999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

有限元分析技術在織物力學性能領域的應用

2024-06-20 14:33:22李登高劉成霞
現代紡織技術 2024年6期
關鍵詞:力學性能有限元

李登高 劉成霞

DOI: 10.19398/j.att.202310019

摘? 要:隨著計算機和軟件技術的快速發展,有限元分析技術展現出越來越大的潛力,已成為紡織服裝領域進行力學性能研究的重要手段。為促進有限元分析技術在織物力學性能中的有效應用,更好地解決生產實踐中的問題,首先從實驗圖像和物理幾何手段兩方面,闡述了目前織物幾何模型的構建方法;梳理了織物材料連續模型、離散模型、半離散模型等本構模型的研究進展;其次,歸納了目前常用有限元分析軟件的應用領域及優缺點,概括了有限元技術在織物拉伸、撕裂、防彈沖擊、彎曲等力學性能領域的應用現狀;最后指出當前研究存在模型精度不足、材料參數難確定、邊界條件設置困難等不足,后續可以從應用多尺度分析方法、開發高精紡織檢測儀、進行多物理場耦合模擬等方面展開研究。研究結果可用于指導生產實踐,更好地解決織物力學性能的相關問題。

關鍵詞:有限元;織物;力學性能;拉伸;防彈;撕裂;彎曲

中圖分類號:TS101.8

文獻標志碼:A

文章編號:1009-265X(2024)06-0129-13

收稿日期:20231023

網絡出版日期:20240227

基金項目:國家自然科學基金項目(51405446)

作者簡介:李登高(2000—),男,安徽合肥人,碩士研究生,主要從事紡織品性能方面的研究。

通信作者:劉成霞,E-mail:glorior_liu@163.com

最初被用來研究飛機復雜結構的有限元(Finite element,FE)分析技術,是一種將彈性理論、數學和計算機軟件有機結合的數值分析技術[1]。由于該分析技術求解精度較高,可擺脫實際物理條件的限制,非常適合表征織物力學性能。20世紀70年代,Lloyd等[2]便將有限元技術用于織物力學結構分析,將織物看作連續介質,采用無彎曲阻力的薄膜單元探究了織物形變。這一時期主要使用簡單的平面應力應變模型,忽略織物的三維性質和纖維層次結構,對織物力學行為的描述不夠準確。20世紀80年代起,三維模型開始用于織物力學性質的模擬,研究主要集中在結構建模和分析方面,如Imaka等[3]利用三角形有限單元構建了織物三維模型;Zhao等[4]和Tan等[5]設定經緯紗長度及有限單元邊長不變,將幾何約束條件引入三角形彎曲有限單元。由于不必進行重復實驗,有限元模擬技術可以節約大量測試時間和成本,是一種高效的工程分析方法,且隨著近年來計算機技術的快速發展,該技術在織物力學性能領域的應用也越來越廣泛和深入。

本文通過總結織物有限元模型的構建方法、分析常用有限元分析軟件的特點,闡述有限元分析技術在織物拉伸、防彈、撕裂、彎曲等方面的應用現狀,指出目前存在的問題及未來的發展方向,以期推動有限元技術在織物力學性能領域的有效應用。

1? 織物有限元模型的構建

利用有限元技術分析織物力學性能時,需要根據實際情況選擇合適的幾何模型、材料本構模型,從而生成有限元模型。

1.1? 織物幾何模型的生成

1.1.1? 基于實驗圖像的模型生成方法

該方法是利用實驗測量的織物結構參數(包括編織結構、紗線截面、紗線間距等)[6],或拍攝的織物圖像來創建織物模型,通過指定關鍵點坐標、周期性條件,選擇合適的插值方法在建模軟件中生成紗線空間路徑[7],再結合實驗數據,采用形狀函數,再現織物幾何形狀[8]。如先用正弦曲線生成經緯紗結構,進而構建織物二維幾何模型,再利用CAD軟件I-DEAS得到織物三維模型[7-8],或直接利用圖像構建幾何模型[9-11],但此類方法建模過程需要耗費大量人力。

基于圖像生成模型的方法可獲得精細、真實的織物結構,適合織物局部建模,但建模精度對實驗數據的準確性及三維圖像質量的依賴性較大,且模型重復利用率較低。

1.1.2? 基于物理幾何算法的模型生成方法

由于織物結構通常遵循某種幾何規律,且存在同質性,可利用這些特征簡化模型生成過程,并通過本構定律和運動學模型模擬織造過程,從而生成織物模型。如Green等[12]提出了一種基于物理幾何算法生成三維正交編織結構單元的建模方法,建模流程如圖1所示。先利用TexGen軟件生成織物單元,將其導入LS-DYNA軟件中生成松散的梁單元機織模型,隨后對紗線施加載荷以獲得目標體積分數的織物,并通過Python腳本將梁鏈模型轉換成立體幾何模型,最后對其立體幾何模型網格化,得到有限元幾何模型。

還可基于特定的幾何規則生成紗線,進而生成不同復雜程度的織物模型。如Kowalczyk等[13]利用正弦曲線構建了平紋織物幾何模型,將紗線中心軸假設為正弦曲線,紗線圍繞該正弦曲線自由成形,且波動僅受相鄰紗線影響,該方法建模時必須考慮紗線的截面變化和相互重疊情況,目前的解決方法是通過控制樣條點來調節紗線截面[14-16],如通過利用Catmull-Rom樣條線和樣條點,可以構造出不同組織結構的機織物和針織物模型[17]。

