, C., Shehzad, Z. E., Gee, D. G., Klein, D. F., … Milham, M. P. (2010). The oscillating brain: Complex and reliable. Neuroimage, 49(2), 1432?1445.

Zeng, S. Y. (2018). The impact of dietary behaviors on executive functions in children: The mediating role of body mass index (Unpublished master’s thesis). Shaanxi Normal University, Xi'an, China.

[曾思瑤. (2018). 飲食行為對兒童執行功能的影響:BMI指數的中介作用 (碩士學位論文). 陜西師范大學, 西安].

The impact of instrumental feeding on picky eating behavior in children

aged 9 to 12: Evidence from resting-state fMRI

CUI Yicen1, ZHANG Yixiao1, CHEN Ximei1, XIAO Mingyue1, LIU Yong1,2, SONG Shiqing1,

GAO Xiao1,2, GUO Cheng1,2, CHEN Hong1,2,3

(1 Faculty of Psychology, Southwest University, Chongqing 400715, China)

(2 Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China)

(3 Research Center of Psychology and Social Development, Chongqing 400715, China)

Abstract

Picky eating is a common dietary issue among children characterized by lack of variety of foods consumed due to rejection of familiar (or unfamiliar) foods. The influencing factor model of picky eating behavior in children indicates that environmental and cognitive factors are key elements influencing this. Studies have found that instrumental feeding exacerbates picky eating behavior in children. However, due to the relatively young age of children in previous studies, research on the relationship between instrumental feeding and picky eating behaviors in school-aged children is insufficient. Furthermore, the brain plays a central role in guiding eating behavior; however, to date, limited neuroscientific research on the neural basis of picky eating behaviors in school-aged children exists. This study aimed to utilize resting-state functional magnetic resonance imaging (rs-fMRI) data combined with a machine learning method to explore the neural basis of picky eating behaviors in children. Additionally, it attempted to show the neural mechanisms through which instrumental feeding influences picky eating behavior.

A total of 139 children were recruited for this study. Instrumental feeding and picky eating behaviors were assessed through parent-reported measurements and rs-fMRI was conducted. A total of 87 children were included in the formal analyses as those who did not participate in the two behavioral measurements and with unqualified rs-fMRI scans were excluded. This study utilized regional homogeneity and functional connectivity to evaluate the resting-state neural substrates of picky eating behaviors. Subsequently, a machine learning method is employed to validate the stability of our results. Additionally, a mediation model was constructed to investigate the mediating role of resting-state neural substrates in the relationship between instrumental feeding and picky eating behavior.

Results showed that picky eating behavior was positively correlated with regional homogeneity in the right caudate. Functional connectivity results showed that picky eating behavior was positively correlated with functional connectivity between the right caudate and left putamen. A prediction analysis based on a cross-validation machine learning method indicated a significant correlation between picky eating behavior scores predicted by the aforementioned neural substrates (i.e., regional homogeneity in the right caudate and functional connectivity between the right caudate and left putamen) and the actual observed picky eating behavior scores. The mediation model further suggested that functional connectivity between the right caudate and left putamen could mediate the relationship between instrumental feeding and picky eating behavior. Specifically, instrumental feeding might negatively influence the functional connectivity between the right caudate and left putamen, and further reduce picky eating behavior.

By combining resting-state regional homogeneity and functional connectivity analyses, this study detected altered functional brain activity related to picky eating behaviors in children aged 9 to 12. Specifically, hyperactive neural interactions within the brain areas involved in sensory sensitivity and reward processing may explain the manifestation of picky eating behavior in children. Additionally, instrumental feeding negatively influences picky eating behavior through brain activity in regions involved in sensory sensitivity and reward processing. This study provides new insights into the resting-state neural substrates of children's picky eating behavior, extends the influencing factor model of children's picky eating behavior, and provides theoretical support for interventions to improve poor picky eating behavior in children through parental feeding practices.

Keywords "picky eating behavior, instrumental feeding, children, resting-state fMRI

猜你喜歡
兒童
兒童美術教育瑣談202
兒童美術教育瑣談199
兒童美術教育瑣談197
兒童美術教育瑣談201
兒童美術教育瑣談200
兒童美術教育瑣談198
兒童美術教育瑣談174
少兒美術(2019年8期)2019-12-14 08:07:00
兒童美術教育瑣談169
少兒美術(2019年3期)2019-12-14 08:02:56
留守兒童
雜文選刊(2016年7期)2016-08-02 08:39:56
六一兒童
主站蜘蛛池模板: 欧美一级夜夜爽| 欧美在线综合视频| 四虎在线高清无码| 热99精品视频| 99热在线只有精品| 欧美午夜网站| 亚洲色图欧美在线| 无码免费的亚洲视频| 一本色道久久88| 成人韩免费网站| 国产大片喷水在线在线视频| 国产午夜在线观看视频| 97国产在线视频| 999精品色在线观看| 亚洲成人77777| 日韩123欧美字幕| 国产日韩欧美中文| 欧美日韩精品一区二区在线线| 国产精品久久久精品三级| 亚洲精品成人福利在线电影| 亚洲精品波多野结衣| 亚洲国产精品日韩专区AV| 久久亚洲综合伊人| 五月婷婷综合在线视频| 麻豆精品在线视频| 欧美全免费aaaaaa特黄在线| 色综合网址| 国产精品视频观看裸模| 国产区免费精品视频| 99热这里只有精品久久免费| 日韩免费毛片| www.狠狠| 亚亚洲乱码一二三四区| 亚洲无码91视频| 久久免费成人| 亚洲视频欧美不卡| 97在线国产视频| 欧美午夜在线观看| 日本亚洲欧美在线| 欧美亚洲网| 精品国产美女福到在线直播| 乱人伦视频中文字幕在线| 伊人久久影视| 少妇人妻无码首页| 久久久久国产一级毛片高清板| 欧美啪啪网| 日韩国产精品无码一区二区三区| 国产精品对白刺激| 日本在线免费网站| 麻豆精品在线视频| 天天操天天噜| 午夜电影在线观看国产1区| 国产精品久久久久婷婷五月| 欧美色图第一页| 亚洲国产天堂久久九九九| 国产成人福利在线视老湿机| 99久久精品国产综合婷婷| 国产亚洲欧美在线专区| 一区二区三区四区在线| 亚洲天堂网在线播放| 国产一区二区网站| 在线欧美日韩| 久久久久国产精品熟女影院| 久久黄色一级视频| 国产91全国探花系列在线播放 | 欧美一区二区福利视频| 亚洲成人77777| 久久精品亚洲中文字幕乱码| 在线视频一区二区三区不卡| 91成人在线观看| 亚卅精品无码久久毛片乌克兰| 国产区人妖精品人妖精品视频| 九色免费视频| 亚洲国产精品日韩av专区| 国产精品欧美激情| 国产精品亚洲日韩AⅤ在线观看| 在线观看网站国产| 国产成人免费观看在线视频| 天堂网国产| 久久国产精品娇妻素人| 亚洲精品777| 欧美第一页在线|