與基于實驗數據生成模型的方法相比,利用物理幾何算法生成模型的方法無需測量實際織物尺寸,生成的織物模型也更易構建周期性邊界條件,適用于結構及尺寸較大的織物。

1.2? 織物材料的本構模型

用于表示材料力學特性的本構模型可分為3類:連續模型、離散模型和半離散模型。

1.2.1? 連續模型

當織物被假設為連續均勻介質時,可以使用非正交彈性、亞彈性、超彈性、耗散等模型來描述其力學特性,如圖2所示。其中Peng等[18]提出可用來表征機織復合材料大變形條件下各向異性的非正交彈性本構模型

,如圖2(a)所示,通過在殼單元中嵌入對稱軸坐標系,將本構關系中的反變應力分量和協變應變分量引入該坐標系中,利用連續介質力學理論構建機織復合材料纖維取向模型。亞彈性本構模型可用來分析織物的大應變力學行為,如圖2(b)所示,已被嵌入ABAQUS軟件中[19]。

超彈性模型是基于能量密度函數的本構模型,可用來描述織物在形變過程中儲存和釋放的能量,適用于分析高彈織物的大形變行為[20]。Yang等[21]利用網狀纖維橡膠復合材料的超粘彈本構模型,研究了溫度對織物密封件力學性能的影響。此外,Xu等[22]在Yang的基礎上,利用超彈性模型預測了復合材料織物不同方向的應力-應變行為。超彈性模型還可用于預測復合材料織物懸垂性等復雜形變[23],如圖2(c)所示,以及用于表征平紋織物的非線性各向異性[24],其優點是能同時考慮織物雙軸拉伸引起的耦合效應,以及經、緯紗相對旋轉引起的剪切能。由于彈性或超彈性模型不能描述織物塑性變形和紗線摩擦引起的能量耗散[25],Denis等[26]提出了能量耗散模型,如圖2(d)所示,研究發現纖維摩擦導致的能量耗散僅與面內剪切變形有關[27]。

連續介質有限元模型可以在宏觀尺度上快速有效地模擬織物的復雜力學行為,無需考慮織物的細觀結構和微觀組分,易于在現有的商業軟件中實現,但不能反映織物內部纖維束的交織、滑移、扭轉和變形等細觀變化。

1.2.2? 離散模型

與連續介質模型相比,離散模型可描述中觀尺度(紗線水平)或微觀尺度(纖維水平)的織物,如其中的數字單元模型[28-29],如圖3所示,可用于模擬紡織過程及織物微觀幾何結構,每根纖維被模擬成一個無摩擦的銷連接桿元鏈,即“數字鏈”,該數字單元不可延伸,沒有彎曲剛度,其元素長度接近零,如圖3(a)所示,數字鏈之間由接觸元件相連,圖3(b)展示了微觀紗線模型的扭曲效果。

Wang等[28]在數字單元基礎上,提出了微觀尺度的虛擬纖維概念,通過連接三維桁架或梁單元生成虛擬纖維,進而對非卷曲織物[30]、二維織物層[31]、緯編針織物[32]、三維機織[33-34]等進行建模。但當織物的機械響應由纖維彎曲引起時,建模精度會受限,且不能同時表征長絲的高拉伸和低彎曲剛度。針對這一問題,Daelemans等[35]通過網格重疊技術,分別利用桁架和梁單元,即混合建模法,來模擬纖維的拉伸與彎曲過程,結果表明混合建模法可以很好地模擬織物的宏觀壓縮響應。由于紗線中包含的纖維成千上萬,構建微觀尺度的離散模型計算量巨大,因此目前微觀尺度的離散模型僅用于小范圍分析。

為減少計算量,還可采用紗線級的離散模型[36-37],通過多尺度建模方法,構建紗線加紗線、纖維加紗線和纖維加殼等模型來模擬織物[38]。與微觀尺度的纖維模型相比,中觀尺度的紗線模型計算效率會顯著提高,但紗線屬性的確定要依賴實驗測試,且不能精確再現紗線接觸區域的復雜幾何形狀,也難以表征紗線間的摩擦作用。

1.2.3? 半離散模型

半離散模型[39-41]由一組離散的織物單元格組成,是連續模型和離散模型的綜合,圖4展示了由織物單元格構成的半離散模型[40] ,以及半離散模型的彎曲和扭轉復形狀態[42]。通過半離散模型可獲得織物的細觀結構,由于其組成單元數量遠少于離散模型,計算效率也比離散模型高。與連續模型相比,半離散模型不使用應力張量,直接定義經緯紗張力及面內剪切和彎曲力矩[43],利用半離散模型可以模擬織物的預成形能力[44]。在此基礎上,Guan等[42]進一步考慮織物橫向壓縮、面內剪切和彎曲性,構建了半離散2.5維模型,并將其嵌入Abaqus/ Explicit中,用于模擬機織物的成形過程。

1.3? 有限元模型的生成

有限元軟件中的模型可分為實體模型、桁架、梁、殼單元和混合單元模型[45]。實體模型用三維實體單元表示織物結構,是目前應用最廣的形式。殼單元模型將織物簡化為薄層結構,可以減少計算量和存儲量,適用于織物靜態力學性能的分析。桁架、梁模型分別將織物視為由線性彈性桿件或梁組成的空間框架結構,可模擬織物的纖維結構。混合單元模型則將織物視為由不同單元組成的混合結構,可表征織物多種力學性能,但需要處理不同單元之間的連接和耦合問題。

建立織物幾何結構后,需通過網格生成將織物的幾何結構離散成數量有限的單元,常用的網格包括自適應網格和規則網格[46]。織物力學建模時通常采用前者,生成自適應網格時需選取合適的節點和單元個數,以實現計算精度和效率的平衡,圖5分別展示了針織線圈在不同網格密度下的劃分結果[47],網格劃分越密,計算結果越精確,但運算時間也越長。除網格外,模型生成時選擇的單元也不盡相同,常用的單元包括六面體和四面體等,每個小單元可用節點來描述。完成上述設置后,根據研究需求選擇合適的材料本構模型,與有限元網格相耦合就可得到織物有限元模型。

2? 常用的有限元分析技術軟件

利用有限元技術分析織物力學、熱學、電學等性能時,常需要借助一些軟件,常見的有限元分析軟件如表1所示。

3? 有限元分析技術在織物力學領域的應用現狀

有限元技術可用于模擬和分析織物力學、熱學、電學、流體動力學等多種行為,尤其適合且能全面描述織物力學性能,以下將從拉伸、防彈、撕裂、彎曲4個方面進行介紹。

3.1? 拉伸性能

按受力方向的不同,拉伸可分為:(a)沿經向或緯向的單軸向拉伸,如彈性變形和塑性變形;(b)沿經、緯方向同時作用的雙軸拉伸,考慮兩個方向的變形和強度,更能反映材料的各向異性[50];(c)沿與材料有一定角度的方向施加拉力的離軸拉伸,可直接或間接得到材料的模量、強度等參數[51]。目前在織物拉伸領域的研究主要集中在紗線層面,如表2所示。

3.2? 防彈性能

防彈性能是指織物抵抗高速飛行物體穿透和沖擊破壞的能力,有限元技術可以有效分析織物被沖擊破壞的過程。按精細程度目前的織物有限元沖擊模型分為二維宏觀[64] 、纖維級[65] 、紗線級[66]3類,如圖6所示。從圖6中可以看出,不同的織物沖擊模型展現的細節不同。早期的二維織物沖擊模型將紗線認為是線彈性材料[67],忽略紗線間的摩擦,后續研究[65]表明摩擦在織物防彈沖擊中起重要作用,用數字單元建立的纖維級微觀織物模型,可更詳細地展示彈體穿透織物時的摩擦及損傷過程[68],但計算耗時大,成本高。紗線級模型則能綜合兩者優點,具備一定精度的同時,降低分析成本。出于這一考慮,誕生了多尺度模型[69],即用宏觀連續模型替代遠離彈道沖擊的區域,但多尺度模型中的簡化結構難以解釋紗線的斷裂、卷曲、滑移等。對此,Meyer等[66]分別建立了宏觀連續及中尺度有限元模型,來研究織物的沖擊響應過程。

近期對彈道沖擊模擬的研究主要在紗線層面展開[70],如模擬三維正交機織物在彈丸沖擊下的漸進破壞過程,及初始速度對球形彈體破壞形態的影響[71];并將多尺度織物模型用于研究射彈形狀及射擊速度對織物破壞形式的影響[72]。

3.3? 撕裂性能

撕裂是以預切口為擴展起點的織物破壞形式,也是導致織物失效或壽命終止的常見方式[73-75],研究撕裂性能對提高織物耐用性有重要

作用,織物撕裂常用的試驗方法包括舌形試樣法、梯形試樣法等,二者的紗線級模型如圖7所示,圖7(a)中的模型可用于探究經緯密度對織物撕裂強力的影響[73],也能揭示撕裂三角區的破壞形態,圖7(b)中的模型則可模擬斜紋織物的動態撕裂過程[75]。目前織物撕裂性能的有限元模擬研究還不夠深入[76],接下來需要構建纖維級織物撕裂形式的有限元模型,以實現對這一破壞形式的進一步剖析。

3.4? 彎曲性能

彎曲性是織物抵抗彎曲形變的能力,與織物的懸垂性、抗皺性等密切相關,可通過斜面法、純彎曲法、三點梁彎曲法等來測試,也可借助有限元技術對其進行模擬和表征。Senner等[77]應用分析梁理論,校準了表征單向非卷曲織物彎曲行為的本構模型。靳歡歡等[78]利用顯微鏡獲取的織物圖像參數,構建了紗線級連續實體模型,對機織物的3點梁彎曲性進行了模擬與分析。此外ABAQUS軟件中的單胞有限元模型通過對約束方程的逐點施加,可準確預測復合材料織物的彎曲剛度[79],而天然纖維復合材料的峰值抗彎載荷和損傷模式則可通過多尺度有限元模型進行預測[80]。雖然目前利用有限元技術可獲得織物彎曲剛度、彎曲力矩等,但由于計算量龐大,模型還不夠精確,難以模擬彎曲過程中紗線內部纖維的抱合狀態,彎曲測試過程也缺乏統一的標準。

4? 研究不足和后續發展方向

4.1? 研究不足

在織物力學性能模擬中,有限元技術雖然起到了重要作用,但也存在一些不足,主要有以下幾個方面:

a)模型精度不夠。精細的模型對計算機性能有較高要求,故有限元模型建立時,常需要對模型進行各種假設,如忽略織物的非線性、各向異性等,這些假設會影響模型精度。此外目前應用最廣的中觀有限元模型,即紗線級模型,可較真實地刻畫紗線結構、局部應力、應變,以及任意時刻下不同部位的受力狀態[81-82],但無法模擬實際織物或紗線中成千上萬纖維的形態、受力等,從而影響模擬結果的準確性。

b)材料參數難確定。紗線是由纖維組成的集合體,纖維之間存在相對滑動,織物材料特性往往受纖維類型、排布方式、纖維間作用力等因素影響,但由于這些參數難以確定,為方便模擬,屬性設置時常忽略形變時引起的紗線截面變化,以及紗線中纖維間的作用力,這些簡化處理難免影響有限元模擬結果的準確性。

c)邊界條件處理困難。有限元模型在求解過程中需設定邊界條件,如織物的支撐和夾持方式等,但復雜的織物邊界條件設置較困難,致使有限元模擬難以精確體現實際織物所處狀態,從而影響模擬結果的準確性。

4.2? 后續發展方向

4.2.1? 應用多尺度分析方法

多尺度分析方法可將不同尺度的幾何特征、應力應變場狀態和損傷信息聯系起來,并兼顧計算效率和局部細節。因此將來研究的重點是建立高保真的幾何模型,反映織物內部結構和缺陷特征,為高精度的有限元模型建立提供基礎。并在確定多尺度分析適用范圍基礎上,開發高效的多尺度分析算法,實現不同尺度織物模型的協調求解,保留織物關鍵力學特征的同時減少計算成本。

4.2.2? 開發高精紡織檢測儀

建立有限元模型時通常進行步驟簡化和條件假設,如忽略紗線間差異,不考慮纖維層面的變化及紗線截面的形變,假設紗線表面均勻且平滑等,究其原因是這些參數難以測量,這些假設提高模擬效率的同時,也極大地影響了模擬結果的準確性。后續研究可以結合圖像及信號處理技術、高精度傳感器技術等,開發紗線截面及摩擦性檢測儀,以及纖維彎曲性、摩擦性檢測儀等,利用這些精密儀器的實驗結果,驗證有限元分析結果的準確性,拓展有限元分析技術的應用領域。

4.2.3? 進行多物理場耦合模擬

利用有限元技術進行力學分析時通常僅考慮織物本身,將環境視作真空,如研究織物導熱性、吸濕性時都是單物理場分析,但實際上織物幾何形態、材料特性會受所處環境的綜合影響,如熱傳遞、流體、電磁等都會改變織物性能。另外織物也常與金屬、陶瓷、塑料等材料復合,從而影響整體的力學性能。在后續有限元分析時,可考慮織物多物理場行為,即利用有限元技術研究溫度、濕度、壓強等對織物力學性能的綜合影響。

4.2.4? 與其他數值方法相結合

有限元分析技術雖然可以解決許多復雜的力學問題,但也有一些局限和不足,如網格依賴性大、收斂性與穩定性要求高等。因此,可以結合其他數值方法,如邊界元法、有限差分法、機器學習等,通過優勢互補,強強聯手,實現對復雜問題的高效求解,來克服有限元分析技術的缺陷,并提高其精度。

參考文獻:

[1]LOMOV S V, IVANOV D S, VERPOEST I, et al. Meso-FE modelling of textile composites: Road map, data flow and algorithms[J]. Composites Science and Technology, 2007, 67(9): 1870-1891.

[2]LLOYD D W. The Analysis of Complex Fabric Defor-mations[M]//Mechanics of Flexible Fibre Assemblies. Dordrecht: Springer Netherlands, 1980: 311-342.

[3]IMAKA H, OKABE H, NISHIKAWA S, et al. A method of estimating the three-dimensional shapes of garments by use of triangular finite elements[J]. Bulletin of Research Institute for Polymers and Textiles, 1984: 73-80.

[4]ZHAO Y F, WONG T N, TAN S T, et al. A model for simulating flexible surfaces of cloth objects[J]. Computers & Structures, 1997, 63(1): 133-147.

[5]TAN S T, WONG T N, ZHAO Y F, et al. A constrained finite element method for modeling cloth deformation[J]. The Visual Computer, 1999, 15(2): 90-99.

[6]JACQUES S, DE B I, VAN P W. Application of periodic boundary conditions on multiple part finite element meshes for the meso-scale homogenization of textile fabric composites[J]. Composites Science and Technology, 2014, 92: 41-54.

[7]WIJAYA W, KELLY P A, BICKERTON S. A novel methodology to construct periodic multi-layer 2D woven unit cells with random nesting configurations directly from μCT-scans[J]. Composites Science and Technology, 2020, 193: 108125.

[8]SEVENOIS R D B, GAROZ D, GILABERT F A, et al. Avoiding interpenetrations and the importance of nesting in analytic geometry construction for Representative Unit Cells of woven composite laminates[J]. Composites Science and Technology, 2016, 136: 119-132.

[9]BARBERO E J, DAMIANI T M, TROVILLION J. Micromechanics of fabric reinforced composites with periodic microstructure[J]. International Journal of Solids and Structures, 2005, 42(9/10): 2489-2504.

[10]BARBERO E J, TROVILLION J, MAYUGO J A, et al. Finite element modeling of plain weave fabrics from photomicrograph measurements[J]. Composite Structures, 2006, 73(1): 41-52.

[11]楊斌, 王繼輝, 馮雨薇, 等. 織物增強復合材料Micro-CT輔助數值仿真技術研究進展[J]. 復合材料學報, 2023, 40(10): 5466-5485.

YANG Bin, WANG Jihui, FENG Yuwei, et al. Advances in Micro-CT aided numerical simulation of fabric-reinforced composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5466-5485.

[12]GREEN S D, LONG A C, EL S B, et al. Numerical modelling of 3D woven preform deformations[J]. Composite Structures, 2014, 108: 747-756.

[13]KOWALCZYK P. Enhanced geometric model for numerical microstructure analysis of plain-weave fabric-reinforced composite[J]. Advanced Composite Materials, 2015, 24(5): 411-429.

[14]HIVET G, BOISSE P. Consistent 3D geometrical model of fabric elementary cell. Application to a meshing preprocessor for 3D finite element analysis[J]. Finite Elements in Analysis and Design, 2005, 42(1): 25-49.

[15]ADUMITROAIE A, BARBERO E J. Beyond plain weave fabrics-I. Geometrical model[J]. Composite Structures, 2011, 93(5): 1424-1432.

[16]STIG F, HALLSTRM S. Spatial modelling of 3D-woven textiles[J]. Composite Structures, 2012, 94(5): 1495-1502.

[17]WADEKAR P, PERUMAL V, DION G, et al. An optimized yarn-level geometric model for Finite Element Analysis of weft-knitted fabrics[J]. Computer Aided Geometric Design, 2020, 80: 101883.

[18]PENG X Q, CAO J. A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics[J]. Composites Part A: Applied Science and Manu-facturing, 2005, 36(6): 859-874.

[19]CHEN B, COLMARS J, NAOUAR N, et al. A hypoelastic stress resultant shell approach for simulations of textile composite reinforcement forming[J]. Composites Part A: Applied Science and Manufacturing, 2021, 149: 106558.

[20]YANG H, YAO X F, YAN H, et al. Anisotropic hyper-viscoelastic behaviors of fabric reinforced rubber composites[J]. Composite Structures, 2018, 187: 116-121.

[21]YANG H, YAO X F, KE Y C, et al. Constitutive behaviors and mechanical characterizations of fabric reinforced rubber composites[J]. Composite Structures, 2016, 152: 117-123.

[22]XU X, YAO X, DONG Y, et al. Mechanical behaviors of non-orthogonal fabric rubber seal[J]. Composite Structures, 2021, 259: 113453.

[23]PAZMINO J, MATHIEU S, CARVELLI V, et al. Numerical modelling of forming of a non-crimp 3D orthogonal weave E-glass composite reinforcement[J]. Composites Part A: Applied Science and Manufacturing, 2015, 72: 207-218.

[24]YAO Y, HUANG X, PENG X, et al. An anisotropic hyperelastic constitutive model for plain weave fabric considering biaxial tension coupling[J]. Textile Research Journal, 2019, 89(3): 434-444.

[25]CAO J, AKKERMAN R, BOISSE P, et al. Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(6): 1037-1053.

[26]DENIS Y, HAMILA N, ITSKOV M, et al. A dissipative model for deep-drawing simulations: Elastic springback prediction and incremental forming strategies[J]. Composites Part A: Applied Science and Manufacturing, 2021, 149: 106547.

[27]DENIS Y, GUZMAN-MALDONADO E, HAMILA N, et al. A dissipative constitutive model for woven composite fabric under large strain[J]. Composites Part A: Applied Science and Manufacturing, 2018, 105: 165-179.

[28]WANG Y, SUN X. Digital-element simulation of textile processes[J]. Composites Science and Technology, 2001, 61(2): 311-319.

[29]WANG Y, MIAO Y, SWENSON D, et al. Digital element approach for simulating impact and penetration of textiles[J]. International Journal of Impact Engineering, 2010, 37(5): 552-560.

[30]THOMPSON A J, EL SAID B, BELNOUE J P H, et al. Modelling process induced deformations in 0/90 non-crimp fabrics at the meso-scale[J]. Composites Science and Technology, 2018, 168: 104-110.

[31]LIU C, XIE J, SUN Y, et al. Micro-scale modeling of textile composites based on the virtual fiber embedded models[J]. Composite Structures, 2019, 230: 111552.

[32]WU L, ZHAO F, XIE J, et al. The deformation behaviors and mechanism of weft knitted fabric based on micro-scale virtual fiber model[J]. International Journal of Mechanical Sciences, 2020, 187: 105929.

[33]MAZUMDER A, WANG Y, YEN C F. A structured method to generate conformal FE mesh for realistic textile composite micro-geometry[J]. Composite Structures, 2020, 239: 112032.

[34]YANG Z, JIAO Y, XIE J, et al. Modeling of 3D woven fibre structures by numerical simulation of the weaving process[J]. Composites Science and Technology, 2021, 206: 108679.

[35]DAELEMANS L, TOMME B, CAGLAR B, et al. Kinematic and mechanical response of dry woven fabrics in through-thickness compression: Virtual fiber modeling with mesh overlay technique and experimental validation[J]. Composites Science and Technology, 2021, 207: 108706.

[36]NILAKANTAN G, KEEFE M, WETZEL E D, et al. Effect of statistical yarn tensile strength on the probabilistic impact response of woven fabrics[J]. Composites Science and Technology, 2012, 72(2): 320-329.

[37]NGUYEN Q T, VIDAL-SALL E, BOISSE P, et al. Mesoscopic scale analyses of textile composite reinforcement compaction[J]. Composites Part B: Engineering, 2013, 44(1): 231-241.

[38]YANG Y, LIU Y, XUE S, et al. Multi-scale finite element modeling of ballistic impact onto woven fabric involving fiber bundles[J]. Composite Structures, 2021, 267: 113856.

[39]HAMILA N, BOISSE P, SABOURIN F, et al. A semi-discrete shell finite element for textile composite reinforcement forming simulation[J]. International Journal for Numerical Methods in Engineering, 2009, 79(12): 1443-1466.

[40]ALLAOUI S, BOISSE P, CHATEL S, et al. Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(6): 612-622.

[41]BOISSE P, HAMILA N, VIDAL-SALL E, et al. Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses[J]. Composites Science and Technology, 2011, 71(5): 683-692.

[42]GUAN W, DAI Y, LI W, et al. An improved semi-discrete approach for simulation of 2.5D woven fabric preforming[J]. Composite Structures, 2022, 282: 115093.

[43]WANG P, LEGRAND X, BOISSE P, et al. Experimental and numerical analyses of manufacturing process of a composite square box part: Comparison between textile reinforcement forming and surface 3D weaving[J]. Composites Part B: Engineering, 2015, 78: 26-34.

[44]DE LUYCKER E, MORESTIN F, BOISSE P, et al. Simulation of 3D interlock composite preforming[J]. Composite Structures, 2009, 88(4): 615-623.

[45]IWATA A, INOUE T, NAOUAR N, et al. Coupled meso-macro simulation of woven fabric local deformation during draping[J]. Composites Part A: Applied Science and Manufacturing, 2019, 118: 267-280.

[46]喻高遠, 李俊杰, 樓云鋒, 等. 結構動力學有限元混合分層并行計算方法[J]. 工程力學, 2023, 40: 1-8.

YU Gaoyuan, LI Junjie, LOU Yunfeng, et al. Hybrid hierarchical parallel algorithms for structure. dynamic analysis[J]. Engineering Mechanics, 2023, 40: 1-8.

[47]DINH T D, WEEGER O, KAIJIMA S, et al. Prediction of mechanical properties of knitted fabrics under tensile and shear loading: Mesoscale analysis using representative unit cells and its validation[J]. Composites Part B: Engineering, 2018, 148: 81-92.

[48]QUYEN N T, QUOC N T, TRU N D, et al. An alpha finite element method for linear static and buckling analysis of textile-like sheet materials[J]. Solid State Phenomena, 2022, 333: 211-217.

[49]ONYIBO E C, SAFAEI B. Application of finite element analysis to honeycomb sandwich structures: A review[J]. Reports in Mechanical Engineering, 2022, 3(1): 283-300.

[50]顧伯洪.非織造布拉伸性能有限元模擬計算[J].紡織學報,1998,19(3):140-142.

GU Baihong. Finite element simulation calculation of nonwoven tensile propery[J]. Journal of Textile Research, 1998, 19(3): 140-142.

[51]DAELEMANS L, FAES J, ALLAOUI S, et al. Finite element simulation of the woven geometry and mechanical behaviour of a 3D woven dry fabric under tensile and shear loading using the digital element method[J]. Composites Science and Technology, 2016, 137: 177-187.

[52]程建芳, 肖露, 柴曉明, 等. 有限元分析法研究Kevlar129紗線及織物的拉伸性能[J]. 浙江理工大學學報, 2013, 30(5): 649-653.

CHENG Jianfang, XIAO Lu, CHAI Xiaoming, et al. Study on tensile property of Kevlar129 yarn and fabric with finite element analysis method[J]. Journal of Zhejiang Sci-Tech University, 2013, 30(5): 649-653.

[53]李瑛慧, 謝春萍, 劉新金. 三原組織織物拉伸力學性能有限元仿真[J]. 紡織學報, 2017, 38(11): 41-47.

LI Yinghui, XIE Chunping, LIU Xinjin. Finite element simulation on tensile mechanical properties of three-elementary weave fabric[J]. Journal of Textile Research, 2017, 38(11): 41-47.

[54]李瑛慧, 謝春萍, 劉新金, 等. 真絲和滌綸仿真絲織物的拉伸性能有限元仿真[J]. 絲綢, 2018, 55(3): 27-31.

LI Yinghui, XIE Chunping, LIU Xinjin, et al. Finite element simulation of tensile mechanical properties of silk fabrics and polyester silk-like fabrics[J]. Journal of Silk, 2018, 55(3): 27-31.

[55]劉倩楠, 張涵, 劉新金, 等. 基于ABAQUS的三原組織機織物拉伸力學性能模擬[J]. 紡織學報, 2019, 40(4): 44-50.

LIU Qiannan, ZHANG Han, LIU Xinjin, et al. Simulation on tensile mechanical properties of three-elementary weave woven fabrics based on ABAQUS[J]. Journal of Textile Research, 2019, 40(4): 44-50.

[56]劉倩楠, 劉新金. 采用ABAQUS的粘膠機織物拉伸力學性能仿真[J]. 紡織學報, 2018, 39(9): 39-43.

LIU Qiannan, LIU Xinjin. Tensile mechanical properties simulation of viscose woven fabrics based on ABAQUS[J]. Journal of Textile Research, 2018, 39(9): 39-43.

[57]劉倩楠, 劉新金, 蘇旭中. 基于有限元方法的不同集聚紗織物拉伸力學性能分析[J].絲綢, 2019, 56(4): 24-29.

LIU Qiannan, LIU Xinjin, SU Xuzhong. Tensile mechanical properties analysis of fabrics with different aggregate yarns based on finite element method[J]. Journal of Silk, 2019,56(4): 24-29.

[58]孫一萬, 張學文, 蔡利海, 等. 增強機織物拉伸過程中的應力集中有限元分析[J].復合材料科學與工程, 2021(12): 25-33.

SUN Yiwan, ZHANG Xuewen, CAI Lihai, et al. Finite element analysis of stress concentration in tensile process of reinforced woven fabric[J]. Composites Science and Engineering, 2021(12): 25-33.

[59]孫亞博, 李立軍, 馬崇啟, 等. 基于ABAQUS的筒狀緯編針織物拉伸力學性能模擬[J].紡織學報, 2021, 42(2): 107-112.

SUN Yabo, LI Lijun, MA Chongqi, et al. Simulation on tensile properties of tubular weft knitted fabrics based on ABAQUS[J]. Journal of Textile Research,2021, 42(2): 107-112.

[60]HOU Y, JIANG L, SUN B, et al. Strain rate effects of tensile behaviors of 3-D orthogonal woven fabric: Experimental and finite element analyses[J]. Textile Research Journal, 2013, 83(4): 337-354.

[61]SU X, LIU X. Dynamic tensile process of blended fabric using finite element method[J]. International Journal of Clothing Science and Technology, 2020, 32(5): 707-724.

[62]GHORBANI E, HASANI H, JAFARI N R. Finite element modelling the mechanical performance of pressure garments produced from elastic weft knitted fabrics[J]. The Journal of The Textile Institute, 2019, 110(5): 724-731.

[63]LIU G, HUANG K, ZHONG Y, et al. Investigation on the off-axis tensile failure behaviors of 3D woven composites through a coupled numerical-experimental approach[J]. Thin-Walled Structures, 2023, 192: 111176.

[64]CHOCRON S, FIGUEROA E, KING N, et al. Modeling and validation of full fabric targets under ballistic impact[J]. Composites Science and Technology, 2010, 70(13): 2012-2022.

[65]DAS S, JAGAN S, SHAW A, et al. Determination of inter-yarn friction and its effect on ballistic response of para-aramid woven fabric under low velocity impact[J]. Composite Structures, 2015, 120: 129-140.

[66]MEYER C S, O'BRIEN D J, HAQUE B Z G, et al. Mesoscale modeling of ballistic impact experiments on a single layer of plain weave composite [J]. Composites Part B: Engineering, 2022, 235: 109-753.

[67]MAMIVAND M, LIAGHAT G H. A model for ballistic impact on multi-layer fabric targets[J]. International Journal of Impact Engineering, 2010, 37(7): 806-812.

[68]WANG Y, MIAO Y, HUANG L, et al. Effect of the inter-fiber friction on fiber damage propagation and ballistic limit of 2-D woven fabrics under a fully confined boundary condition[J]. International Journal of Impact Engineering, 2016, 97: 66-78.

[69]PALTA E, FANG H. On a multi-scale finite element model for evaluating ballistic performance of multi-ply woven fabrics[J]. Composite Structures, 2019, 207: 488-508.

[70]武鮮艷, 申屠寶卿, 馬倩, 等. 球形彈體沖擊下三維正交機織物結構破壞機制有限元分析[J].紡織學報, 2020, 41(8): 32-38.

WU Xianyan, SHENTU Baoqing, MA Qian, et al. Finite element analysis on structural failure mechanism of three-dimensional orthogonal woven fabrics subjected to impact of spherical projectile[J]. Journal of Textile Research, 2020, 41(8): 32-38.

[71]WEI Q, YANG D, GU B, et al. Numerical and experimental investigation on 3D angle interlock woven fabric under ballistic impact[J]. Composite Structures, 2021, 266: 113778.

[72]DEWANGAN M K, PANIGRAHI S K. Finite element analysis of projectile nose shapes in ballistic perforation of 2D plain woven Kevlar/epoxy composites using multi-scale modelling[J]. Journal of Industrial Textiles, 2022, 51(S3): 4200-4230.

[73]馬倩, 王可. 機織物撕裂破壞的有限元模擬[J]. 合成纖維, 2013, 42(5): 10-13.

MA Qian, WANG Ke. Finite element modeling of woven fabric tearing damage[J]. Synthetic Fiber in China, 2013 (5): 10-13.

[74]WANG P, SUN B, GU B. Comparisons of trapezoid tearing behaviors of uncoated and coated woven fabrics from experimental and finite element analysis[J]. International Journal of Damage Mechanics, 2013, 22(4): 464-489.

[75]WANG P, SUN B Z. Finite element analysis and calculation of tongue-tearing process of woven fabric[J]. Advanced Materials Research, 2011, 181/182: 443-448.

[76]ZHOU H, JIANG W, ZHOU B I, et al. Numerical simulation and experimental validation of triaxial woven fabric and its reinforced rubber composites on tear damage[J]. Materials Research Express, 2021, 8(8): 085301.

[77]SENNER T, KREISSL S, MERKLEIN M, et al. Bending of unidirectional non-crimp-fabrics: Experimental characterization, constitutive modeling and application in finite element simulation[J]. Production Engineering, 2015, 9(1): 1-10.

[78]靳歡歡, 杜趙群. 平紋織物三點梁彎曲有限元模擬與分析[J]. 東華大學學報(自然科學版), 2016, 42(3): 344-349.

JIN Huanhuan, DU Zhaoqun. Three-point bending simulation and analysis of plain woven fabric by finite element method[J]. Journal of Donghua University(Natural Science), 2016, 42(3): 344-349.

[79]楊留義, 譚惠豐, 曹宗勝. 基于單胞有限元模型的織物復合材料彎曲剛度預報[J]. 復合材料學報, 2018, 35(5): 1192-1202.

YANG Liuyi, TAN Huifeng, CAO Zongsheng. A unit-cell model for predicting bending stiffnesses of plain woven composites[J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1192-1202.

[80]ZHONG Y, TRAN L Q N, KUREEMUN U, et al. Prediction of the mechanical behavior of flax polypropylene composites based on multi-scale finite element analysis[J]. Journal of Materials Science, 2017, 52(9): 4957-4967.

[81]馬瑩, 何田田, 陳翔, 等. 基于數字單元法的三維正交織物微觀幾何結構建模[J]. 紡織學報, 2020, 41(7): 59-66.

MA Ying, HE Tiantian, CHEN Xiang, et al. Micro-geometry modeling of three-dimensional orthogonal woven fabrics based on digital element approach[J]. Journal of Textile Research, 2020, 41(7): 59-66.

[82]DRACH A, DRACH B, TSUKROV I. Processing of fiber architecture data for finite element modeling of 3D woven composites[J]. Advances in Engineering Software, 2014, 72: 18-27.

Application of finite element analysis technology in the field of

fabric mechanical properties

LI? Denggaoa,? LIU? Chengxiaa,b

(a. School of Fashion Design & Engineering; b. Zhejiang Provincial Engineering Laboratory of Fashion

Digital Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China)

Abstract:

The mechanical properties of fabrics have always been an important research content in the field of textiles and clothing, but the three-dimensional structure of fabrics is complex, and many factors such as fiber, yarn, weave structure and composite materials will affect the mechanical properties of fabrics. The traditional mechanical experimental methods are often costly, and it is difficult for researchers to observe the changes at the meso level. With the rapid development of computer and software technology, the finite element analysis technology shows more and more potential, and has become an important means of mechanical property research in the field of textile and clothing. This paper first described the construction methods of fabric finite element models by some scholars at present. The geometric model construction methods are divided into two categories. One is based on the experimental data to generate the model, and the fabric finite element model is constructed by collecting the experimental image information. This method is suitable for fabric local modeling, and can obtain fine and real fabric structure. The other is based on the physical or geometric generation model, that is, using the actual physical weaving process or geometric parameters to construct the three-dimensional structure of the fabric, and this method is easier to construct periodic boundary conditions. The constitutive model of fabric materials is a key step in constructing finite element models. This paper introduces continuous models, discrete models, and semi-discrete models respectively. The continuous models have the fastest calculation speed, but cannot reflect the internal characteristics of the fabric. By contrast, the discrete models can express the state of yarns or fibers, but the computational cost is high. The semi-discrete models combine the advantages and disadvantages of both. At present, most finite element analysis can be done with finite element software. For several commonly used finite element analysis software, this paper introduced their application fields, advantages and disadvantages. In this paper, the current status of finite element research on the mechanical properties of fabrics is roughly divided into four fields: tensility, bullet proofness, tearing and bending. At present, there are more studies in the two fields of tensility and bullet proofness, and the research materials are mainly woven fabrics.

Although finite element technology plays an important role in the simulation of fabric mechanical properties, there are also some shortcomings, such as the lack of model accuracy, the difficulty of determining material parameters, and the difficulty of setting boundary conditions, which affect the accuracy of simulation results. In view of these shortcomings, this paper put forward four suggestions for the follow-up development of finite element in the field of fabric mechanics. First, it is necessary to apply multi-scale analysis methods, and research feature changes at a more microscopic level while ensuring computational efficiency. Second, it is necessary to develop a higher precision textile tester to obtain more accurate material parameters.

Third, it is necessary to fit the actual environment and carry out multi physical field coupling simulation. Fourth, it is necessary to combine other numerical methods to solve complex problems. It is believed that the finite element technology will play a more important role in the simulation of fabric mechanical properties in the future.

Keywords:

finite element; fabric; mechanical property; stretching; bulletproofing; tearing; bending

猜你喜歡
力學性能有限元
反擠壓Zn-Mn二元合金的微觀組織與力學性能
Pr對20MnSi力學性能的影響
云南化工(2021年11期)2022-01-12 06:06:14
新型有機玻璃在站臺門的應用及有限元分析
上海節能(2020年3期)2020-04-13 13:16:16
基于有限元的深孔鏜削仿真及分析
基于有限元模型對踝模擬扭傷機制的探討
Mn-Si對ZG1Cr11Ni2WMoV鋼力學性能的影響
山東冶金(2019年3期)2019-07-10 00:54:00
MG—MUF包覆阻燃EPS泡沫及力學性能研究
中國塑料(2015年12期)2015-10-16 00:57:14
INCONEL625+X65復合管的焊接組織與力學性能
焊接(2015年9期)2015-07-18 11:03:53
磨削淬硬殘余應力的有限元分析
基于SolidWorks的吸嘴支撐臂有限元分析
主站蜘蛛池模板: 日韩国产黄色网站| AV无码无在线观看免费| 国产精品永久久久久| 亚洲色图欧美视频| 欧美97欧美综合色伦图| 欧美人与牲动交a欧美精品| 亚洲欧美不卡视频| 欧美一级在线播放| 久久久久人妻精品一区三寸蜜桃| 啦啦啦网站在线观看a毛片| AV熟女乱| 欧美一级高清片欧美国产欧美| 国产91精品调教在线播放| 手机精品福利在线观看| 亚洲天堂日韩av电影| 国产毛片高清一级国语 | 精品国产黑色丝袜高跟鞋| 强乱中文字幕在线播放不卡| 精品国产毛片| 亚洲男人的天堂在线| 国产午夜一级毛片| 国国产a国产片免费麻豆| 97视频精品全国在线观看| 国内熟女少妇一线天| 波多野结衣爽到高潮漏水大喷| 91亚洲国产视频| 日韩无码精品人妻| 91丝袜乱伦| 狠狠色狠狠综合久久| 国产欧美成人不卡视频| 亚洲自拍另类| 美女高潮全身流白浆福利区| 国产成人1024精品下载| 日韩毛片免费| 亚洲欧美色中文字幕| 99精品高清在线播放| 亚洲国模精品一区| 国产男人的天堂| 国产精品成人一区二区不卡| 亚洲永久精品ww47国产| 啦啦啦网站在线观看a毛片 | 欧美劲爆第一页| 为你提供最新久久精品久久综合| 色噜噜综合网| 成人精品午夜福利在线播放| 国产自在线播放| 精品国产网站| 91视频99| 伊人久久精品无码麻豆精品 | 人妻熟妇日韩AV在线播放| аv天堂最新中文在线| 57pao国产成视频免费播放| 国产亚洲精品97在线观看 | 国产va免费精品观看| 欧美成人精品在线| 久久99国产乱子伦精品免| 青青热久麻豆精品视频在线观看| 国产成人一区二区| 国产迷奸在线看| 亚洲欧美一级一级a| 精品久久久久无码| 中文字幕av一区二区三区欲色| 久久精品中文字幕免费| 亚洲色成人www在线观看| 免费看一级毛片波多结衣| 福利视频久久| 欧美a级在线| 欧美成人免费一区在线播放| 国产精品刺激对白在线| 国产成人h在线观看网站站| 欧美激情二区三区| 99视频有精品视频免费观看| 日本欧美在线观看| 国产福利一区视频| 免费国产高清精品一区在线| 91福利片| 国产日韩丝袜一二三区| 久久96热在精品国产高清| 国产精品美女网站| 人人爱天天做夜夜爽| 最新日韩AV网址在线观看| 韩国v欧美v亚洲v日本v|